glyx-13-peptide and Disease-Models--Animal

glyx-13-peptide has been researched along with Disease-Models--Animal* in 11 studies

Reviews

2 review(s) available for glyx-13-peptide and Disease-Models--Animal

ArticleYear
The Development of Rapastinel (Formerly GLYX-13); A Rapid Acting and Long Lasting Antidepressant.
    Current neuropharmacology, 2017, Volume: 15, Issue:1

    Rapastinel (GLYX-13) is a NMDA receptor modulator with glycine-site partial agonist properties. It is a robust cognitive enhancer and shows rapid and long-lasting antidepressant properties in both animal models and in humans.. Rapastinel was derived from a monoclonal antibody, B6B21, is a tetrapeptide (threonine-proline-proline-threonine-amide) obtained from amino acid sequence information obtained from sequencing one of the hypervariable regions of the light chain of B6B21. The in-vivo and in-vitro pharmacology of rapastinel was examined.. Rapastinel was found to be a robust cognitive enhancer in a variety of learning and memory paradigms and shows marked antidepressant-like properties in multiple models including the forced swim (Porsolt), learned helplessness and chronic unpredictable stress. Rapastinel's rapid-acting antidepressant properties appear to be mediated by its ability to activate NMDA receptors leading to enhancement in synaptic plasticity processes associated with learning and memory. This is further substantiated by the increase in mature dendritic spines found 24 hrs after rapastinel treatment in both the rat dentate gyrus and layer five of the medial prefrontal cortex. Moreover, ex vivo LTP studies showed that the effects of rapastinel persisted at least two weeks post-dosing.. These data suggest that rapastinel has significant effects on metaplasticity processes that may help explain the long lasting antidepressant effects of rapastinel seen in the human clinical trial results.

    Topics: Age Factors; Animals; Antidepressive Agents; Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Exploratory Behavior; Long-Term Potentiation; Maze Learning; Memory; Neuronal Plasticity; Oligopeptides; Rats; Receptors, N-Methyl-D-Aspartate; Swimming; Synapses; Vocalization, Animal

2017
Glix 13, a new drug acting on glutamatergic pathways in children and animal models of autism spectrum disorders.
    BioMed research international, 2014, Volume: 2014

    Recently standardized diagnostic instruments have been developed in diagnostic and therapeutic procedures for Autism Spectrumv Disorders (ASD). According to the DSM-5 criteria, individuals with ASD must show symptoms from early childhood. These symptoms are communication deficits and restricted, repetitive patterns of behaviour. It was recently described by Bioinformatic analysis that 99 modified genes were associated with human autism. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes and the NMDA receptor gene family was identified among these. Using ultrasonic vocalizations, it was demonstrated that genetic variation has a direct impact on the expression of social interactions. It has been proposed that specific alleles interact with a social reward process in the adolescent mouse modifying their social interaction and their approach toward each other. In this review we report that the monoclonal antibody-derived tetrapeptide GLYX-13 was found to act as an N-methyl-D-aspartate receptor modulator and possesses the ability to readily cross the blood brain barrier. Treatment with the NMDAR glycine site partial agonist GLYX-13 rescued the deficit in the animal model. Thus, the NMDA receptor has been shown to play a functional role in autism, and GLYX-13 shows promise for the treatment of autism in autistic children.

    Topics: Animals; Child; Child Development Disorders, Pervasive; Disease Models, Animal; Genetic Variation; Glutamates; Humans; Oligopeptides; Receptors, N-Methyl-D-Aspartate

2014

Other Studies

9 other study(ies) available for glyx-13-peptide and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Esketamine and rapastinel, but not imipramine, have antidepressant-like effect in a treatment-resistant animal model of depression.
    Acta neuropsychiatrica, 2019, Volume: 31, Issue:5

    Treatment-resistance to antidepressants is a major problem in the pharmacotherapy of major depressive disorder (MDD). Unfortunately, only a few animal models are suitable for studying treatment-resistant depression, among them repeated treatment with Adrenocorticotropic hormone (ACTH) appears to be useful to mimic treatment-resistance to monoaminergic antidepressants. Therefore, the present work aimed to investigate the effectiveness of s-ketamine and rapastinel (formerly GLYX13), modulators of the glutamatergic N-methyl-D-aspartate receptor in ACTH-treated animals.. Naïve male Sprague Dawley rats were subjected to repeated subcutaneous injections with ACTH (100 µg/0.1 ml/rat/day) for 14 days and drug treatment on the test day (open field and forced swim test) with imipramine, s-ketamine or rapastinel. In addition, assessment of plasma levels of corticosterone and ACTH was carried out.. We found that rats repeatedly treated with ACTH for 14 days responded to single injections with s-ketamine (15 mg/kg) and rapastinel (10 mg/kg), but failed to respond to imipramine (15 mg/kg). In the plasma, the levels of corticosterone and ACTH were increased after 14 days of daily treatment with ACTH, independently of the treatment.. The present data confirm development of a resistance to treatment following chronic ACTH administration. In addition, the study confirms the possible effectiveness of s-ketamine and rapastinel as treatment options in treatment-resistant depression. Moreover, it highlights the importance of the glutamatergic system in the neurobiology of depression. Further studies are necessary to evaluate how repeated treatment with ACTH leads to a depressed condition resistant to monoaminergic antidepressants.

    Topics: Adrenocorticotropic Hormone; Animals; Antidepressive Agents; Behavior, Animal; Corticosterone; Depressive Disorder, Treatment-Resistant; Disease Models, Animal; Imipramine; Ketamine; Male; Oligopeptides; Rats; Rats, Sprague-Dawley; Swimming; Treatment Outcome

2019
GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice.
    Behavioural brain research, 2016, Feb-15, Volume: 299

    GLYX-13 (rapastinel), a tetrapeptide (Thr-Pro-Pro-Thr-amide), has been reported to have fast acting antidepressant properties in man based upon its N-methyl-D-aspartate receptor (NMDAR) glycine site functional partial agonism. Ketamine, a non-competitive NMDAR antagonist, also reported to have fast acting antidepressant properties, produces cognitive impairment in rodents and man, whereas rapastinel has been reported to have cognitive enhancing properties in rodents, without impairing cognition in man, albeit clinical testing has been limited. The goal of this study was to compare the cognitive impairing effects of rapastinel and ketamine in novel object recognition (NOR), a measure of declarative memory, in male C57BL/6J mice treated with phencyclidine (PCP), another NMDAR noncompetitive antagonist known to severely impair cognition, in both rodents and man. C57BL/6J mice given a single dose or subchronic ketamine (30 mg/kg.i.p.) showed acute or persistent deficits in NOR, respectively. Acute i.v. rapastinel (1.0 mg/kg), did not induce NOR deficit. Pre-treatment with rapastinel significantly prevented acute ketamine-induced NOR deficit. Rapastinel (1.0 mg/kg, but not 0.3 mg/kg, iv) significantly reversed both subchronic ketamine- and subchronic PCP-induced NOR deficits. Rapastinel also potentiated the atypical antipsychotic drug with antidepressant properties, lurasidone, to restore NOR in subchronic ketamine-treated mice. These findings indicate that rapastinel, unlike ketamine, does not induce a declarative memory deficit in mice, and can prevent or reverse the ketamine-induced NOR deficit. Further study is required to determine if these differences translate during clinical use of ketamine and rapastinel as fast acting antidepressant drugs and if rapastinel could have non-ionotropic effects as an add-on therapy with antipsychotic/antidepressant medications.

    Topics: Animals; Cognition; Disease Models, Animal; Excitatory Amino Acid Antagonists; Ketamine; Male; Memory Disorders; Mice; Mice, Inbred C57BL; Oligopeptides; Phencyclidine; Recognition, Psychology

2016
Anxiolytic effects of GLYX-13 in animal models of posttraumatic stress disorder-like behavior.
    Journal of psychopharmacology (Oxford, England), 2016, Volume: 30, Issue:9

    In the present study, we investigated the effectiveness of GLYX-13, an NMDA receptor glycine site functional partial agonist, to alleviate the enhanced anxiety and fear response in both a mouse and rat model of stress-induced behavioral changes that might be relevant to posttraumatic stress disorder (PTSD). Studies over the last decades have suggested that the hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis is one of the most consistent findings in stress-related disease. Herein, we used these animal models to further investigate the effect of GLYX-13 on the stress hormone levels and glucocorticoid receptor (GR) expression. We found that exposure to foot shock induced long-lasting behavioral deficiencies in mice, including freezing and anxiety-like behaviors, that were significantly ameliorated by the long-term administration of GLYX-13 (5 or 10 mg/kg). Our enzyme-linked immunosorbent assay results showed that long-term administration of GLYX-13 at behaviorally effective doses (5 or 10 mg/kg) significantly decreased the elevated serum levels of both corticosterone and its upstream stress hormone adrenocorticotropic hormone in rats subjected to the TDS procedure. These results suggest that GLYX-13 exerts a therapeutic effect on PTSD-like stress responding that is accompanied by (or associated with) modulation of the HPA axis, including inhibition of stress hormone levels and upregulation of hippocampal GR expression.

    Topics: Adrenocorticotropic Hormone; Animals; Anti-Anxiety Agents; Anxiety; Behavior, Animal; Corticosterone; Disease Models, Animal; Dose-Response Relationship, Drug; Hippocampus; Hypothalamo-Hypophyseal System; Male; Mice; Mice, Inbred ICR; Oligopeptides; Pituitary-Adrenal System; Rats; Rats, Sprague-Dawley; Receptors, Glucocorticoid; Stress Disorders, Post-Traumatic

2016
Comparison of R-ketamine and rapastinel antidepressant effects in the social defeat stress model of depression.
    Psychopharmacology, 2016, Volume: 233, Issue:19-20

    The N-methyl-D-aspartate (NMDA) receptor antagonists, including R-ketamine and rapastinel (formerly GLYX-13), show rapid antidepressant effects in animal models of depression.. We compared the rapid and sustained antidepressant effects of R-ketamine and rapastinel in the social defeat stress model.. In the tail suspension and forced swimming tests, R-ketamine (10 mg/kg, intraperitoneal (i.p.)) or rapastinel (10 mg/kg, i.p.) significantly attenuated the increased immobility time in the susceptible mice, compared with the vehicle-treated group. In the sucrose preference test, both compounds significantly enhanced the reduced preference in susceptible mice 2, 4, or 7 days after a single injection. All mice were sacrificed 8 days after a single injection. Western blot analyses showed that R-ketamine, but not rapastinel, significantly attenuated the reduced brain-derived neurotrophic factor (BDNF)-TrkB signaling, postsynaptic density protein 95 (PSD-95), and GluA1 (a subtype of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor) in the prefrontal cortex, dentate gyrus, and CA3 of the hippocampus in the susceptible mice. In contrast, both compounds had no effect against the increased BDNF-TrkB signaling, PSD-95, and GluA1 seen in the nucleus accumbens of susceptible mice. Moreover, sustained antidepressant effect of R-ketamine (3 mg/kg, intravenous (i.v.)), but not rapastinel (3 mg/kg, i.v.), was detected 7 days after a single dose.. These results highlight R-ketamine as a longer lasting antidepressant compared with rapastinel in social defeat stress model. It is likely that synaptogenesis including BDNF-TrkB signaling in the prefrontal cortex (PFC) and hippocampus may be required for the mechanisms promoting this sustained antidepressant effect.

    Topics: Animals; Antidepressive Agents; Brain; Brain-Derived Neurotrophic Factor; CA3 Region, Hippocampal; Dentate Gyrus; Depression; Disease Models, Animal; Disks Large Homolog 4 Protein; Excitatory Amino Acid Antagonists; Hindlimb Suspension; Hippocampus; Ketamine; Male; Mice; Nucleus Accumbens; Oligopeptides; Prefrontal Cortex; Receptor, trkB; Receptors, AMPA; Stress, Psychological; Swimming

2016
Rapastinel (GLYX-13) has therapeutic potential for the treatment of post-traumatic stress disorder: Characterization of a NMDA receptor-mediated metaplasticity process in the medial prefrontal cortex of rats.
    Behavioural brain research, 2015, Nov-01, Volume: 294

    Rapastinel (GLYX-13) is a NMDA receptor modulator with glycine-site partial agonist properties. It is a robust cognitive enhancer and shows rapid and long-lasting antidepressant properties in both animal models and in humans. Contextual fear extinction (CFE) in rodents has been well characterized and used extensively as a model to study the neurobiological mechanisms of post-traumatic stress disorder (PTSD). Since CFE is NMDA receptor modulated and neural circuitry in the medial prefrontal cortex (MPFC) regulates both depression and PTSD, studies were undertaken to examine the effects of rapastinel for its therapeutic potential in PTSD and to use rapastinel as a tool to study its underlying glutamatergic mechanisms. A 21-day chronic mild unpredictable stress (CUS) rat model was used to model depression and PTSD. The effects of CUS alone compared to No CUS controls, and the effects of rapastinel (3 mg/kg IV) on CUS-treated animals were examined. The effect of rapastinel was first assessed using CUS-treated rats in three depression models, Porsolt, sucrose preference, and novelty-induced hypophagia tests, and found to produce a complete reversal of the depressive-like state in each model. Rapastinel was then assessed in a MPFC-dependent positive emotional learning paradigm and in CFE and again a reversal of the impairments induced by CUS treatment was observed. Both synaptic plasticity and metaplasticity, as measured by the induction of long-term potentiation in rat MPFC slice preparations, was found to be markedly impaired in CUS-treated animals. This impairment was reversed when CUS-treated rats were administered rapastinel and tested 24 h later. Transcriptomic analysis of MPFC mRNA expression in CUS-treated rats corroborated the link between rapastinel's behavioral effects and synaptic plasticity. A marked enrichment in both the LTP and LTD connectomes in rapastinel-treated CUS rats was observed compared to CUS-treated controls. The effects of rapastinel on depression models, PEL, and most importantly on CFE demonstrate the therapeutic potential of rapastinel for the treatment of PTSD. Moreover, rapastinel appears to elicit its therapeutic effects through a NMDA receptor-mediated, LTP-like, metaplasticity process in the MPFC.

    Topics: Animals; Chronic Disease; Depressive Disorder; Disease Models, Animal; Excitatory Amino Acid Agents; Learning; Long-Term Potentiation; Male; Memory; Oligopeptides; Prefrontal Cortex; Psychotropic Drugs; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Stress Disorders, Post-Traumatic; Stress, Psychological; Tissue Culture Techniques; Transcriptome; Uncertainty

2015
The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus.
    Neuroscience, 2015, Nov-12, Volume: 308

    Rapastinel (GLYX-13) is an N-methyl-d-aspartate receptor (NMDAR) modulator that has characteristics of a glycine site partial agonist. Rapastinel is a robust cognitive enhancer and facilitates hippocampal long-term potentiation (LTP) of synaptic transmission in slices. In human clinical trials, rapastinel has been shown to produce marked antidepressant properties that last for at least one week following a single dose. The long-lasting antidepressant effect of a single dose of rapastinel (3mg/kg IV) was assessed in rats using the Porsolt, open field and ultrasonic vocalization assays. Cognitive enhancement was examined using the Morris water maze, positive emotional learning, and contextual fear extinction tests. LTP was assessed in hippocampal slices. Dendritic spine morphology was measured in the dentate gyrus and the medial prefrontal cortex. Significant antidepressant-like or cognitive enhancing effects were observed that lasted for at least one week in each model. Rapastinel facilitated LTP 1day-2weeks but not 4weeks post-dosing. Biweekly dosing with rapastinel sustained this effect for at least 8weeks. A single dose of rapastinel increased the proportion of whole-cell NMDAR current contributed by NR2B-containing NMDARs in the hippocampus 1week post-dosing, that returned to baseline by 4weeks post-dosing. The NMDAR antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) blocked the antidepressant-like effect of rapastinel 1week post dosing. A single injection of rapastinel also increased mature spine density in both brain regions 24h post-dosing. These data demonstrate that rapastinel produces its long-lasting antidepressant effects via triggering NMDAR-dependent processes that lead to increased sensitivity to LTP that persist for up to two weeks. These data also suggest that these processes led to the alterations in dendritic spine morphologies associated with the maintenance of long-term changes in synaptic plasticity associated with learning and memory.

    Topics: Animals; Antidepressive Agents; Dendritic Spines; Depressive Disorder; Disease Models, Animal; Dose-Response Relationship, Drug; Hippocampus; Male; Maze Learning; Membrane Potentials; Memory; Neuronal Plasticity; Oligopeptides; Prefrontal Cortex; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Time Factors; Tissue Culture Techniques

2015
GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2013, Volume: 38, Issue:5

    Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of 'metaplasticity' by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression.

    Topics: Acoustic Stimulation; Action Potentials; Animals; Antidepressive Agents; Brain; Conditioning, Operant; Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Exploratory Behavior; Fluoxetine; Gene Expression Profiling; Ketamine; Long-Term Potentiation; Male; Oligopeptides; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Reflex, Startle; Swimming

2013
Antinociceptive action of GLYX-13: an N-methyl-D-aspartate receptor glycine site partial agonist.
    Neuroreport, 2008, Jul-02, Volume: 19, Issue:10

    Inhibition of N-methyl-D-aspartate (NMDA)-mediated neurotransmission has been demonstrated to provide antinociceptive actions in a number of animal models of tonic and neuropathic pain. However, both competitive and noncompetitive NMDA receptor antagonists are ataxic at analgesic doses. Partial agonists and antagonists of the NMDA-associated glycine site have demonstrated antinociceptive actions at doses that are not ataxic. In this study, we present data showing that GLYX-13, an NMDA receptor, glycine-site, partial agonist, also is antinociceptive in the rat formalin model of tonic pain and in the rat constriction nerve injury model of neuropathic pain at doses not inducing ataxia.

    Topics: Amines; Analgesics; Animals; Behavior, Animal; Cyclohexanecarboxylic Acids; Disease Models, Animal; Dose-Response Relationship, Drug; Formaldehyde; Gabapentin; gamma-Aminobutyric Acid; Male; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Rats; Rats, Sprague-Dawley; Time Factors

2008