grn-529 and Disease-Models--Animal

grn-529 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for grn-529 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Negative allosteric modulation of metabotropic glutamate receptor 5 results in broad spectrum activity relevant to treatment resistant depression.
    Neuropharmacology, 2013, Volume: 66

    Evidence suggests that 30-50% of patients suffering from major depressive disorder (MDD) are classified as suffering from treatment resistant depression (TRD) as they have an inadequate response to standard antidepressants. A key feature of this patient population is the increased incidence of co-morbid symptoms like anxiety and pain. Recognizing that current standards of care are largely focused on monoaminergic mechanisms of action (MOAs), innovative approaches to drug discovery for TRD are targeting glutamate hyperfunction. Here we describe the in vitro and in vivo profile of GRN-529, a novel negative allosteric modulator (NAM) of metabotropic glutamate receptor 5 (mGluR5). In cell based pharmacology assays, GRN-529 is a high affinity (Ki 5.4 nM), potent (IC50 3.1 nM) and selective (>1000-fold selective vs mGluR1) mGluR5 NAM. Acute administration of GRN-529 (0.1-30 mg/kg p.o.) had dose-dependent efficacy across a therapeutically relevant battery of animal models, comprising depression (decreased immobility time in tail suspension and forced swim tests) and 2 of the co-morbid symptoms overrepresented in TRD, namely anxiety (attenuation of stress-induced hyperthermia, and increased punished crossings in the four plate test) and pain (reversal of hyperalgesia due to sciatic nerve ligation or inflammation). The potential side effect liability of GRN-529 was also assessed using preclinical models: GRN-529 had no effect on rat sexual behavior or motor co-ordination (rotarod), however it impaired cognition in mice (social odor recognition). Efficacy and side effects of GRN-529 were compared to standard of care agents (antidepressant, anxiolytic or analgesics) and the tool mGluR5 NAM, MTEP. To assess the relationship between target occupancy and efficacy, ex vivo receptor occupancy was measured in parallel with efficacy testing. This revealed a strong correlation between target engagement, exposure and efficacy across behavioral endpoints, which supports the potential translational value of PET imaging to dose selection in patients. Collectively this broad spectrum profile of efficacy of GRN-529 supports our hypothesis that negative allosteric modulation of mGluR5 could represent an innovative therapeutic approach to the treatment of TRD. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.

    Topics: Allosteric Regulation; Analgesics; Animals; Anti-Anxiety Agents; Antidepressive Agents; Behavior, Animal; Benzamides; Calcium; Depressive Disorder, Treatment-Resistant; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Excitatory Amino Acid Antagonists; Glutamic Acid; HEK293 Cells; Humans; Mice; Pyridines; Radioligand Assay; Rats; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate

2013