gsk0660 has been researched along with Disease-Models--Animal* in 7 studies
7 other study(ies) available for gsk0660 and Disease-Models--Animal
Article | Year |
---|---|
PPARβ/δ activation protects against hepatic ischaemia-reperfusion injury.
Hepatic ischaemia/reperfusion injury (HIRI) is a pathophysiological process that occurs during the liver resection and transplantation. Reportedly, peroxisome proliferator-activated receptor β/δ (PPARβ/δ) can ameliorate kidney and myocardial ischaemia/reperfusion injury. However, the effect of PPARβ/δ in HIRI remains unclear.. Mouse hepatic ischaemia/reperfusion (I/R) models were constructed for in vivo study. Primary hepatocytes and Kupffer cells (KCs) isolated from mice and cell anoxia/reoxygenation (A/R) injury model were constructed for in vitro study. Liver injury and inflammation were investigated. Small molecular compounds (GW0742 and GSK0660) and adenoviruses were used to interfere with PPARβ/δ.. We found that PPARβ/δ expression was increased in the I/R and A/R models. Overexpression of PPARβ/δ in hepatocytes alleviated A/R-induced cell apoptosis, while knockdown of PPARβ/δ in hepatocytes aggravated A/R injury. Activation of PPARβ/δ by GW0742 protected against I/R-induced liver damage, inflammation and cell death, whereas inhibition of PPARβ/δ by GSK0660 had the opposite effects. Consistent results were obtained in mouse I/R models through the tail vein injection of adenovirus-mediated PPARβ/δ overexpression or knockdown vectors. Furthermore, knockdown and overexpression of PPARβ/δ in KCs aggravated and ameliorated A/R-induced hepatocyte injury, respectively. Gene ontology and gene set enrichment analysis showed that PPARβ/δ deletion was significantly enriched in the NF-κB pathway. PPARβ/δ inhibited the expression of p-IKBα and p-P65 and decreased NF-κB activity.. PPARβ/δ exerts anti-inflammatory and anti-apoptotic effects on HIRI by inhibiting the NF-κB pathway, and hepatocytes and KCs may play a synergistic role in this phenomenon. Thus, PPARβ/δ is a potential therapeutic target for HIRI. Topics: Animals; Disease Models, Animal; Inflammation; Ischemia; Liver; Mice; NF-kappa B; PPAR delta; PPAR-beta; Reperfusion Injury; Thiazoles | 2023 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Protective role of peroxisome proliferator-activated receptor β/δ in acute lung injury induced by prolonged hyperbaric hyperoxia in rats.
Peroxisome proliferator-activated receptor (PPAR)-β/δ is a transcription factor that belongs to the PPAR family, but the role of PPAR-β/δ in acute lung injury (ALI) induced by hyperbaric oxygen is unknown. In this study we investigated if PPAR-β/δ activation protects from hyperoxia-induced ALI in a rat model. ALI was induced by prolonged hyperbaric oxygen (HBO2) (2.3ATA, 100% O2) for 8h. Administration of PPAR-β/δ agonist GW0742 (0.3mg/kg, i.p.) at 1 and 6h prior to HBO2 exposure significantly reduced the (1) lung injury, (2) proinflammatory cytokines (TNF-α, IL-1β, IL-6), (3) apoptosis (Bax/Bcl-2, cleaved-caspase-3 and TUNEL), (4) nuclear factor (NF)-κB expression level and DNA binding activity in the nucleus, and (5) extracellular signal-regulated kinase (ERK)1/2 phosphorylation and markedly elevated (6) superoxide dismutase and glutathione peroxidase activities as well as (7) IκB expression. However, administration of the PPAR-β/δ antagonist GSK0660 abolished these protective effects. These findings indicate that activation of PPAR-β/δ ameliorates hyperoxia-induced ALI in rats by up-regulating antioxidant enzyme activity as well as suppressing inflammation and apoptosis. Topics: Acute Lung Injury; Animals; Antioxidants; Apoptosis; Cytokines; Disease Models, Animal; Hyperoxia; Lung; Male; MAP Kinase Signaling System; Neuroprotective Agents; NF-kappa B; PPAR delta; PPAR-beta; Pressure; Random Allocation; Rats, Sprague-Dawley; Respiratory System Agents; Sulfones; Thiazoles; Thiophenes; Time Factors | 2014 |
A peroxisome proliferator-activated receptor-δ agonist provides neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease.
Peroxisome proliferator-activated receptor (PPAR)-γ and PPARα have shown neuroprotective effects in models of Parkinson's disease (PD). The role of the third, more ubiquitous isoform PPARδ has not been fully explored. This study investigated the role of PPARδ in PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to model the dopaminergic neurodegeneration of PD. In vitro administration of the PPARδ antagonist GSK0660 (1 μM) increased the detrimental effect of 1-methyl-4-phenylpyridinium iodide (MPP⁺) on cell viability, which was reversed by co-treatment with agonist GW0742 (1 μM). GW0742 alone did not affect MPP⁺ toxicity. PPARδ was expressed in the nucleus of dopaminergic neurons and in astrocytes. Striatal PPARδ levels were increased (over two-fold) immediately after MPTP treatment (30 mg/kg for 5 consecutive days) compared to saline-treated mice. PPARδ heterozygous mice were not protected against MPTP toxicity. Intra-striatal infusion of GW0742 (84 μg/day) reduced the MPTP-induced loss of dopaminergic neurons (5036±195) when compared to vehicle-infused mice (3953±460). These results indicate that agonism of PPARδ provides protection against MPTP toxicity, in agreement with the effects of other PPAR agonists. Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Cell Count; Cells, Cultured; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Female; Glial Fibrillary Acidic Protein; Humans; Macrophage-1 Antigen; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neuroprotective Agents; Parkinsonian Disorders; PPAR delta; Rats; Sulfones; Thiazoles; Thiophenes; Tyrosine 3-Monooxygenase | 2013 |
Peroxisome proliferator-activated receptor-β/δ regulates angiogenic cell behaviors and oxygen-induced retinopathy.
To develop new therapies against ocular neovascularization (NV), we tested the effect of peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ) agonism and antagonism on angiogenic behaviors and in human retinal microvascular endothelial cells (HRMEC) and on preretinal NV in rat oxygen-induced retinopathy (OIR).. HRMECs were treated with the PPAR-β/δ agonist GW0742 and the antagonist GSK0660. Messenger RNA levels of a PPAR-β/δ target gene, angiopoietin-like-4 (angptl4) were assayed by qRT-PCR. HRMEC proliferation and tube formation were assayed according to standard protocols. OIR was induced in newborn rats by exposing them to alternating 24-hour episodes of 50% and 10% oxygen for 14 days. OIR rats were treated with GW0742 or GSK0660. Angptl4 protein levels were assessed by ELISA and preretinal NV was quantified by adenosine diphosphatase staining.. GW0742 significantly increased angptl4 mRNA, and GSK0660 significantly decreased angptl4 mRNA. GW0742 had no effect on HRMEC proliferation, but caused a significant and dose-responsive increase in tube formation. GSK0660 significantly reduced serum-induced HRMEC proliferation and tube formation in a dose-dependent manner. Intravitreal injection of GW0742 significantly increased total retinal Angptl4 protein, but intravitreal injection of GSK0660 had no effect. Intravitreal injection of GW0742 significantly increased retinal NV, as did GW0742 administered by oral gavage. Conversely, both intravitreal injection and intraperitoneal injection of GSK0660 significantly reduced retinal NV.. PPAR-β/δ activation exacerbates, and its inhibition reduces, preretinal NV. PPAR-β/δ may regulate preretinal NV through a prodifferentiation/maturation mechanism that depends on Angptl4. Pharmacologic inhibition of PPAR-β/δ may provide a rational basis for therapeutic targeting of ocular NV. Topics: Angiogenesis Inhibitors; Animals; Cells, Cultured; Disease Models, Animal; Endothelial Cells; Humans; Oxygen; PPAR delta; PPAR-beta; Rats; Retinal Diseases; Retinal Neovascularization; Retinal Vessels; Sulfones; Thiazoles; Thiophenes | 2013 |
Skin-targeted inhibition of PPAR β/δ by selective antagonists to treat PPAR β/δ-mediated psoriasis-like skin disease in vivo.
We have previously shown that peroxisome proliferator activating receptor ß/δ (PPAR β/δ is overexpressed in psoriasis. PPAR β/δ is not present in adult epidermis of mice. Targeted expression of PPAR β/δ and activation by a selective synthetic agonist is sufficient to induce an inflammatory skin disease resembling psoriasis. Several signalling pathways dysregulated in psoriasis are replicated in this model, suggesting that PPAR β/δ activation contributes to psoriasis pathogenesis. Thus, inhibition of PPAR β/δ might harbour therapeutical potential. Since PPAR β/δ has pleiotropic functions in metabolism, skin-targeted inhibition offer the potential of reducing systemic adverse effects. Here, we report that three selective PPAR β/δ antagonists, GSK0660, compound 3 h, and GSK3787 can be formulated for topical application to the skin and that their skin concentration can be accurately quantified using ultra-high performance liquid chromatography (UPLC)/mass spectrometry. These antagonists show efficacy in our transgenic mouse model in reducing psoriasis-like changes triggered by activation of PPAR β/δ. PPAR β/δ antagonists GSK0660 and compound 3 do not exhibit systemic drug accumulation after prolonged application to the skin, nor do they induce inflammatory or irritant changes. Significantly, the irreversible PPAR β/δ antagonist (GSK3787) retains efficacy when applied topically only three times per week which could be of practical clinical usefulness. Our data suggest that topical inhibition of PPAR β/δ to treat psoriasis may warrant further exploration. Topics: Administration, Topical; Animals; Benzamides; Disease Models, Animal; Humans; Mice; Mice, Inbred C57BL; Mice, Transgenic; Ointments; PPAR gamma; PPAR-beta; Psoriasis; Recombinant Proteins; Skin; Skin Absorption; Sulfones; Thiophenes | 2012 |
Protective role of peroxisome proliferator-activated receptor-β/δ in septic shock.
Peroxisome proliferator-activated receptor (PPAR)-β/δ is a transcription factor that belongs to the PPAR nuclear hormone receptor family, but the role of PPAR-β/δ in sepsis is unknown.. We investigated the role of PPAR-β/δ in murine models of LPS-induced organ injury and dysfunction and cecal ligation and puncture (CLP)-induced polymicrobial sepsis.. Wild-type (WT) and PPAR-β/δ knockout (KO) mice and C57BL/6 mice were subjected to LPS for 16 hours. C57BL/6 mice received the PPAR-β/δ agonist GW0742 (0.03 mg/kg intravenously, 1 h after LPS) or GW0742 plus the PPAR-β/δ antagonist GSK0660 (0.1 mg/kg intravenously, 30 min before LPS). CD-1 mice subjected to CLP received GW0742 or GW0742 plus GSK0660.. In PPAR-β/δ KO mice, endotoxemia exacerbated organ injury and dysfunction (cardiac, renal, and hepatic) and inflammation (lung) compared with WT mice. In C57BL/6 mice subjected to endotoxemia, GW0742 significantly (1) attenuated organ (cardiac and renal) dysfunction and inflammation (lung); (2) increased the phosphorylation of Akt and glycogen synthase kinase (GSK)-3β; (3) attenuated the increase in extracellular signal-regulated kinase (ERK)1/2 and signal transducer and activator of transcription (STAT)-3 phosphorylation; and (4) attenuated the activation of nuclear factor (NF)-κB and the expression of inducible nitric oxide synthase (iNOS). In CD-1 mice subjected to CLP, GW0742 improved 10-day survival. All the observed beneficial effects of GW0742 were attenuated by the PPAR-β/δ antagonist GSK0660.. PPAR-β/δ protects against multiple organ injury and dysfunction, and inflammation caused by endotoxic shock and improves survival in polymicrobial sepsis by a mechanism that may involve activation of Akt and inhibition of GSK-3β and NF-κB. Topics: Animals; Disease Models, Animal; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Nitric Oxide Synthase Type II; Phosphorylation; PPAR delta; PPAR-beta; Proto-Oncogene Proteins c-akt; Shock, Septic; Signal Transduction; Sulfones; Thiazoles; Thiophenes | 2010 |