glycogen and Anorexia

glycogen has been researched along with Anorexia* in 5 studies

Reviews

1 review(s) available for glycogen and Anorexia

ArticleYear
Some pharmacological and toxicological properties of furazolidone.
    Veterinary research communications, 1983, Volume: 6, Issue:1

    The pharmacological and toxicological properties of furazolidone have been briefly reviewed. Among the most important pharmacological actions of furazolidone is the inhibition of mono- and diamine oxidase activities, which seem to depend, at least in some species, on the presence of the gut flora. The drug also seems to interfere with the utilization of thiamin, which is probably instrumental in the production of anorexia and loss of body weight of the treated animals. Furazolidone is known to induce a condition of cardiomyopathy in turkeys, which could be used as a model to study alpha 1-antitrypsin deficiency in man. The drug is most toxic to ruminants. The toxic signs observed were of nervous nature. Experiments are in progress in this laboratory to try to explain the mechanism(s) by which this toxicity is brought about. It is uncertain whether the use of furazolidone at the recommended therapeutic dose would result in drug residues in tissues of treated animals. This is a matter of public health importance as the drug has been shown to possess a carcinogenic activity. It is important that a simple and reliable method of identification and estimation of furazolidone residues be devised. More work is needed to elucidate the mode of action and biochemical effects caused by the drug in both the host and the infective organisms.

    Topics: Adrenal Glands; Alcoholism; Animals; Anorexia; Brain; Cardiomyopathies; Cattle; Chick Embryo; Chickens; Chromatography, High Pressure Liquid; Ducks; Female; Furazolidone; Glycogen; Guinea Pigs; Humans; In Vitro Techniques; Liver; Mice; Monoamine Oxidase Inhibitors; Poultry Diseases; Pregnancy; Rabbits; Rats; Thiamine Deficiency; Turkeys

1983

Other Studies

4 other study(ies) available for glycogen and Anorexia

ArticleYear
Voluntary exercise prevents cisplatin-induced muscle wasting during chemotherapy in mice.
    PloS one, 2014, Volume: 9, Issue:9

    Loss of muscle mass related to anti-cancer therapy is a major concern in cancer patients, being associated with important clinical endpoints including survival, treatment toxicity and patient-related outcomes. We investigated effects of voluntary exercise during cisplatin treatment on body weight, food intake as well as muscle mass, strength and signalling. Mice were treated weekly with 4 mg/kg cisplatin or saline for 6 weeks, and randomized to voluntary wheel running or not. Cisplatin treatment induced loss of body weight (29.8%, P < 0.001), lean body mass (20.6%, P = 0.001), as well as anorexia, impaired muscle strength (22.5% decrease, P < 0.001) and decreased glucose tolerance. In addition, cisplatin impaired Akt-signalling, induced genes related to protein degradation and inflammation, and reduced muscle glycogen content. Voluntary wheel running during treatment attenuated body weight loss by 50% (P < 0.001), maintained lean body mass (P < 0.001) and muscle strength (P < 0.001), reversed anorexia and impairments in Akt and protein degradation signalling. Cisplatin-induced muscular inflammation was not prevented by voluntary wheel running, nor was glucose tolerance improved. Exercise training may preserve muscle mass in cancer patients receiving cisplatin treatment, potentially improving physical capacity, quality of life and overall survival.

    Topics: Animals; Anorexia; Body Weight; Cisplatin; Female; Gene Expression; Glucose Intolerance; Glycogen; Mice; Muscle Strength; Muscle, Skeletal; Muscular Atrophy; Physical Conditioning, Animal; Proto-Oncogene Proteins c-akt; Running; Signal Transduction

2014
Methamphetamine causes anorexia in Drosophila melanogaster, exhausting metabolic reserves and contributing to mortality.
    The Journal of toxicological sciences, 2012, Volume: 37, Issue:4

    Methamphetamine (MA) appears to produce neurotoxic effects, in part, through disruptions of energy metabolism. A recent study of the whole-body proteome of Drosophila melanogaster showed many changes in energy metabolism-related proteins, leading us to hypothesize that MA toxicity may cause whole-body disruptions of energy metabolism. To test this, we monitored the response of energy reserves and other metabolites to MA-exposure with and without the addition of dietary glucose. We also monitored changes in feeding behavior, locomotor activity and respiration rates associated with MA-exposure to investigate how MA affects energy balance. We observed that glycogen and triglyceride levels decreased dramatically within 48 hr of MA-exposure, indicating a strongly negative caloric balance. Behavioral assays revealed that MA-treated flies decreased food consumption by 60-80% and exhibited a 2-fold increase in locomotion. Caloric expenditure decreased with MA-exposure, apparently due to a compensatory decrease in resting metabolism, showing that anorexia was the primary driver of the negative caloric balance. Additionally, we observed that glucose supplementation of MA-containing diet increased glycogen reserves by 44% at 48 hr, leading to a commensurate increase in survivorship. We conclude that dietary sugar supplementation enhances survivorship by partially compensating for decreased caloric intake resulting from MA-induced anorexia. The observation that MA produces similar behavioral changes in Drosophila and humans, i.e. increased locomotor activity and anorexia, further supports the use of Drosophila as a model organism for the study of the effects of MA.

    Topics: Animals; Anorexia; Diet; Drosophila melanogaster; Energy Intake; Energy Metabolism; Feeding Behavior; Glucaric Acid; Glycogen; Male; Methamphetamine; Motor Activity; Oxidative Stress; Stress, Physiological; Triglycerides

2012
Evidence for impairment of hepatic energy homeostasis in head-injured rat.
    Journal of neurotrauma, 2008, Volume: 25, Issue:2

    Traumatic brain injury (TBI) is known to induce a metabolic adaptation characterized by a nitrogen transfer from the periphery to the liver. However, the consequences of TBI on liver energy status are poorly documented. We evaluated the consequences of TBI on liver energy homeostasis in rats. In a first set of experiments, rats were randomized into two groups: a TBI group traumatized by fluid percussion, and an ad libitum fed group (AL) of healthy rats. The rats were sacrificed at 2, 3, or 4 days (D2, D3, and D4, respectively to determine the kinetic of hepatic energy changes). Since TBI leads to a profound anorexia, in a second set of experiments TBI rats received enteral nutrition (TBI-EN group) for 4 days to specifically assess the role of anorexia in the hepatic disturbances. TBI led to a decrease in hepatic glycogen (D2: TBI 3.9 +/- 1.9 vs. AL 18.9 +/- 2.6 mg/g, p < 0.05) and ATP (D2: TBI 540 +/- 57 vs. AL 850 +/- 44 nmol/g, p < 0.05) contents. These effects were not linked to anorexia, since they were observed when rats were fed using continuous enteral nutrition. Interestingly, there was no adaptation of the mitochondrial oxidative capacity to compensate for the increase in energy requirements (cytochrome C oxidase activity: AL, 82 +/- 5; TBI, 82 +/- 4; and TBI-EN, 87 +/- 3 micromol/min/g, NS). These findings demonstrate that TBI is responsible for an impairment of liver energy homeostasis. Moreover, these alterations are related neither to anorexia nor to decreased mitochondrial oxidative capacity.

    Topics: Adenosine Triphosphate; Animals; Anorexia; Craniocerebral Trauma; Energy Metabolism; Gastrostomy; Glycogen; Glycolysis; Homeostasis; Liver; Male; Mitochondria, Liver; Nutritional Physiological Phenomena; Rats; Rats, Sprague-Dawley

2008
Inhibition of hepatic gluconeogenesis and enhanced glucose uptake contribute to the development of hypoglycemia in mice bearing interleukin-1beta- secreting tumor.
    Endocrinology, 2004, Volume: 145, Issue:11

    Mice bearing IL-1beta-secreting tumor were used to study the chronic effect of IL-1beta on glucose metabolism. Mice were injected with syngeneic tumor cells transduced with the human IL-1beta gene. Serum IL-1beta levels increased exponentially with time. Secretion of IL-1beta from the developed tumors was associated with decreased food consumption, reduced body weight, and reduced blood glucose levels. Body composition analysis revealed that IL-1beta caused a significant loss in fat tissue without affecting lean body mass and water content. Hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activities and mRNA levels of these enzymes were reduced, and 2-deoxy-glucose uptake by peripheral tissues was enhanced. mRNA levels of glucose transporters (Gluts) in the liver were determined by real-time PCR analysis. Glut-3 mRNA levels were up-regulated by IL-1beta. Glut-1 and Glut-4 mRNA levels in IL-1beta mice were similar to mRNA levels in pair-fed mice bearing nonsecreting tumor. mRNA level of Glut-2, the major Glut of the liver, was down-regulated by IL-1beta. We concluded that both decreased glucose production by the liver and enhanced glucose disposal lead to the development of hypoglycemia in mice bearing IL-1beta-secreting tumor. The observed changes in expression of hepatic Gluts that are not dependent on insulin may contribute to the increased glucose uptake.

    Topics: Animals; Anorexia; Blood Glucose; Body Composition; Body Weight; C-Peptide; Cell Line, Tumor; Eating; Female; Fibrosarcoma; Gluconeogenesis; Glucose; Glucose-6-Phosphatase; Glycogen; Humans; Hypoglycemia; Hypoglycemic Agents; Insulin; Interleukin-1; Leptin; Liver; Mice; Mice, Inbred C57BL; Monosaccharide Transport Proteins; Neoplasm Transplantation; Protein Serine-Threonine Kinases; RNA, Messenger

2004