gsk3235025 and Reperfusion-Injury

gsk3235025 has been researched along with Reperfusion-Injury* in 1 studies

Other Studies

1 other study(ies) available for gsk3235025 and Reperfusion-Injury

ArticleYear
Inhibition of PRMT5 Attenuates Oxidative Stress-Induced Pyroptosis via Activation of the Nrf2/HO-1 Signal Pathway in a Mouse Model of Renal Ischemia-Reperfusion Injury.
    Oxidative medicine and cellular longevity, 2019, Volume: 2019

    Extensive evidence has demonstrated that oxidative stress, pyroptosis, and proinflammatory programmed cell death are related to renal ischemia/reperfusion (I/R) injury. However, the underlying mechanism remains to be illustrated. Protein arginine methylation transferase 5 (PRMT5), which mediates arginine methylation involved in the regulation of epigenetics, exhibits a variety of biological functions and essential roles in diseases. The present study investigated the role of PRMT5 in oxidative stress and pyroptosis induced by I/R injury in a mouse model and in a hypoxia/reoxygenation (H/R) model of HK-2 cells.. C57 mice were used as an animal model. All mice underwent right nephrectomy, and the left renal pedicles were either clamped or not. Renal I/R injury was induced by ligating the left renal pedicle for 30 min followed by reperfusion for 24 h. HK-2 cells were exposed to normal conditions or stimulation through H/R. EPZ015666(EPZ)-a selective potent chemical inhibitor-and small interfering RNA (siRNA) were administered to suppress the function and expression of PRMT5. The levels of urea nitrogen and creatinine in the serum and renal tissue injury were assessed. Immunohistochemistry, western blotting, and reverse transcription-polymerase chain reaction were used to evaluate pyroptosis-related proteins including nod-like receptor protein-3, ASC, caspase-1, caspase-11, GSDMD-N, and interleukin-1. PRMT5 is involved in ischemia- and hypoxia-induced oxidative stress and pyroptosis in vitro and in vivo. Inhibition of PRMT5 may ameliorate renal I/R injury by suppressing oxidative stress and pyroptosis via the activation of the Nrf2/HO-1 pathway, as well as promoting the proliferation of tubular epithelium. Therefore, PRMT5 may be a promising therapeutic target.

    Topics: Animals; Cell Proliferation; Disease Models, Animal; Heme Oxygenase-1; Isoquinolines; Male; Malondialdehyde; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Oxidative Stress; Protein-Arginine N-Methyltransferases; Pyrimidines; Pyroptosis; Reactive Oxygen Species; Reperfusion Injury; RNA Interference; RNA, Small Interfering; Signal Transduction

2019