gsk2141795 has been researched along with Leukemia--Myeloid--Acute* in 2 studies
1 trial(s) available for gsk2141795 and Leukemia--Myeloid--Acute
Article | Year |
---|---|
Oral MEK 1/2 Inhibitor Trametinib in Combination With AKT Inhibitor GSK2141795 in Patients With Acute Myeloid Leukemia With RAS Mutations: A Phase II Study.
With proven single-agent activity and favorable toxicity profile of MEK-1/2 inhibition in advanced leukemia, investigation into combination strategies to overcome proposed resistance pathways is warranted. Resistance to MEK inhibition is secondary to upstream hyperactivation of RAS/RAF or activation of the PI3K/PTEN/AKT/mTOR pathway. This phase II multi-institution Cancer Therapy Evaluation Program-sponsored study was conducted to determine efficacy and safety of the combination of the ATP-competitive pan-AKT inhibitor GSK2141795, targeting the PI3K/AKT pathway, and the MEK inhibitor trametinib in RAS-mutated relapsed/refractory acute myeloid leukemia (AML).. The primary objective was to determine the proportion of patients achieving a complete remission. Secondary objectives included assessment of toxicity profile and biologic effects of this combination. Twenty-three patients with RAS-mutated AML received the combination. Two dose levels were explored (dose level 1: 2 mg trametinib, 25 mg GSK2141795 and dose level 2: 1.5 mg trametinib, 50 mg GSK2141795).. Dose level 1 was identified as the recommended phase II dose. No complete remissions were identified in either cohort. Minor responses were recognized in 5 (22%) patients. The most common drug-related toxicities included rash and diarrhea, with dose-limiting toxicities of mucositis and colitis. Longitudinal correlative assessment of the modulation of MEK and AKT pathways using reverse phase protein array and phospho-flow analysis revealed significant and near significant down-modulation of pERK and pS6, respectively. Combined MEK and AKT inhibition had no clinical activity in patients with RAS-mutated AML.. Further investigation is required to explore the discrepancy between the activity of this combination on leukemia cells and the lack of clinical efficacy. Topics: Administration, Oral; Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Diamines; Female; Genes, ras; Humans; Leukemia, Myeloid, Acute; Male; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Middle Aged; Mutation; Proto-Oncogene Proteins c-akt; Pyrazoles; Pyridones; Pyrimidinones; Treatment Outcome; Young Adult | 2019 |
1 other study(ies) available for gsk2141795 and Leukemia--Myeloid--Acute
Article | Year |
---|---|
The target landscape of clinical kinase drugs.
Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays | 2017 |