griseofulvin has been researched along with Malaria--Falciparum* in 2 studies
2 other study(ies) available for griseofulvin and Malaria--Falciparum
Article | Year |
---|---|
Griseofulvin impairs intraerythrocytic growth of Plasmodium falciparum through ferrochelatase inhibition but lacks activity in an experimental human infection study.
Griseofulvin, an orally active antifungal drug used to treat dermatophyte infections, has a secondary effect of inducing cytochrome P450-mediated production of N-methyl protoporphyrin IX (N-MPP). N-MPP is a potent competitive inhibitor of the heme biosynthetic-enzyme ferrochelatase, and inhibits the growth of cultured erythrocyte stage Plasmodium falciparum. Novel drugs against Plasmodium are needed to achieve malaria elimination. Thus, we investigated whether griseofulvin shows anti-plasmodial activity. We observed that the intraerythrocytic growth of P. falciparum is inhibited in red blood cells pretreated with griseofulvin in vitro. Treatment with 100 μM griseofulvin was sufficient to prevent parasite growth and induce the production of N-MPP. Inclusion of the ferrochelatase substrate PPIX blocked the inhibitory activity of griseofulvin, suggesting that griseofulvin exerts its activity through the N-MPP-dependent inhibition of ferrochelatase. In an ex-vivo study, red blood cells from griseofulvin-treated subjects were refractory to the growth of cultured P. falciparum. However, in a clinical trial griseofulvin failed to show either therapeutic or prophylactic effect in subjects infected with blood stage P. falciparum. Although the development of griseofulvin as an antimalarial is not warranted, it represents a novel inhibitor of P. falciparum growth and acts via the N-MPP-dependent inhibition of ferrochelatase. Topics: Adolescent; Adult; Animals; Antifungal Agents; Case-Control Studies; Cohort Studies; Erythrocytes; Female; Ferrochelatase; Follow-Up Studies; Griseofulvin; Humans; Malaria, Falciparum; Male; Middle Aged; Pilot Projects; Plasmodium falciparum; Prognosis; Young Adult | 2017 |
Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities.
A series of novel morpholinoquinoline based conjugates with pyrazoline moiety were synthesized under microwave irradiation. The newly synthesized compounds were screened for their preliminary in vitro antibacterial activity against a panel of pathogenic strains of bacteria and fungi, antituberculosis activity against Mycobacterium tuberculosis H37Rv and antimalarial activity against Plasmodium falciparum. Most of them exhibited significant antibacterial activity as compared to the first line drugs. Compounds 6a and 9d were found to possess excellent antibacterial activity potency as compared to ampicillin (286 μM), chloramphenicol (154 μM) and ciprofloxacin (150 μM). In antifungal screening, against Candida albicans, compounds 6c, 7c, 8a, 8b, 8c and 9b showed significant activity as compared to griseofulvin (1147 μM). Compounds 8b, 6b, 9d, 6a, 9b, 7b and 8a displayed brilliant activity against P. falciparum strain as compared to chloroquine (IC50 0.062 μM) as well as quinine (IC50 0.826 μM). Compounds 6d, 7b, 8b, 9c and 9d exhibited superior antitubercular activity. Among them 8b was found to be equipotent to rifampicin with 95% inhibition. The cytotoxicity of the synthesized compounds was tested using bioassay of Schizosaccharomyces pombe cells at cellular level. Topics: Anti-Infective Agents; Antimalarials; Antitubercular Agents; Bacteria; Bacterial Infections; Fungi; Humans; Malaria, Falciparum; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Mycoses; Plasmodium falciparum; Pyrazoles; Quinolines; Structure-Activity Relationship; Tuberculosis | 2016 |