guanosine-5--o-(3-thiotriphosphate) has been researched along with Sciatica* in 4 studies
4 other study(ies) available for guanosine-5--o-(3-thiotriphosphate) and Sciatica
Article | Year |
---|---|
Chronic neuropathic pain in mice reduces μ-opioid receptor-mediated G-protein activity in the thalamus.
Neuropathic pain is a debilitating condition that is often difficult to treat using conventional pharmacological interventions and the exact mechanisms involved in the establishment and maintenance of this type of chronic pain have yet to be fully elucidated. The present studies examined the effect of chronic nerve injury on μ-opioid receptors and receptor-mediated G-protein activity within the supraspinal brain regions involved in pain processing of mice. Chronic constriction injury (CCI) reduced paw withdrawal latency, which was maximal at 10 days post-injury. [d-Ala2,(N-Me)Phe4,Gly5-OH] enkephalin (DAMGO)-stimulated [(35)S]GTPγS binding was then conducted at this time point in membranes prepared from the rostral ACC (rACC), thalamus and periaqueductal grey (PAG) of CCI and sham-operated mice. Results showed reduced DAMGO-stimulated [(35)S]GTPγS binding in the thalamus and PAG of CCI mice, with no change in the rACC. In thalamus, this reduction was due to decreased maximal stimulation by DAMGO, with no difference in EC(50) values. In PAG, however, DAMGO E(max) values did not significantly differ between groups, possibly due to the small magnitude of the main effect. [(3)H]Naloxone binding in membranes of the thalamus showed no significant differences in B(max) values between CCI and sham-operated mice, indicating that the difference in G-protein activation did not result from differences in μ-opioid receptor levels. These results suggest that CCI induced a region-specific adaptation of μ-opioid receptor-mediated G-protein activity, with apparent desensitization of the μ-opioid receptor in the thalamus and PAG and could have implications for treatment of neuropathic pain. Topics: Analgesics, Opioid; Animals; Constriction; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Hyperalgesia; Male; Mice; Naloxone; Narcotic Antagonists; Pain Threshold; Protein Binding; Receptors, Opioid, mu; Sciatica; Sulfur Isotopes; Thalamus; Time Factors; Tritium | 2011 |
Comparative pharmacological profiles of morphine and oxycodone under a neuropathic pain-like state in mice: evidence for less sensitivity to morphine.
The present study was undertaken to investigate pharmacological actions induced by morphine and oxycodone under a neuropathic pain-like state. In the mu-opioid receptor (MOR) binding study and G-protein activation, we confirmed that both morphine and oxycodone showed MOR agonistic activities. Mice with sciatic nerve ligation exhibited the marked neuropathic pain-like behavior. Under these conditions, antinociception induced by subcutaneously (s.c.) injected morphine was significantly decreased by sciatic nerve ligation, whereas s.c. injection of oxycodone produced a profound antinociception in sciatic nerve-ligated mice. There were no significant differences in spinal or supraspinal antinociception of morphine and oxycodone between sham operation and nerve ligation. Moreover, either morphine- or oxycodone-induced increase in guanosine-5'-o-(3-thio) triphosphate ([(35)S]GTPgammaS) binding in the spinal cord, periaqueductal gray matter and thalamus in sciatic nerve-ligated mice was similar to that in sham-operated mice. Antinociception induced by s.c., intrathecal, or intracerebroventricular injection of the morphine metabolite morphine-6-glucuronide (M-6-G) was significantly decreased by sciatic nerve ligation. Furthermore, the increase in the G-protein activation induced by M-6-G was eliminated in sciatic nerve ligation. In addition, either morphine- or oxycodone-induced rewarding effect was dramatically suppressed under a neuropathic pain-like state. The increased [(35)S]GTPgammaS binding by morphine or oxycodone was significantly lower in the lower midbrain of mice with sciatic nerve ligation compared with that in control mice. These findings provide further evidence that oxycodone shows a profound antinociceptive effect under a neuropathic pain-like state with less of a rewarding effect. Furthermore, the reduction in G-protein activation induced by M-6-G may, at least in part, contribute to the suppression of the antinociceptive effect produced by morphine under a neuropathic pain-like state. Topics: Animals; Central Nervous System; Conditioning, Operant; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Interactions; Freund's Adjuvant; Guanosine 5'-O-(3-Thiotriphosphate); Inflammation; Male; Mice; Mice, Inbred ICR; Morphine; Morphine Dependence; Narcotic Antagonists; Narcotics; Oxycodone; Pain Measurement; Protein Binding; Sciatica; Sulfur Isotopes | 2008 |
Direct evidence for the involvement of endogenous beta-endorphin in the suppression of the morphine-induced rewarding effect under a neuropathic pain-like state.
Recent clinical studies have demonstrated that when opioids are used to control pain, psychological dependence is not a major problem. In this study, we further investigated the mechanisms that underlie the suppression of opioid reward under neuropathic pain in rodents. Sciatic nerve ligation suppressed a place preference induced by the selective mu-opioid receptor agonist [d-Ala(2), N-MePhe(4), Gly-ol(5)] enkephalin (DAMGO) and reduced both the increase in the level of extracellular dopamine by s.c. morphine in the nucleus accumbens and guanosine-5'-o-(3-[(35)S]thio) triphosphate ([(35)S]GTPgammaS) binding to membranes of the ventral tegmental area (VTA) induced by DAMGO. These effects were eliminated in mice that lacked the beta-endorphin gene. Furthermore, intra-VTA injection of a specific antibody to the endogenous mu-opioid peptide beta-endorphin reversed the suppression of the DAMGO-induced rewarding effect by sciatic nerve ligation in rats. These results provide molecular evidence that nerve injury results in the continuous release of endogenous beta-endorphin to cause the dysfunction of mu-opioid receptors in the VTA. This phenomenon could explain the mechanism that underlies the suppression of opioid reward under a neuropathic pain-like state. Topics: Analysis of Variance; Animals; Behavior, Animal; beta-Endorphin; Conditioning, Operant; Disease Models, Animal; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Female; Guanosine 5'-O-(3-Thiotriphosphate); Male; Mice; Mice, Knockout; Morphine; Narcotics; Pain Measurement; Protein Binding; Reaction Time; Reward; Sciatica; Time Factors; Tyrosine 3-Monooxygenase | 2008 |
Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala.
Clinically, it has been reported that chronic pain induces depression, anxiety, and reduced quality of life. The endogenous opioid system has been implicated in nociception, anxiety, and stress. The present study was undertaken to investigate whether chronic pain could induce anxiogenic effects and changes in the opioidergic function in the amygdala in mice. We found that either injection of complete Freund's adjuvant (CFA) or neuropathic pain induced by sciatic nerve ligation produced a significant anxiogenic effect at 4 weeks after the injection or surgery. Under these conditions, the selective mu-opioid receptor agonist [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAMGO)- and the selective delta-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80)-stimulated [35S]GTPgammaS binding in membranes of the amygdala was significantly suppressed by CFA injection or nerve ligation. CFA injection was associated with a significant increase in the kappa-opioid receptor agonist 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-phenyl-2-(1-pyrrolidinyl)ethyl]acetamide hydrochloride (ICI199,441)-stimulated [35S]GTPgammaS binding in membranes of the amygdala. The intracerebroventricular administration and microinjection of a selective mu-opioid receptor antagonist, a selective delta-opioid receptor antagonist, and the endogenous kappa-opioid receptor ligand dynorphin A caused a significant anxiogenic effect in mice. We also found that thermal hyperalgesia induced by sciatic nerve ligation was reversed at 8 weeks after surgery. In the light-dark test, the time spent in the lit compartment was not changed at 8 weeks after surgery. Collectively, the present data constitute the first evidence that chronic pain has an anxiogenic effect in mice. This phenomenon may be associated with changes in opioidergic function in the amygdala. Topics: Amygdala; Analgesics, Opioid; Analysis of Variance; Animals; Anxiety; Behavior, Animal; Benzamides; Chronic Disease; Diazepam; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Freund's Adjuvant; Guanosine 5'-O-(3-Thiotriphosphate); Injections, Intraventricular; Male; Maze Learning; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Narcotics; Pain; Pain Measurement; Piperazines; Protein Binding; Pyrrolidines; Rats; Rats, Sprague-Dawley; Reaction Time; Sciatica; Somatostatin; Sulfur Isotopes; Time Factors; Tranquilizing Agents | 2006 |