gsk-461364 and Disease-Models--Animal

gsk-461364 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for gsk-461364 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Epithelial-Mesenchymal Transition Predicts Polo-Like Kinase 1 Inhibitor-Mediated Apoptosis in Non-Small Cell Lung Cancer.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2016, Apr-01, Volume: 22, Issue:7

    To identify new therapeutic targets for non-small cell lung cancer (NSCLC), we systematically searched two cancer cell line databases for sensitivity data on a broad range of drugs. We identified polo-like kinase 1 (PLK1) as the most promising target for further investigation based on a subset of sensitive NSCLC cell lines and inhibitors that were in advanced clinical development.. To identify potential biomarkers of response of NSCLC to PLK1 inhibition and mechanisms of PLK1 inhibitor-induced apoptosis, integrated analysis of gene and protein expression, gene mutations, and drug sensitivity was performed using three PLK1 inhibitors (volasertib, BI2536, and GSK461364) with a large panel of NSCLC cell lines.. The NSCLC cell lines had different sensitivities to PLK1 inhibition, with a minority demonstrating sensitivity to all three inhibitors. PLK1 inhibition led to G2-M arrest, but only treatment-sensitive cell lines underwent substantial apoptosis following PLK1 inhibition. NSCLC lines with high epithelial-mesenchymal transition (EMT) gene signature scores (mesenchymal cell lines) were more sensitive to PLK1 inhibition than epithelial lines (P< 0.02). Likewise, proteomic profiling demonstrated that E-cadherin expression was higher in the resistant cell lines than in the sensitive ones (P< 0.01). Induction of an epithelial phenotype by expression of the miRNA miR-200 increased cellular resistance to PLK1 inhibition. Also, KRAS mutation and alterations in the tight-junction, ErbB, and Rho signaling pathways correlated with drug response of NSCLC.. In this first reported large-scale integrated analysis of PLK1 inhibitor sensitivity, we demonstrated that EMT leads to PLK1 inhibition sensitivity of NSCLC cells. Our findings have important clinical implications for mesenchymal NSCLC, a significant subtype of the disease that is associated with resistance to currently approved targeted therapies.

    Topics: Animals; Apoptosis; Benzimidazoles; Carcinoma, Non-Small-Cell Lung; Cell Cycle Checkpoints; Cell Cycle Proteins; Cell Line, Tumor; Chromosomal Instability; Disease Models, Animal; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; Humans; Lung Neoplasms; Mice; Mutation; Polo-Like Kinase 1; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins p21(ras); Pteridines; Thiophenes; Tumor Burden; Xenograft Model Antitumor Assays

2016