grn163 has been researched along with Neoplasms* in 4 studies
2 review(s) available for grn163 and Neoplasms
Article | Year |
---|---|
Telomerase inhibitors for the treatment of brain tumors and the potential of intranasal delivery.
A fundamental limitation in the treatment of brain tumors is that < 1% of most therapeutic agents administered systemically are able to cross the blood-brain barrier (BBB). The development of new strategies that circumvent the BBB should increase the likelihood of tumor response to selected therapeutic agents. Intranasal delivery (IND) is a practical, noninvasive method of bypassing the BBB to deliver therapeutic agents to the brain. This technique has demonstrated promising results in the treatment of neurological disorders. Telomerase is a reverse transcriptase that is expressed in the vast majority of malignant gliomas, although not in the healthy brain. Telomerase inhibition can therefore be used as a therapeutic strategy for selectively targeting malignant gliomas. The first successful IND of a telomerase inhibitor as a therapy for brain tumors was GRN-163, an oligonucleotide N3'-->5' thiophosphoramidate telomerase inhibitor, which was successfully administered into intracerebral tumors in rats with no apparent toxicity. GRN-163 exhibited favorable tumor uptake and inhibited tumor growth, leading to prolonged lifespan in treated animals. The IND of telomerase inhibitors represents a new therapeutic approach that appears to selectively kill tumor cells, without inducing toxic effects in the surrounding healthy brain tissue. Topics: Administration, Intranasal; Animals; Blood-Brain Barrier; Brain Neoplasms; Enzyme Inhibitors; Humans; Indoles; Neoplasms; Neural Pathways; Niacinamide; Oligonucleotides; Telomerase | 2010 |
Telomerase inhibitors and 'T-oligo' as cancer therapeutics: contrasting molecular mechanisms of cytotoxicity.
Telomeres, the specialized structures that comprise the ends of chromosomes, form a closed structure, or t-loop, that is important in preventing genomic instability. Forced modulation of this structure, via overexpression of a dominant-negative form of telomere repeat binding factor 2, a protein critical for maintaining t-loop structure, for example, can result in the activation of DNA-damage responses, and ultimately cellular senescence or apoptosis. This response is also seen in normal somatic cells, where telomeres steadily decrease in length as cellular proliferation occurs owing to inefficient replication of terminal telomeric DNA. When telomere length becomes critically short, t-loop structure is compromised, and the cell undergoes senescence. Telomerase, the enzyme responsible for telomere length maintenance, is overexpressed in a majority of cancers. Its lack of expression in most normal somatic cells makes it an attractive target in designing cancer therapeutics. Compounds currently under development that seek to inhibit hTERT, the reverse transcriptase component of telomerase, include nucleoside analogs and the small molecule BIBR1532. Compounds inhibiting the RNA component of telomerase, hTERC, include peptide nucleic acids, 2-5A antisense oligonucleotides, and N3'-P5' thio-phosphoramidates. Recently, an oligonucleotide sharing sequence homology with terminal telomeric DNA, termed 'T-oligo', has shown cytotoxic effects in multiple cancers in culture and animal models. Independent of telomerase function, T-oligo is thought to mimic the DNA-damage response a cell normally experiences when the telomere t-loop structure becomes dysfunctional. In this review, the molecular mechanisms attributed to telomerase inhibitors and T-oligo, as well as their potential as cancer therapeutics, are discussed. Topics: Acridines; Aminobenzoates; Animals; Antineoplastic Agents; Enzyme Inhibitors; Humans; Naphthalenes; Neoplasms; Oligonucleotides; Oligonucleotides, Antisense; Telomerase; Telomere; Tumor Cells, Cultured | 2008 |
2 other study(ies) available for grn163 and Neoplasms
Article | Year |
---|---|
The effects of telomere shortening on cancer cells: a network model of proteomic and microRNA analysis.
Previously, we have shown that shortening of telomeres by telomerase inhibition sensitized cancer cells to cisplatinum, slowed their migration, increased DNA damage and impaired DNA repair. The mechanism behind these effects is not fully characterized. Its clarification could facilitate novel therapeutics development and may obviate the time consuming process of telomere shortening achieved by telomerase inhibition. Here we aimed to decipher the microRNA and proteomic profiling of cancer cells with shortened telomeres and identify the key mediators in telomere shortening-induced damage to those cells. Of 870 identified proteins, 98 were differentially expressed in shortened-telomere cells. 47 microRNAs were differentially expressed in these cells; some are implicated in growth arrest or act as oncogene repressors. The obtained data was used for a network construction, which provided us with nodal candidates that may mediate the shortened-telomere dependent features. These proteins' expression was experimentally validated, supporting their potential central role in this system. Topics: Gene Expression Regulation, Neoplastic; Gene Regulatory Networks; Humans; MicroRNAs; Neoplasms; Oligonucleotides; Proteome; Proteomics; Telomere Shortening; Tumor Cells, Cultured | 2015 |
Telomere shortening sensitizes cancer cells to selected cytotoxic agents: in vitro and in vivo studies and putative mechanisms.
Telomere/telomerase system has been recently recognized as an attractive target for anticancer therapy. Telomerase inhibition results in tumor regression and increased sensitivity to various cytotoxic drugs. However, it has not been fully established yet whether the mediator of these effects is telomerase inhibition per se or telomere shortening resulting from inhibition of telomerase activity. In addition, the characteristics and mechanisms of sensitization to cytotoxic drugs caused by telomerase inhibition has not been elucidated in a systematic manner.. In this study we characterized the relative importance of telomerase inhibition versus telomere shortening in cancer cells. Sensitization of cancer cells to cytotoxic drugs was achieved by telomere shortening in a length dependent manner and not by telomerase inhibition per se. In our system this sensitization was related to the mechanism of action of the cytotoxic drug. In addition, telomere shortening affected also other cancer cell functions such as migration. Telomere shortening induced DNA damage whose repair was impaired after administration of cisplatinum while doxorubicin or vincristine did not affect the DNA repair. These findings were verified also in in vivo mouse model. The putative explanation underlying the phenotype induced by telomere shortening may be related to changes in expression of various microRNAs triggered by telomere shortening.. To our best knowledge this is the first study characterizing the relative impact of telomerase inhibition and telomere shortening on several aspects of cancer cell phenotype, especially related to sensitivity to cytotoxic drugs and its putative mechanisms. The microRNA changes in cancer cells upon telomere shortening are novel information. These findings may facilitate the development of telomere based approaches in treatment of cancer. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Movement; Cell Survival; Cisplatin; Comet Assay; DNA Damage; DNA Repair; Dose-Response Relationship, Drug; Female; Humans; K562 Cells; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasms; Oligonucleotides; Telomerase; Telomere; Xenograft Model Antitumor Assays | 2010 |