glycogen and Tachycardia--Ventricular

glycogen has been researched along with Tachycardia--Ventricular* in 3 studies

Other Studies

3 other study(ies) available for glycogen and Tachycardia--Ventricular

ArticleYear
Ventricular arrhythmias following coronary artery occlusion in rats: is the diabetic heart less or more sensitive to ischaemia?
    Basic research in cardiology, 2001, Volume: 96, Issue:2

    Rhythm disorders are common complications in diabetic patients, due to their enhanced sensitivity to ischaemia. However, experimental studies are inconsistent, and both higher and lower vulnerability to injury has been reported. Our objectives were to compare susceptibility to ventricular arrhythmias in rats with prolonged duration of diabetes induced by streptozotocin (45 mg/kg, i.v.), utilising two different models. Following 8 weeks, either anaesthetised open-chest rats in vivo or isolated Langendorff-perfused hearts were subjected to 30 min regional zero-flow ischaemia induced by occlusion of LAD coronary artery. In addition, cardiac glycogenolysis and lactate production were measured. In open-chest rats, 90 % of the controls exhibited ventricular tachycardia (VT) which represented 55.4 % of total arrhythmias, whereby only 19.9 % of arrhythmias occurred as VT in 44 % of the diabetic rats (P < 0.05 vs controls). Duration of VT and ventricular fibrillation (VF) was reduced from 35.5 +/- 11.1 and 224.8 +/- 153.9 s in the controls to 4.8 +/- 2.5 and 2.2 +/- 0.2 s in the diabetics, respectively (P < 0.05). Accordingly, severity of arrhythmias (arrhythmia score, AS) was also lower in the diabetics (2.0 +/- 0.38 vs 3.3 +/- 0.3 in the controls; P < 0.05). In the isolated hearts, high incidence of VF was decreased in the diabetic hearts, and although VT occurred in almost all of the diabetic hearts, the duration of VT and VF was substantially shorter (61.5 +/- 14.5 and 5.5 +/- 0.5 s vs 221.5 +/- 37 and 398.5 +/- 55 s in the controls, respectively; P < 0.05). AS was reduced to 2.9 +/- 0.12 from 4.1 +/- 0.3 in the controls (P < 0.05). Postischaemic accumulation of lactate was lower in the diabetic than in the non-diabetic myocardium (20.4 +/- 1.9 vs 29.5 +/- 2.9 micromol/l/g w.wt.; P < 0.05). These results suggest that rat hearts with chronic diabetes, despite some differences in the arrhythmia profiles between the in vivo model and isolated heart preparation, are less sensitive to ischaemic injury and exhibit lower susceptibility to ventricular arrhythmias and reduced accumulation ofglycolytic metabolites.

    Topics: Animals; Blood Glucose; Coronary Disease; Diabetes Mellitus, Experimental; Glycogen; In Vitro Techniques; Lactic Acid; Male; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Rats; Rats, Wistar; Tachycardia, Ventricular

2001
Late ventricular arrhythmias during acute regional ischemia in the isolated blood perfused pig heart. Role of electrical cellular coupling.
    Cardiovascular research, 2001, Volume: 50, Issue:2

    Acute ischemia comes with two phases of life-threatening arrhythmias, early (within 10 minutes, 1A) and late (after about 15 minutes, 1B). The mechanism of the latter is unknown and in this paper, we test the hypothesis that a phase of intermediate coupling between surviving epicardium and inexcitable midmyocardium underlies 1B arrhythmias.. Pig hearts (n=26) were retrogradely perfused with a blood Tyrode's mixture. The left anterior descending artery was occluded. We investigated (1) inducibility of ventricular fibrillation (VF) with programmed stimulation, (2) tissue impedance (Rt) heterogeneity within the ischemic zone, (3) multiple subepicardial and midmyocardial electrograms, (4) subepicardial lactate dehydrogenase (LDH) and glycogen content.. In nine of ten hearts, one--three premature stimuli caused VF between 14 and 53 min of ischemia. This typically happened when the Rt of the ischemic zone had increased up to 40% of its final value. More uncoupling terminated the period of VF inducibility. The excitability of the surviving subepicardial layer was depressed during the same period with partial uncoupling, but recovered when the uncoupling from the midmyocardium had progressed further.. We show that 1B-VF can be induced within a distinct time window and coincides with a distinct range of Rt rise. Subepicardium is electrically depressed, presumably through coupling with midmyocardium, complete uncoupling causes subepicardial recovery and terminates the substrate for 1B-VF. Hence, we suggest that the substrate for 1B-VF consists of intermediate coupling of subepicardium and midmyocardium.

    Topics: Animals; Cell Communication; Death, Sudden, Cardiac; Electrocardiography; Female; Glycogen; Heart Conduction System; L-Lactate Dehydrogenase; Male; Myocardial Ischemia; Myocardium; Organ Culture Techniques; Swine; Tachycardia, Ventricular

2001
Glycogen depletion contributes to ischemic preconditioning in the rat heart in vivo.
    The American journal of physiology, 1996, Volume: 271, Issue:6 Pt 2

    Ischemic preconditioning depletes the myocardium of glycogen, thus blunting lactic acidosis during subsequent episodes of ischemia. Preconditioning also protects against reperfusion arrhythmias and infarction. To test whether glycogen depletion is necessary for this ischemic tolerance, we preconditioned two groups of intact rats with a series of 3-min coronary artery occlusions. In one group, preconditioning lowered the glycogen concentration of the ischemic region by approximately 50% (24.9 +/- 2.5 to 12.5 +/- 1.8 mumol/g; P < 0.01). In the other, the heart was first loaded with glycogen via glucose-insulin infusion so that preconditioning merely reduced its glycogen concentration back to normal physiological levels. Compared with nonpreconditioned control rats, preconditioned rats with both normal and subnormal glycogen concentrations were protected from reperfusion arrhythmias after a 6-min coronary occlusion (incidence: control rats, 100%; normal glycogen rats, 11%; reduced glycogen rats, 11%). In contrast, only rats with subnormal glycogen concentration after preconditioning exhibited reduced lactate formation and infarct size after a 45-min coronary occlusion [infarct size (percentage of risk area): control rats, 53 +/- 10%; normal glycogen rats, 50 +/- 16%, P = not significant; subnormal glycogen rats, 18 +/- 10%, P < 0.01]. Thus, in the intact rat, myocardial glycogen depletion appears to be necessary for the infarct-limiting, but not for the antiarrhythmic, effects of ischemic preconditioning.

    Topics: Animals; Blood Glucose; Coronary Disease; Glycogen; Hemodynamics; Ischemic Preconditioning, Myocardial; Lactic Acid; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Osmolar Concentration; Potassium; Rats; Rats, Sprague-Dawley; Tachycardia, Ventricular

1996