guanosine-diphosphate and Carcinoma--Hepatocellular

guanosine-diphosphate has been researched along with Carcinoma--Hepatocellular* in 3 studies

Other Studies

3 other study(ies) available for guanosine-diphosphate and Carcinoma--Hepatocellular

ArticleYear
A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation.
    Glycobiology, 2007, Volume: 17, Issue:12

    Changes in the levels of fucosylation regulate the biological phenotype of cancer cells and a specific fucosylation, such as fucosylated alpha-fetoprotein (AFP-L3) has been clinically used as a tumor marker for hepatocellular carcinoma (HCC). However, detailed molecular mechanisms that explain the increased fucosylation in HCC remain unknown despite 10 years of study by these researchers. Fucosylation is regulated by complicated mechanisms that involve several factors: fucosyltransferases, GDP-fucose transporter (GDP-Fuc Tr), and synthetic enzymes of GDP-fucose, such as GDP-mannose 4, 6-dehydratase (GMD), GDP-4-keto-6-deoxy-mannose-3, 5-epimerase-4-reductase (FX), and GDP-fucose pyrophosphorylase. In this study, the expression of fucosylation-related genes in HCC tissues was studied and it was found that GDP-Fuc Tr is a key factor for increases in fucosylation. A real-time reverse transcription polymerase chain reaction (RT-PCR) analysis showed significant increases in GDP-Fuc Tr and FX expression in HCC, and levels of the GMD protein were upregulated by posttranslational modification in HCC tissues. In vitro cell experiments showed that the level of GDP-Fuc Tr was the most significantly correlated with the level of cellular fucosylation and the overexpression of GDP-Fuc Tr dramatically increased fucosylation in Hep3B cells. The importance of GDP-Fuc Tr in the increase of fucosylation was also confirmed with immunohistochemical analyses. These findings suggest that the upregulation of GDP-Fuc Tr plays a pivotal role in increased fucosylation in HCC and represents an attractive target for new treatments and diagnosis for HCC.

    Topics: Aged; Biological Transport; Carcinoma, Hepatocellular; Cell Line, Tumor; Female; Fucose; Gene Expression Regulation, Neoplastic; Guanosine Diphosphate; Humans; Immunohistochemistry; Male; Middle Aged; Models, Biological; Monosaccharide Transport Proteins; Oligosaccharides; RNA, Messenger

2007
Hg2+ signaling in trout hepatoma (RTH-149) cells: involvement of Ca2+-induced Ca2+ release.
    Cell calcium, 2003, Volume: 34, Issue:3

    Mercury is a non-essential heavy metal affecting intracellular Ca2+ dynamics. We studied the effects of Hg2+ on [Ca2+]i in trout hepatoma cells (RTH-149). Confocal imaging of fluo-3-loaded cells showed that Hg2+ induced dose-dependent, sustained [Ca2+]i transient, triggered intracellular Ca2+ waves, stimulated Ca2+-ATPase activity, and promoted InsP3 production. The effect of Hg2+ was reduced by the Ca2+ channel blocker verapamil and totally abolished by extracellular GSH, but was almost unaffected by cell loading with the heavy metal chelator TPEN or esterified GSH. In a Ca2+-free medium, Hg2+ induced a smaller [Ca2+]i transient, that was unaffected by TPEN, but was abolished by U73122, a PLC inhibitor, and by cell loading with GDP-betaS, a G protein inhibitor, or heparin, a blocker of intracellular Ca2+ release. Data indicate that Hg2+ induces Ca2+ entry through verapamil-sensitive channels, and intracellular Ca2+ release via a G protein-PLC-InsP3 mechanism. However, in cells loaded with heparin and exposed to Hg2+ in the presence of external Ca2+, the [Ca2+]i rise was maximally reduced, indicating that the global effect of Hg2+ is not a mere sum of Ca2+ entry plus Ca2+ release, but involves an amplification of Ca2+ release operated by Ca2+ entry through a CICR mechanism.

    Topics: Aniline Compounds; Animals; Ca(2+) Mg(2+)-ATPase; Calcium; Calcium Signaling; Carcinoma, Hepatocellular; Cell Line, Tumor; Cytosol; Estrenes; Ethylenediamines; Glutathione; GTP-Binding Proteins; Guanosine Diphosphate; Heparin; Histocytochemistry; Inositol 1,4,5-Trisphosphate; Kinetics; Mercury; Microscopy, Confocal; Microscopy, Fluorescence; Phospholipases; Pyrrolidinones; Thionucleotides; Trout; Verapamil; Xanthenes

2003
Preparation and properties of a Met-tRNAf binding factor from rat liver and rat hepatoma.
    Acta biologica et medica Germanica, 1978, Volume: 37, Issue:9

    A Met-tRNAf binding factor (IF-2) from the microsomal fraction of rat liver and rat hepatoma ascites cells was partially purified by ammonium sulphate fractionation, DEAE-cellulose and phosphocellulose chromatography. The factor binds [3H]Met-tRNAf only in the presence of either GTP or GMPPCP. Maximal binding takes place at 37 degrees C and in the absence of Mg++. The factor is specific for Met-tRNAf and does not bind Phe-tRNA from rat liver or from E. coli. The ternary complex [Met-tRNAf . IF-2 . GTP1 binds to 40 S ribosomal subunits from rat liver in the absence of mRNA or poly(A, G, U) without GTP hydrolysis. GDP as well as aurintricarboxylic acid inhibit the ternary complex formation. Both factors are rapidly inactivated by N-ethylmaleimide treatment and by preincubation at 45 degrees C. Heat inactivation is partially prevented by GTP and GDP. With regard to the functional properties there are no significant differences between IF-2 from normal liver and hepatoma cells. On the other hand heat denaturation compared to the rat liver factor, which may be due to differences in contaminating proteins.

    Topics: Animals; Carcinoma, Hepatocellular; Ethylmaleimide; Guanosine Diphosphate; Guanosine Triphosphate; Hot Temperature; In Vitro Techniques; Liver Neoplasms; Microsomes, Liver; Peptide Initiation Factors; Rats; RNA, Transfer

1978