guanosine-diphosphate and Brain-Diseases

guanosine-diphosphate has been researched along with Brain-Diseases* in 2 studies

Other Studies

2 other study(ies) available for guanosine-diphosphate and Brain-Diseases

ArticleYear
Lumping or splitting the childhood leukodystrophies.
    Neurology, 2002, Dec-24, Volume: 59, Issue:12

    Topics: Brain Diseases; Child; Eukaryotic Initiation Factor-2B; Guanosine Diphosphate; Guanosine Triphosphate; Humans

2002
Effects of 3-nitropropionic acid on synaptosomal energy and transmitter metabolism: relevance to neurodegenerative brain diseases.
    Journal of neurochemistry, 1994, Volume: 63, Issue:3

    3-Nitropropionic acid (3-NPA) inhibited synaptosomal respiration in a dose-dependent manner; the degree of inhibition by the same concentration of the compound was greater, however, when respiration was stimulated by concomitant increase in ATP usage. The most rapid event after addition of 3-NPA was a decrease in [creatine phosphate]/[creatine] ([CrP]/[Cr]) and an increase in [lactate]/[pyruvate]. A fall in [ATP]/[ADP] and [GTP]/[GDP] was initially less pronounced but closely followed that in [CrP]/[Cr]. In the absence of glutamine, 3-NPA caused a pronounced decrease in internal aspartate level and a small reduction in glutamate concentration, whereas [GABA] rose; the sum of these three amino acids inside synaptosomes fell, but there were no increases in their external levels. With glutamine in the medium, the reduction in intrasynaptosomal aspartate was accompanied by increases in intrasynaptosomal glutamate and GABA. The external concentration of glutamate rose substantially in the presence of the inhibitor. 3-NPA had no effect on basal release of either glutamate (and GABA) or biogenic amines but increased efflux occurring upon addition of nonsaturating concentrations of the depolarizing agents veratridine and KCl. The results allow the following predictions with respect to the behavior of brain metabolism in neurodegenerative diseases that involve restrictions of mitochondrial function: (1) The extent of inhibition of mitochondrial ATP generation is expected to be greater in cells with high energy demand. The earliest signs of impairment of the respiratory chain function are a fall in [PCr]/[Cr] (or a rise in [Pi]/[CrP]) and an increase in [lactate]/[pyruvate]. (2) A fall in [GTP]/[GDP] can limit protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Adenosine Triphosphate; Animals; Brain Diseases; Cell Death; Creatine; Energy Metabolism; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Glutamine; Guanosine Diphosphate; Guanosine Triphosphate; Lactates; Lactic Acid; Male; Neurotransmitter Agents; Nitro Compounds; Oxygen Consumption; Phosphocreatine; Propionates; Pyruvates; Pyruvic Acid; Rats; Rats, Sprague-Dawley; Synaptosomes

1994