goserelin has been researched along with Feminization* in 1 studies
1 other study(ies) available for goserelin and Feminization
Article | Year |
---|---|
Effects of the gonadotrophin-releasing hormone agonist 'Zoladex' upon pituitary and gonadal function in hypogonadal (hpg) male mice: a comparison with normal male and testicular feminized (tfm) mice.
Hypogonadal (hpg) mutant mice, with a congenital deficiency of hypothalamic gonadotrophin-releasing hormone (GnRH), and testicular feminized (tfm) mice, which lack a functional androgen receptor, were used to study the effects of the potent GnRH agonist 'Zoladex' (ICI 118630; D-Ser (Bu(t))6, Azgly10-GnRH) on pituitary and gonadal function. Zoladex (0.5 mg) in a sustained-release lactide-glycolide copolymer depot was administered subcutaneously under anaesthesia and was left in place for 7 days, after which time the effects of the drug upon pituitary and serum gonadotrophin concentrations, glycoprotein hormone subunit mRNAs and testicular morphology were investigated. At the pituitary level, Zoladex treatment resulted in a substantial reduction in LH content in normal males, and LH content was depressed in hpg mice even below the basal levels normally found in these mutants. Pituitary LH content in the Zoladex-treated animals was depressed in the tfm groups, but not to the same levels as those found in the normal and castrated normal mice. Zoladex treatment at the time of castration prevented the post-operative elevation in serum LH associated with castration alone. In the androgen-deficient tfm mouse, Zoladex did not depress the normally elevated serum LH levels. Serum LH in the hpg animals was, in all cases, below the limit of detection of the assay. Pituitary FSH content was depressed into the hpg range in both the normal and castrated animals, but there was no further depression in the hpg mice. The pituitary content was reduced in the tfm mice, again the effects not being as dramatic as in the normal and castrated animals. Serum FSH content, as measured by radioimmunoassay, was depressed by 50% in normal mice; there was no reduction in the hpg mice, however. With regard to pituitary gonadotrophic hormone gene expression, Zoladex administration to normal mice caused a dramatic reduction in LH beta mRNA content, to a level approximating that found in untreated hpg mice. The drug also depressed LH beta mRNA in the castrated group to the hpg range when given at the time of castration, whereas in untreated castrated mice there was a significant increase in LH beta mRNA. In the tfm mouse, which can be considered as a model for long-term failure of androgen feedback, Zoladex again induced a fall in LH beta mRNA, but not to the same extent as in the normal and normal castrated group. Zoladex had no effect on the already low levels of LH beta mRNA found in hpg Topics: Androgens; Animals; Buserelin; Feminization; Follicle Stimulating Hormone; Gonadotropin-Releasing Hormone; Gonadotropins; Goserelin; Hypogonadism; Luteinizing Hormone; Male; Mice; Orchiectomy; Organ Size; Pituitary Gland; Reference Values; Testis | 1992 |