gpi-5693 and Constriction--Pathologic

gpi-5693 has been researched along with Constriction--Pathologic* in 4 studies

Other Studies

4 other study(ies) available for gpi-5693 and Constriction--Pathologic

ArticleYear
Pharmacokinetics and pharmacodynamics of the glutamate carboxypeptidase II inhibitor 2-MPPA show prolonged alleviation of neuropathic pain through an indirect mechanism.
    The Journal of pharmacology and experimental therapeutics, 2013, Volume: 346, Issue:3

    Glutamate carboxypeptidase II (GCP II) is a therapeutic target in neurologic disorders associated with excessive activation of glutamatergic systems. The potent, orally bioavailable GCP II inhibitor 2-(3-mercaptopropyl) pentanedioic acid (2-MPPA) is effective in preclinical models of diseases where excess glutamate release is implicated, including neuropathic pain, and was the first GCP II inhibitor to be administered to man. The relationships between dosing regimen, pharmacokinetics, and analgesia in a neuropathic pain model were examined in rats to aid development of clinical dosing. The efficacy of oral 2-MPPA in the chronic constrictive injury model was not simply related to plasma concentrations. Even though maximal concentrations were observed within 1 hour of dosing, the analgesic effect took at least 8 days of daily dosing to become significant. The delay was not due to tissue drug accumulation since inhibitory concentrations of the drug were achieved in the nerve within 1 hour of dosing. There was also no accumulation of drug in plasma or tissue after multiple daily dosing. Effects were dependent on reaching a threshold concentration since dividing the daily dose led to a loss of effect. The analgesic effect outlasted plasma exposure and was maintained for days even after daily dosing was halted. The delayed onset, dependence on threshold plasma concentration, and sustained effects after exposure support the hypothesis that an indirect, long-lived mechanism of action exists. Although these longer lasting secondary mechanisms are not yet identified, daily clinical dosing of a GCP II inhibitor seems justified.

    Topics: Animals; Area Under Curve; Biological Availability; Constriction, Pathologic; Dose-Response Relationship, Drug; Glutamate Carboxypeptidase II; Glutarates; Half-Life; Hot Temperature; Hyperalgesia; Male; Motor Activity; Neuralgia; Rats; Rats, Sprague-Dawley; Sulfhydryl Compounds

2013
Structural optimization of thiol-based inhibitors of glutamate carboxypeptidase II by modification of the P1' side chain.
    Journal of medicinal chemistry, 2006, May-18, Volume: 49, Issue:10

    A series of thiol-based inhibitors containing a benzyl moiety at the P1' position have been synthesized and tested for their abilities to inhibit glutamate carboxypeptidase II (GCP II). 3-(2-Carboxy-5-mercaptopentyl)benzoic acid 6c was found to be the most potent inhibitor with an IC(50) value of 15 nM, 6-fold more potent than 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA), a previously discovered, orally active GCP II inhibitor. Subsequent SAR studies have revealed that the phenoxy and phenylsulfanyl analogues of 6c, 3-(1-carboxy-4-mercaptobutoxy)benzoic acid 26a and 3-[(1-carboxy-4-mercaptobutyl)thio]benzoic acid 26b, also possess potent inhibitory activities toward GCP II. In the rat chronic constriction injury (CCI) model of neuropathic pain, compounds 6c and 26a significantly reduced hyperalgesia following oral administration (1.0 mg/kg/day).

    Topics: Analgesics; Animals; Antigens, Surface; Benzoates; Chronic Disease; Constriction, Pathologic; Glutamate Carboxypeptidase II; Glutarates; Humans; Pain; Peripheral Nervous System Diseases; Rats; Structure-Activity Relationship; Sulfhydryl Compounds

2006
Enantiospecificity of glutamate carboxypeptidase II inhibition.
    Journal of medicinal chemistry, 2005, Apr-07, Volume: 48, Issue:7

    Two representative glutamate carboxypeptidase II (GCP II) inhibitors, 2-(hydroxypentafluorophenylmethyl-phosphinoylmethyl)pentanedioic acid 2 and 2-(3-mercaptopropyl)pentanedioic acid 3, were synthesized in high optical purities (>97%ee). The two enantiomers of 2 were prepared from previously reported chiral intermediates, (R)- and (S)-2-(hydroxyphosphinoylmethyl)pentanedioic acid benzyl esters 8. The synthesis of (R)- and (S)-3 involves the hydrolysis of (R)- and (S)-3-(2-oxo-tetrahydro-thiopyran-3-yl)propionic acids, (R)- and (S)-11, the corresponding optically pure thiolactones delivered by chiral chromatographic separation of the racemic 11. GCP II inhibitory assay revealed that (S)-2 is 40-fold more potent than (R)-2. In contrast, both enantiomers of 3 inhibited GCP II with nearly equal potency. The efficacy observed in subsequent animal studies with these enantiomers correlated well with the inhibitory potency in a GCP II assay.

    Topics: Analgesics; Animals; Brain Ischemia; Cerebral Cortex; Constriction, Pathologic; Crystallography, X-Ray; Glutamate Carboxypeptidase II; Glutarates; Infarction, Middle Cerebral Artery; L-Lactate Dehydrogenase; Molecular Structure; Neuroprotective Agents; Pain; Peripheral Nervous System Diseases; Phosphinic Acids; Rats; Stereoisomerism; Structure-Activity Relationship; Sulfhydryl Compounds; Tissue Culture Techniques

2005
Synthesis and biological evaluation of thiol-based inhibitors of glutamate carboxypeptidase II: discovery of an orally active GCP II inhibitor.
    Journal of medicinal chemistry, 2003, May-08, Volume: 46, Issue:10

    A series of 2-(thioalkyl)pentanedioic acids were synthesized and evaluated as inhibitors of glutamate carboxypeptidase II (GCP II, EC 3.4.17.21). The inhibitory potency of these thiol-based compounds against GCP II was found to be dependent on the number of methylene units between the thiol group and pentanedioic acid. A comparison of the SAR of the thiol-based inhibitors to that of the phosphonate-based inhibitors provides insight into the role of each of the two zinc-binding groups in GCP II inhibition. The most potent thiol-based inhibitor, 2-(3-mercaptopropyl)pentanedioic acid (IC(50) = 90 nM), was found to be orally bioavailable in rats and exhibited efficacy in an animal model of neuropathic pain following oral administration.

    Topics: Administration, Oral; Analgesics; Animals; Biological Availability; Carboxypeptidases; Constriction, Pathologic; Enzyme Inhibitors; Glutamate Carboxypeptidase II; Glutarates; Hot Temperature; Hyperalgesia; Male; Pain; Peripheral Nervous System Diseases; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Structure-Activity Relationship; Sulfhydryl Compounds

2003