gsk598809 and Alcoholism

gsk598809 has been researched along with Alcoholism* in 2 studies

Other Studies

2 other study(ies) available for gsk598809 and Alcoholism

ArticleYear
Acute D3 Antagonist GSK598809 Selectively Enhances Neural Response During Monetary Reward Anticipation in Drug and Alcohol Dependence.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2017, Volume: 42, Issue:5

    Evidence suggests that disturbances in neurobiological mechanisms of reward and inhibitory control maintain addiction and provoke relapse during abstinence. Abnormalities within the dopamine system may contribute to these disturbances and pharmacologically targeting the D3 dopamine receptor (DRD3) is therefore of significant clinical interest. We used functional magnetic resonance imaging to investigate the acute effects of the DRD3 antagonist GSK598809 on anticipatory reward processing, using the monetary incentive delay task (MIDT), and response inhibition using the Go/No-Go task (GNGT). A double-blind, placebo-controlled, crossover design approach was used in abstinent alcohol dependent, abstinent poly-drug dependent and healthy control volunteers. For the MIDT, there was evidence of blunted ventral striatal response to reward in the poly-drug-dependent group under placebo. GSK598809 normalized ventral striatal reward response and enhanced response in the DRD3-rich regions of the ventral pallidum and substantia nigra. Exploratory investigations suggested that the effects of GSK598809 were mainly driven by those with primary dependence on alcohol but not on opiates. Taken together, these findings suggest that GSK598809 may remediate reward deficits in substance dependence. For the GNGT, enhanced response in the inferior frontal cortex of the poly-drug group was found. However, there were no effects of GSK598809 on the neural network underlying response inhibition nor were there any behavioral drug effects on response inhibition. GSK598809 modulated the neural network underlying reward anticipation but not response inhibition, suggesting that DRD3 antagonists may restore reward deficits in addiction.

    Topics: Adult; Alcoholism; Anticipation, Psychological; Azabicyclo Compounds; Brain; Brain Mapping; Double-Blind Method; Female; Humans; Inhibition, Psychological; Magnetic Resonance Imaging; Male; Middle Aged; Oxazoles; Receptors, Dopamine D3; Reward; Substance-Related Disorders; Young Adult

2017
In vivo imaging of cerebral dopamine D3 receptors in alcoholism.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2014, Volume: 39, Issue:7

    Animal studies support the role of the dopamine D3 receptor (DRD3) in alcohol reinforcement or liking. Sustained voluntary alcohol drinking in rats has been associated with an upregulation of striatal DRD3 gene expression and selective blockade of DRD3 reduces ethanol preference, consumption, and cue-induced reinstatement. In vivo measurement of DRD3 in the living human brain has not been possible until recently owing to a lack of suitable tools. In this study, DRD3 status was assessed for the first time in human alcohol addiction. Brain DRD3 availability was compared between 16 male abstinent alcohol-dependent patients and 13 healthy non-dependent age-matched males using the DRD3-preferring agonist positron emission tomography (PET) radioligand [(11)C]PHNO with and without blockade with a selective DRD3 antagonist (GSK598809 60 mg p.o.). In striatal regions of interest, where the [(11)C]PHNO PET signal represents primarily DRD2 binding, no differences were seen in [(11)C]PHNO binding between the groups at baseline. However, baseline [(11)C]PHNO binding was higher in alcohol-dependent patients in hypothalamus (VT: 16.5 ± 4 vs 13.7 ± 2.9, p = 0.040), a region in which the [(11)C]PHNO signal almost entirely reflects DRD3 availability. The reductions in regional receptor binding (VT) following a single oral dose of GSK598809 (60 mg) were consistent with those observed in previous studies across all regions. There were no differences in regional changes in VT following DRD3 blockade between the two groups, indicating that the regional fractions of DRD3 are similar in the two groups, and the increased [(11)C]PHNO binding in the hypothalamus in alcohol-dependent patients is explained by elevated DRD3 in this group. Although we found no difference between alcohol-dependent patients and controls in striatal DRD3 levels, increased DRD3 binding in the hypothalamus of alcohol-dependent patients was observed. This may be relevant to the development of future therapeutic strategies to treat alcohol abuse.

    Topics: Adult; Age Factors; Alcoholism; Azabicyclo Compounds; Cerebral Cortex; Dopamine Antagonists; Female; Humans; Male; Middle Aged; Oxazines; Oxazoles; Positron-Emission Tomography; Protein Binding; Psychiatric Status Rating Scales; Receptors, Dopamine D3; Smoking; Young Adult

2014