guanosine-diphosphate has been researched along with Hypothyroidism* in 3 studies
3 other study(ies) available for guanosine-diphosphate and Hypothyroidism
Article | Year |
---|---|
Thermogenic responses to selective and nonselective beta-adrenerg agonists in hypothyroidism of Sprague-Dawley rats.
Resting oxygen consumption (VO2) and mitochondrial GDP binding were measured in hypothyroid and euthyroid rats after administration of selective and nonselective beta-adrenoceptor agonists (BRL 35135A and Isoprenaline--BRL, ISO). Resting VO2, VO2 increment and mitochondrial GDP binding after beta-agonists were lower in hypothyroid rats than in the euthyroid group. The reduced response was more marked for ISO than for BRL. These results suggest that BRL is acting on a beta-adrenoceptor which differs from beta-1 and beta-2 adrenoceptors, responsible for the effect of ISO. Activation of thermogenesis via this beta-3 adrenoceptor seems to be less dependent on permissive levels of thyroid hormones than on activation via beta-1 and/or beta-2 adrenoceptors. Topics: Adipose Tissue; Adrenergic beta-Agonists; Animals; Body Weight; Disease Models, Animal; Guanosine Diphosphate; Hypothyroidism; Isoproterenol; Male; Methimazole; Oxygen Consumption; Phenethylamines; Rats; Rats, Sprague-Dawley; Thermoreceptors; Thyroidectomy | 1991 |
Effects of hypothyroidism and hyperthyroidism on thermogenic responses to selective and nonselective beta-adrenergic agonists in rats.
Oxygen consumption (VO2) and mitochondrial guanosine diphosphate (GDP) binding of interscapular brown adipose tissue (BAT) were measured in hypothyroid, hyperthyroid and euthyroid rats after stimulations with selective and nonselective beta-adrenoceptor agonists: BRL 35135A (BRL) and Isoprenaline (ISO). Resting VO2, VO2 increment and mitochondrial GDP binding after beta-adrenergic stimulations were lower in hypothyroid rats than in the euthyroid group. The reduced responses were more marked for ISO than for BRL. Restion VO2 and VO2 increment after beta-adrenergic stimulations were higher in hyperthyroid rats than in the eurthyroid group; the increment was more marked for BRL than for ISO. In hyperthyroidism, mitochondrial GDP binding after BRL and after ISO was in the same magnitude; it was higher in the hyperthyroid than in the euthyroid group after BRL but not after ISO. The different thermogenic responses after ISO and BRL stimulations suggest that BRL is acting on a beta-adrenoceptor differing from the beta-1 and beta-2 adrenoceptors responsible for the effects of ISO. Activation of thermogenesis via the beta-3 adrenoceptor seems to be less dependent on the permissive levels of thyroid hormones than activation via beta-1 and/or beta-2 adrenoceptors. The beta-3 adrenoceptor may be more sensitive to increased levels of thyroid hormones. Topics: Adipose Tissue, Brown; Animals; Body Weight; Guanosine Diphosphate; Hyperthyroidism; Hypothyroidism; Male; Methimazole; Mitochondria; Organ Size; Oxygen Consumption; Rats; Rats, Inbred Strains; Reference Values; Thyroid Gland | 1990 |
Effects of hypothyroidism and hyperthyroidism on GDP binding to brown-adipocyte mitochondria from rats.
1. Rats were made hypothyroid by giving them a low-iodine diet with propylthiouracil for 4 weeks, or were made hyperthyroid by injection with tri-iodothyronine (T3) over a 3-day period. 2. Brown adipocytes were isolated from the interscapular depots of these animals or from their euthyroid controls, followed by isolation of mitochondria from the cells. 3. Relative to cell DNA content, hypothyroidism decreased the maximum binding (Bmax.) of [3H]GDP to mitochondria by 50%. T3 treatment increased binding by 37%. 4. These findings, which are discussed in relation to previously observed changes in brown adipose tissue after alteration of thyroid status, suggest that mitochondrial uncoupling for thermogenesis is less or more effective in hypothyroidism or hyperthyroidism respectively. Topics: Adipose Tissue, Brown; Animals; DNA; Guanine Nucleotides; Guanosine Diphosphate; Hyperthyroidism; Hypothyroidism; Male; Mitochondria; Propylthiouracil; Rats; Rats, Inbred Strains; Triiodothyronine | 1989 |