glycodeoxycholic-acid and Necrosis

glycodeoxycholic-acid has been researched along with Necrosis* in 7 studies

Other Studies

7 other study(ies) available for glycodeoxycholic-acid and Necrosis

ArticleYear
Hyperoncotic dextran and systemic aprotinin in necrotizing rodent pancreatitis.
    Scandinavian journal of gastroenterology, 1995, Volume: 30, Issue:8

    Dextrans improve pancreatic microcirculation in acute experimental pancreatitis. They could therefore facilitate the transport of a protease inhibitor to ischemic areas of tissue injury and be of additional benefit.. To compare the effects of dextrans with and without aprotinin, necrotizing pancreatitis was induced in 33 male dextran-resistant Wistar rats by intraductal infusion of low-dose glycodeoxycholic acid (10 mmol/l) followed by intravenous cerulein (5 micrograms/kg/h) for 6 h. Three and four hours after the start of the cerulein infusion the animals received infusions of either Ringer's lactate (RL) (12 ml/kg), 70,000 Da dextran (10%) (DEX-70) (4 ml/kg) alone, or DEX-70 (4 ml/kg) with aprotinin (5000 IU/kg) (DEX-70/A).. The death rate was 60% within 9 h in the RL group (6 of 10) but only 10% in the DEX-70 group (1 of 10) (p < 0.03; Fisher's exact test) and 23% in the DEX-70/A group (3 of 13). Histomorphometry demonstrated a significant reduction of acinar necrosis in both treatment groups compared with control animals (p < 0.014; t test). Total amounts of trypsinogen activation peptides (TAP) in ascites were also significantly lower in these groups (p < 0.05; t test).. DEX-70 given 3 h and 4 h after induction of pancreatitis significantly reduced the levels of TAP, limited acinar necrosis, and improved survival rate in acute necrotizing rodent pancreatitis. There was no additional benefit from the combination with aprotinin.

    Topics: Acute Disease; Animals; Aprotinin; Ceruletide; Dextrans; Glycodeoxycholic Acid; Hemodilution; Male; Necrosis; Oligopeptides; Pancreas; Pancreatitis; Plasma Substitutes; Rats; Rats, Wistar; Serine Proteinase Inhibitors; Time Factors; Trypsinogen

1995
Late histopathologic changes and healing in an improved rodent model of acute necrotizing pancreatitis.
    Digestion, 1995, Volume: 56, Issue:3

    Studies of experimental pancreatitis have generally focussed on early time points rather than the stages of healing and resolution or scarring. We recently characterized a new pancreatitis model of moderate severity by combining intraductal infusion of very low concentrations of glycodeoxycholic acid with intravenous caerulein. This study evaluates late histopathologic changes and gross complications in this pancreatitis model compared to the traditionally used high-dose bile salt model in rats. After 14 days, histopathologic features of caerulein pancreatitis were not different from saline controls. High-dose intraductal bile salt infusion resulted in widespread chronic inflammation, acinar dilation and atrophy, marked reactive stromal proliferation, and ductular budding with periductal fibrosis. In contrast, animals receiving low-dose intraductal bile salt infusion combined with intravenous caerulein demonstrated a moderate degree of chronic inflammation and acinar atrophy along with an intermediate degree of periductal fibrosis and stromal reaction. We conclude that due to its moderate degree of injury, this model may be useful for the study of tissue injury and repair following acute pancreatitis.

    Topics: Acute Disease; Amylases; Animals; Ceruletide; Glycodeoxycholic Acid; Necrosis; Pancreas; Pancreatitis; Random Allocation; Rats; Rats, Sprague-Dawley; Time Factors

1995
Effect of microcirculatory perfusion on distribution of trypsinogen activation peptides in acute experimental pancreatitis.
    Digestive diseases and sciences, 1995, Volume: 40, Issue:10

    Extraintestinal trypsinogen activation peptides (TAP) have been shown to correlate with severity of acute pancreatitis in humans as well as in various animal models. Ischemia superimposed on experimental pancreatitis, however, increases acinar cell injury without increasing TAP in plasma. We speculated that TAP generated in the pancreas might not reach the circulation in necrotizing pancreatitis due to decreased pancreatic perfusion. To test the hypothesis that generation of TAP in plasma is related to pancreatic perfusion and that plasma TAP may therefore underestimate acinar cell injury in necrotizing disease, we correlated TAP in pancreatic tissue and body fluids with capillary pancreatic blood flow in necrotizing and edematous pancreatitis. The ratio between necrosis and TAP in tissue was similar in both models; the ratio between TAP in plasma and tissue, however, was significantly lower in necrotizing pancreatitis, indicating that a certain amount of TAP generated in the pancreas did not reach the circulation. Decreased pancreatic perfusion found in necrotizing pancreatitis was consistent with this finding. Our data suggest that TAP in tissue is most reliable to indicate severity of acute pancreatitis, whereas plasma TAP may underestimate pancreatic injury in necrotizing disease due to decreased pancreatic perfusion.

    Topics: Acute Disease; Animals; Ceruletide; Disease Models, Animal; Edema; Glycodeoxycholic Acid; Male; Microcirculation; Necrosis; Oligopeptides; Pancreas; Pancreatitis; Rats; Rats, Sprague-Dawley; Trypsinogen

1995
Intravenous contrast medium impairs oxygenation of the pancreas in acute necrotizing pancreatitis in the rat.
    Archives of surgery (Chicago, Ill. : 1960), 1994, Volume: 129, Issue:7

    Contrast-enhanced computed tomography is widely used to evaluate severe acute necrotizing pancreatitis (ANP) by demonstrating areas of malperfusion, which might indicate irreversible necrosis. Because of our prior finding that the intravenous contrast medium (CM) accentuates the severity of ANP by promoting further necrosis and higher mortality, we sought to investigate the mechanism by which this injury is mediated.. Mild acute pancreatitis was induced in Sprague-Dawley rats with intravenous caerulein hyperstimulation; and severe ANP, with intravenous caerulein plus intraductal glycodeoxycholic acid. Control animals and rats with pancreatitis were randomized to be given intravenous CM or saline.. Diffuse reflectance spectroscopy was used to measure the index of hemoglobin content and oxygen saturation in pancreatic tissues in vivo.. Oxygen saturation of hemoglobin was increased in animals with mild acute pancreatitis (AP) (mean [+/- SEM], 58.7% +/- 1.2% vs 55.2% +/- 1.5% in control animals; P < .05) and was decreased in animals with ANP (51.2% +/- 1.2% vs 55.2% +/- 1.5%; P < .05). Fifteen minutes after the infusion of CM, oxygen saturation of hemoglobin significantly decreased further in animals with ANP (51.4% +/- 1.8% before infusion of CM vs 46.1% +/- 1.7% at 15 minutes; P < .05) and remained significantly below the comparable group receiving intravenous saline for the entire 60-minute test. This decrement was not observed in animals with ANP given saline or in animals with mild AP or in control animals after infusion of saline or CM. The index of hemoglobin content remained unchanged throughout the experiment in all groups.. The prolonged reduction of oxygen saturation of hemoglobin in the pancreas following the administration of intravenous CM in rats with severe ANP indicates that CM impairs the pancreatic microcirculation in necrotizing forms of AP. This may explain our previous finding that CM increases pancreatic injury and mortality in rodents with ANP, and it underlines our concern that the use of contrast-enhanced computed tomography early in human AP may promote the evolution of pancreatic necrosis.

    Topics: Acute Disease; Animals; Blood Gas Analysis; Ceruletide; Contrast Media; Glycodeoxycholic Acid; Hemoglobins; Infusions, Intravenous; Male; Microcirculation; Necrosis; Oxyhemoglobins; Pancreas; Pancreatitis; Random Allocation; Rats; Rats, Sprague-Dawley; Severity of Illness Index; Sodium Chloride; Tomography, X-Ray Computed

1994
Time course of bacterial infection of the pancreas and its relation to disease severity in a rodent model of acute necrotizing pancreatitis.
    Annals of surgery, 1994, Volume: 220, Issue:2

    Bacterial infection of pancreatic necrosis is thought to be a major determinant of outcome in acute necrotizing pancreatitis. The determinants and possibilities for prophylaxis are unknown and difficult to study in humans.. The time course of bacterial infection of the pancreas in a rodent model of acute necrotizing pancreatitis was characterized. The authors ascertained if there is a correlation with the degree of necrosis.. Acute pancreatitis (AP) of graded severity was induced under sterile conditions by an intravenous infusion of cerulein (5 micrograms/kg/hr) for 6 hours (mild AP), or a combination of intravenous cerulein with an intraductal infusion of 10-mM glycodeoxycholic acid (0.2 mL for 2 min for moderate AP, 0.5 mL for 10 min for severe AP). Sham-operated animals (intravenous and intraductal NaCl 0.9%) served as controls. Ninety-six hours after induction, animals were killed for quantitative bacterial examination and histologic scoring of necrosis. In addition, groups of animals with severe AP were investigated at 12, 24, 48, 96, and 144 hours.. No significant pancreatic necrosis was found in control animals (0.3 +/- 0.1) or animals with mild AP (0.6 +/- 0.1) killed at 96 hours. Necrosis scores were 1.1 +/- 0.2 for animals with moderate AP and 1.9 +/- 0.2 for animals with severe AP. Control animals did not develop significant bacterial infection of the pancreas (> or = 10(3) CFU/g). At 96 hours, the prevalence of infection was 37.5% in animals with mild AP and 50% in animals with moderate AP. In animals with severe AP, infection of the pancreas increased from 33% in the first 24 hours to 75% between 48 and 96 hours (p < 0.05). The bacterial counts and the number of different species increased with time and was maximal (> 10(11) CFU/g) at 96 hours.. Bacterial infection of the pancreas in rodent AP increases during the first several days, and its likelihood correlates with the severity of the disease. This model, which closely mimics the features of human acute pancreatitis, provides a unique opportunity to study the pathogenesis of infected necrosis and test therapeutic strategies.

    Topics: Acute Disease; Animals; Bacterial Infections; Ceruletide; Colony Count, Microbial; Disease Models, Animal; Edema; Enterococcus; Escherichia coli Infections; Glycodeoxycholic Acid; Gram-Positive Bacterial Infections; Leukocytes; Male; Necrosis; Pancreas; Pancreatitis; Rats; Rats, Sprague-Dawley; Staphylococcal Infections; Survival Rate; Time Factors

1994
Intravenous contrast medium accentuates the severity of acute necrotizing pancreatitis in the rat.
    Gastroenterology, 1994, Volume: 106, Issue:1

    Contrast-enhanced computed tomography (CECT) is used to show areas of decreased pancreatic perfusion in severe acute pancreatitis (AP). To evaluate possible adverse effects of the contrast medium (CM) on the course of AP, the impact of intravenous CM in AP of graded severity in the rat was studied.. Pancreatitis of three levels of severity was induced in Sprague-Dawley rats with intravenous cerulein hyperstimulation plus time- and pressure-controlled intraductal infusion of saline or glycodeoxycholic acid. At 7 hours, control and pancreatitis animals received intravenous ionic CM, nonionic CM, or saline. The principal outcome measures were 24-hour survival, trypsinogen activation peptides (TAP) in ascites, and histological acinar necrosis score.. There was no measurable effect of CM on the index features in control animals or animals with mild or moderate AP. In severe AP, CM caused a significant increase in mortality, ascites TAP, and necrosis score.. Intravenous CM increases pancreatic injury when administered early in the course of severe experimental AP. Because CM may convert borderline ischemia to irreversible necrosis, CECT performed early in pancreatitis to show poor perfusion and predict areas of necrosis may depict a self-fulfilling prophecy. Early CECT should be reconsidered and perhaps avoided.

    Topics: Acute Disease; Animals; Ascites; Ceruletide; Contrast Media; Glycodeoxycholic Acid; Injections; Injections, Intravenous; Male; Necrosis; Pancreatic Ducts; Pancreatitis; Peptides; Rats; Rats, Sprague-Dawley; Sodium Chloride; Survival Analysis; Time Factors; Trypsinogen

1994
The generation of lysolecithin by enterokinase in trypsinogen prophospholipase A2 lecithin mixtures, and its relevance to the pathogenesis of acute necrotising pancreatitis.
    Clinica chimica acta; international journal of clinical chemistry, 1985, Aug-30, Volume: 150, Issue:3

    The cascade enterokinase-trypsinogen-prophospholipase A2 lecithin, generating trypsin, phospholipase A2 and lysolecithin, respectively, was studied in vitro using a novel phospholipase A2 assay. The rate of enterokinase catalysed activation of trypsinogen was maximal at 4 mmol/1 glycodeoxycholic acid; higher concentrations of bile salt progressively inhibited enterokinase activity. Net phospholipase A2 activity in reaction mixtures was critically dependent on the trypsin/prophospholipase A2 molar ratio. Lecithin hydrolysis by phospholipase A2 was dependent on the bile salt/lecithin molar ratio and was optimal at 1.25 to 1. The addition of enterokinase to lecithin and bile salt mixtures, containing trypsinogen and prophospholipase A2 at presumed pathophysiological concentrations, resulted in the generation of concentrations of lysolecithin lytic for pancreatic acinar cells within 5 min. These findings would support the concept that the entry of bile containing active enterokinase into the pancreatic duct system in vivo may in some cases be involved in the initiation of necrotising acute pancreatitis in man.

    Topics: Acute Disease; Endopeptidases; Enteropeptidase; Enzyme Activation; Enzyme Precursors; Glycodeoxycholic Acid; Humans; Hydrolysis; Kinetics; Lysophosphatidylcholines; Necrosis; Pancreatitis; Phospholipases; Phospholipases A; Phospholipases A2; Trypsin; Trypsinogen

1985