guanosine-diphosphate has been researched along with Diabetic-Nephropathies* in 2 studies
2 other study(ies) available for guanosine-diphosphate and Diabetic-Nephropathies
Article | Year |
---|---|
Coenzyme Q10 prevents GDP-sensitive mitochondrial uncoupling, glomerular hyperfiltration and proteinuria in kidneys from db/db mice as a model of type 2 diabetes.
Increased oxygen consumption results in kidney tissue hypoxia, which is proposed to contribute to the development of diabetic nephropathy. Oxidative stress causes increased oxygen consumption in type 1 diabetic kidneys, partly mediated by uncoupling protein-2 (UCP-2)-induced mitochondrial uncoupling. The present study investigates the role of UCP-2 and oxidative stress in mitochondrial oxygen consumption and kidney function in db/db mice as a model of type 2 diabetes.. Mitochondrial oxygen consumption, glomerular filtration rate and proteinuria were investigated in db/db mice and corresponding controls with and without coenzyme Q10 (CoQ10) treatment.. Untreated db/db mice displayed mitochondrial uncoupling, manifested as glutamate-stimulated oxygen consumption (2.7 ± 0.1 vs 0.2 ± 0.1 pmol O(2) s(-1) [mg protein](-1)), glomerular hyperfiltration (502 ± 26 vs 385 ± 3 μl/min), increased proteinuria (21 ± 2 vs 14 ± 1, μg/24 h), mitochondrial fragmentation (fragmentation score 2.4 ± 0.3 vs 0.7 ± 0.1) and size (1.6 ± 0.1 vs 1 ± 0.0 μm) compared with untreated controls. All alterations were prevented or reduced by CoQ10 treatment. Mitochondrial uncoupling was partly inhibited by the UCP inhibitor GDP (-1.1 ± 0.1 pmol O(2) s(-1) [mg protein](-1)). UCP-2 protein levels were similar in untreated control and db/db mice (67 ± 9 vs 67 ± 4 optical density; OD) but were reduced in CoQ10 treated groups (43 ± 2 and 38 ± 7 OD).. db/db mice displayed oxidative stress-mediated activation of UCP-2, which resulted in mitochondrial uncoupling and increased oxygen consumption. CoQ10 prevented altered mitochondrial function and morphology, glomerular hyperfiltration and proteinuria in db/db mice, highlighting the role of mitochondria in the pathogenesis of diabetic nephropathy and the benefits of preventing increased oxidative stress. Topics: Animals; Blood Glucose; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Disease Models, Animal; Glomerular Filtration Rate; Guanosine Diphosphate; Ion Channels; Kidney Glomerulus; Mice; Mitochondria; Mitochondrial Proteins; Oxidative Stress; Oxygen Consumption; Proteinuria; Ubiquinone; Uncoupling Protein 2; Vitamins | 2012 |
Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys.
Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (-30-50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT. Topics: Adenosine Diphosphate; Animals; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Gene Knockdown Techniques; Guanosine Diphosphate; Ion Channels; Kidney Cortex; Male; Malondialdehyde; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial ADP, ATP Translocases; Mitochondrial Proteins; Oxidative Stress; Oxygen; Rats; Rats, Sprague-Dawley; Uncoupling Protein 2 | 2012 |