guanosine-diphosphate and Brain-Neoplasms

guanosine-diphosphate has been researched along with Brain-Neoplasms* in 1 studies

Other Studies

1 other study(ies) available for guanosine-diphosphate and Brain-Neoplasms

ArticleYear
Neuropeptide Y2-type receptor-mediated activation of large-conductance Ca(2+)-sensitive K+ channels in a human neuroblastoma cell line.
    Pflugers Archiv : European journal of physiology, 1995, Volume: 430, Issue:4

    We have proposed recently that a pertussistoxin-insensitive Ca2+ influx stimulated by Y2-type receptor activation in CHP-234 human neuroblastoma cells underlies increases in intracellular free Ca2+ concentration ([Ca2+]i) induced by neuropeptide Y (NPY), which were strictly dependent on extracellular Ca2+ and independent of internal Ca2+ stores. We describe here the actions of NPY in these same cells, using the activity of Ca(2+)-activated K+ channels as an indicator of [Ca2+]i. The elementary slope conductance of these channels was 110 +/- 3 pS (with an asymmetrical K+ gradient), their activity was greatly increased by application of ionomycin, and they were reversibly blocked by 1 mM tetraethylammonium (TEA) and 100 nM charybdotoxin. Application of 100 nM NPY, in the presence but not in the absence of extracellular Ca2+, increased the channel open probability. ATP applied in the absence of external Ca2+ caused rises both in channel open probability and [Ca2+]i. Inositol trisphosphate production was stimulated by ATP but not by NPY. In outside-out patches, NPY increased channel open probability, indicating that NPY-associated Ca2+ influx does not require all the intracellular machinery present in intact cells. Channel activation by NPY was unaffected by the replacement of guanosine 5'-triphosphate (GTP) by (guanosine 5'-O-(2-thiodiphosphate) (GDP[ beta S]), a non-hydrolysable GDP analogue, in the pipette internal solution, consistent with the lack of involvement of G-proteins in the coupling of Y2-type receptors to Ca2+ influx in CHP-234 cells.

    Topics: Adenosine Triphosphate; Brain Neoplasms; Calcium; Electrophysiology; GTP-Binding Proteins; Guanosine Diphosphate; Humans; Inosine Triphosphate; Inositol 1,4,5-Trisphosphate; Ionomycin; Ionophores; Neuroblastoma; Patch-Clamp Techniques; Potassium Channels; Receptors, Neuropeptide Y; Thionucleotides; Tumor Cells, Cultured

1995