gossypetin has been researched along with Prostatic-Neoplasms* in 2 studies
2 other study(ies) available for gossypetin and Prostatic-Neoplasms
Article | Year |
---|---|
Anti-prostate cancer potential of gossypetin via inducing apoptotic and autophagic cell death.
Gossypetin (GTIN), a naturally occurring hexahydroxy flavone, has been shown to possess antimutagenic, antioxidant, antimicrobial, and antiatherosclerotic effects. Here, we investigated the mechanism(s) underlying the anticancer potential of GTIN. In this study, investigations were showed that GTIN preferentially induces programed cell death of prostate cancer (PCa) cells in vitro and in vivo. MTT data showed that GTIN exhibited the anti-proliferation effect on human PCa cells in a dose- and time-dependent manner. Among two kinds of PCa cells, androgen-dependent LNCaP cells were the most susceptible to GTIN. GTIN was evaluated for apoptotic and autophagic activities in LNCaP cells, but not in androgen-independent DU145 cells with mutant Atg5 and resistant to autophagy. Molecular data showed the apoptotic effect of GTIN at a high dose in PCa cells might be mediated via mitochondrial pathway. The lower dose of GTIN-induced autophagy enhances LNCaP cell death, and is dependent on class III PI3K and Atg5 pathway. Finally, GTIN was evidenced by its inhibition on the growth of LNCaP cells in xenograft tumor studies. As a result, our data presented the first evidence of GTIN as an inducer of apoptotic and autophagic cell death in LNCaP cells, and provide a new mechanism for its anticancer activity. Topics: Animals; Apoptosis; Autophagy; Autophagy-Related Protein 5; Blotting, Western; Cell Line; Cell Line, Tumor; Flavonoids; Humans; Male; Mice, Inbred BALB C; Mice, Nude; Molecular Structure; Mutation; Phosphatidylinositol 3-Kinases; Prostatic Neoplasms; Signal Transduction; Xenograft Model Antitumor Assays | 2017 |
Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase.
The pim-1 kinase is a true oncogene that has been implicated in the development of leukemias, lymphomas, and prostate cancer, and is the target of drug development programs. We have used experimental approaches to identify a selective, cell-permeable, small-molecule inhibitor of the pim-1 kinase to foster basic and translational studies of the enzyme. We used an ELISA-based kinase assay to screen a diversity library of potential kinase inhibitors. The flavonol quercetagetin (3,3',4',5,6,7-hydroxyflavone) was identified as a moderately potent, ATP-competitive inhibitor (IC(50), 0.34 micromol/L). Resolution of the crystal structure of PIM1 in complex with quercetagetin or two other flavonoids revealed a spectrum of binding poses and hydrogen-bonding patterns in spite of strong similarity of the ligands. Quercetagetin was a highly selective inhibitor of PIM1 compared with PIM2 and seven other serine-threonine kinases. Quercetagetin was able to inhibit PIM1 activity in intact RWPE2 prostate cancer cells in a dose-dependent manner (ED(50), 5.5 micromol/L). RWPE2 cells treated with quercetagetin showed pronounced growth inhibition at inhibitor concentrations that blocked PIM1 kinase activity. Furthermore, the ability of quercetagetin to inhibit the growth of other prostate epithelial cell lines varied in proportion to their levels of PIM1 protein. Quercetagetin can function as a moderately potent and selective, cell-permeable inhibitor of the pim-1 kinase, and may be useful for proof-of-concept studies to support the development of clinically useful PIM1 inhibitors. Topics: Chromones; Crystallography, X-Ray; Flavones; Flavonoids; Humans; Male; Phenotype; Prostatic Neoplasms; Protein Kinase Inhibitors; Protein Structure, Secondary; Proto-Oncogene Proteins c-pim-1; Sensitivity and Specificity; Substrate Specificity | 2007 |