gs-458967 has been researched along with Long-QT-Syndrome* in 2 studies
2 other study(ies) available for gs-458967 and Long-QT-Syndrome
Article | Year |
---|---|
Anti-arrhythmic potential of the late sodium current inhibitor GS-458967 in murine Scn5a-1798insD+/- and human SCN5A-1795insD+/- iPSC-derived cardiomyocytes.
Selective inhibition of cardiac late sodium current (INaL) is an emerging target in the treatment of ventricular arrhythmias. We investigated the electrophysiological effects of GS-458967 (GS967), a potent, selective inhibitor of INaL, in an overlap syndrome model of both gain and loss of sodium channel function, comprising cardiomyocytes derived from both human SCN5A-1795insD+/- induced pluripotent stem cells (hiPSC-CMs) and mice carrying the homologous mutation Scn5a-1798insD+/-.. On patch-clamp analysis, GS967 (300 nmol/l) reduced INaL and action potential (AP) duration in isolated ventricular myocytes from wild type and Scn5a-1798insD+/- mice, as well as in SCN5A-1795insD+/- hiPSC-CMs. GS967 did not affect the amplitude of peak INa, but slowed its recovery, and caused a negative shift in voltage-dependence of INa inactivation. GS967 reduced AP upstroke velocity in Scn5a-1798insD+/- myocytes and SCN5A-1795insD+/- hiPSC-CMs. However, the same concentration of GS967 did not affect conduction velocity in Scn5a-1798insD+/- mouse isolated hearts, as assessed by epicardial mapping. GS967 decreased the amplitude of delayed after depolarizations and prevented triggered activity in mouse Scn5a-1798insD+/- cardiomyocytes.. The INaL inhibitor GS967 decreases repolarization abnormalities and has anti-arrhythmic effects in the absence of deleterious effects on cardiac conduction. Thus, selective inhibition of INaL constitutes a promising pharmacological treatment of cardiac channelopathies associated with enhanced INaL. Our findings furthermore implement hiPSC-CMs as a valuable tool for assessment of novel pharmacological approaches in inherited sodium channelopathies. Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Cell Line; Epicardial Mapping; Female; Genetic Predisposition to Disease; Heart Rate; Induced Pluripotent Stem Cells; Isolated Heart Preparation; Kinetics; Long QT Syndrome; Male; Mice, Transgenic; Mutation; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Patch-Clamp Techniques; Phenotype; Pyridines; Triazoles; Voltage-Gated Sodium Channel Blockers | 2017 |
A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias.
Inhibition of cardiac late sodium current (late I(Na)) is a strategy to suppress arrhythmias and sodium-dependent calcium overload associated with myocardial ischemia and heart failure. Current inhibitors of late I(Na) are unselective and can be proarrhythmic. This study introduces GS967 (6-[4-(trifluoromethoxy)phenyl]-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine), a potent and selective inhibitor of late I(Na), and demonstrates its effectiveness to suppress ventricular arrhythmias. The effects of GS967 on rabbit ventricular myocyte ion channel currents and action potentials were determined. Anti-arrhythmic actions of GS967 were characterized in ex vivo and in vivo rabbit models of reduced repolarization reserve and ischemia. GS967 inhibited Anemonia sulcata toxin II (ATX-II)-induced late I(Na) in ventricular myocytes and isolated hearts with IC(50) values of 0.13 and 0.21 µM, respectively. Reduction of peak I(Na) by GS967 was minimal at a holding potential of -120 mV but increased at -80 mV. GS967 did not prolong action potential duration or the QRS interval. GS967 prevented and reversed proarrhythmic effects (afterdepolarizations and torsades de pointes) of the late I(Na) enhancer ATX-II and the I(Kr) inhibitor E-4031 in isolated ventricular myocytes and hearts. GS967 significantly attenuated the proarrhythmic effects of methoxamine+clofilium and suppressed ischemia-induced arrhythmias. GS967 was more potent and effective to reduce late I(Na) and arrhythmias than either flecainide or ranolazine. Results of all studies and assays of binding and activity of GS967 at numerous receptors, transporters, and enzymes indicated that GS967 selectively inhibited late I(Na). In summary, GS967 selectively suppressed late I(Na) and prevented and/or reduced the incidence of experimentally induced arrhythmias in rabbit myocytes and hearts. Topics: Acetanilides; Action Potentials; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Cardiotonic Agents; Cnidarian Venoms; Female; Flecainide; Heart Conduction System; Long QT Syndrome; Mutation; Myocardial Ischemia; Myocytes, Cardiac; Patch-Clamp Techniques; Piperazines; Potassium Channel Blockers; Pyridines; Quaternary Ammonium Compounds; Rabbits; Ranolazine; Sodium Channel Blockers; Triazoles | 2013 |