glycodeoxycholic-acid and Edema

glycodeoxycholic-acid has been researched along with Edema* in 8 studies

Other Studies

8 other study(ies) available for glycodeoxycholic-acid and Edema

ArticleYear
Pretreatment of a matrix metalloproteases inhibitor and aprotinin attenuated the development of acute pancreatitis-induced lung injury in rat model.
    Immunobiology, 2018, Volume: 223, Issue:1

    Acute lung injury (ALI) is one of the most common extra-pancreatic complications of acute pancreatitis. In this study, we examined the protective effect of protease inhibitor aprotinin and a matrix metalloproteinase inhibitor (MMPi) on pulmonary inflammation in rats with severe pancreatitis-associated ALI.. A rat model of acute pancreatitis (AP) was established by injecting sodium glycodeoxycholate (GDOC) into the pancreatic duct. Pharmacological interventions included pretreatment with a protease inhibitor aprotinin (10mg/kg) and a matrix metalloproteinase inhibitor (MMPi, 100g/kg). The extent of pancreatic and lung injury and systemic inflammation was assessed by examinations of blood, bronchoalveolar lavage (BAL), and lung tissue. Pancreatic or lung tissue edema was evaluated by tissue water content. Pulmonary arterial pressure and alveolar-capillary membrane permeability were evaluated post-injury via a catheter inserted into the pulmonary artery in an isolated, perfused lung model.. Pre-treatment with aprotinin or MMPi significantly decreased amylase and lactate dehydrogenase (LDH), and the wet/dry weight ratio of the lung and pancreas in AP rats. Compared to the GDOC alone group, administration of aprotinin or MMPi prevented pancreatitis-induced IL-6 increases in the lung. Similarly, treatment with aprotinin or MMPi significantly decreased the accumulation of white blood cells, oxygen radicals, nitrite/nitrates in both blood and BAL, and markedly reduced lung permeability.. Pretreatment with either aprotinin or MMPi attenuated the systemic inflammation and reduced the severity of lung and pancreas injuries. In short, our study demonstrated that inhibition of protease may be therapeutic to pulmonary inflammation in this GDOC-induced AP model.

    Topics: Acute Lung Injury; Animals; Aprotinin; Cells, Cultured; Disease Models, Animal; Drug Therapy, Combination; Edema; Glycodeoxycholic Acid; Humans; Inflammation; Lung; Male; Matrix Metalloproteinase Inhibitors; Organ Culture Techniques; Pancreatitis; Pulmonary Artery; Rats; Rats, Sprague-Dawley

2018
Effect of platelet-activating factor antagonist WEB 2086 on microcirculatory disorders in acute experimental pancreatitis of graded severity.
    Pancreas, 2009, Volume: 38, Issue:1

    Platelet-activating factor (PAF) is an important mediator of inflammation and postulated to be involved in the pathogenesis of acute pancreatitis. In this study, we evaluated the therapeutic effect of PAF antagonist WEB 2086 in acute experimental pancreatitis of graded severity in rats.. According to a block design, 64 animals were randomly allocated to 8 groups. Severe necrotizing pancreatitis was induced by intraductal infusion of taurocholic acid (4%, 0.4 mL), and the combination of glycodeoxycholic acid (10 mmol/L, 1.0 mL/kg, intraductal infusion) and cerulein (5 microg/kg per hour, intravenous) was applied to induce intermediate pancreatitis, or cerulein alone (5 microg/kg per hour, intravenous) to establish edematous pancreatitis. WEB 2086 was given 15 minutes after beginning the induction of pancreatitis. Pancreatic microcirculation was analyzed in vivo with an epiluminescent microscope. Histopathology was evaluated by a validated score. Trypsinogen-activating peptide and serum amylase were analyzed sequentially.. WEB 2086 had no significant influence on the breakdown of microcirculation, leukocyte adherence, histopathological damage, and amylase levels in severe necrotizing pancreatitis, intermediate pancreatitis, and edematous pancreatitis. Only in intermediate pancreatitis was there a significant reduction of trypsinogen-activating peptide levels.. In our study, PAF antagonist WEB 2086 had no beneficial effect on microcirculation in acute experimental pancreatitis.

    Topics: Amylases; Animals; Azepines; Capillaries; Cell Adhesion; Ceruletide; Disease Models, Animal; Edema; Female; Glycodeoxycholic Acid; Leukocytes; Microcirculation; Oligopeptides; Pancreas; Pancreatitis; Pancreatitis, Acute Necrotizing; Platelet Activating Factor; Platelet Aggregation Inhibitors; Rats; Rats, Wistar; Regional Blood Flow; Severity of Illness Index; Taurocholic Acid; Time Factors; Triazoles

2009
Interaction of complement and leukocytes in severe acute pancreatitis: potential for therapeutic intervention.
    American journal of physiology. Gastrointestinal and liver physiology, 2006, Volume: 291, Issue:5

    In acute pancreatitis, local as well as systemic organ complications are mediated by the activation of various inflammatory cascades. The role of complement in this setting is unclear. The aim of the present study was to determine the level of complement activation in experimental pancreatitis, to evaluate the interaction of complement and leukocyte-endothelium activation, and to assess the effects of complement inhibition by soluble complement receptor 1 (sCR1) in this setting. Necrotizing pancreatitis was induced in Wistar rats by the combination of intravenous cerulein and retrograde infusion of glycodeoxycholic acid into the biliopancreatic duct; edematous pancreatitis was induced by intravenous cerulein only. In control animals, a sham operation (midline laparotomy) was performed. Complement activation, leukocyte sequestration, and pancreatic as well as pulmonary injury were assessed in the presence/absence of sCR1. Increased levels of C3a were found in necrotizing but not in edematous pancreatitis. When complement activation in necrotizing pancreatitis was blocked by sCR1, levels of C3a and total hemolytic activity (CH50) were decreased. Leukocyte-endothelial interaction, as assessed by intravital microscopy, and pancreatic as well as pulmonary organ injury (wet-to-dry weight ratio, MPO activity, and histology) were ameliorated by sCR1. As a result of the present study, necrotizing but not edematous pancreatitis is characterized by significant and early complement activation. Based on the interaction of complement and leukocytes, complement inhibition by sCR1 may be a valuable option in the treatment of leukocyte-associated organ injury in severe pancreatitis.

    Topics: Animals; Ceruletide; Complement Activation; Complement C1s; Complement C3a; Complement System Proteins; Edema; Glycodeoxycholic Acid; Leukocytes; Lung; Lung Diseases; Male; Pancreas; Pancreatitis, Acute Necrotizing; Peroxidase; Rats; Rats, Wistar; Recombinant Proteins

2006
Effects of the celecoxib on the acute necrotizing pancreatitis in rats.
    Inflammation, 2004, Volume: 28, Issue:5

    The investigation of the effects of the celecoxib as a cylooxygenase-2 (COX-2) inhibitor on the course of the acute necrotising pancreatitis (ANP) in rats. ANP was induced in 72 rats by standardized intraductal glycodeoxycholic acid infusion and intravenous cerulein infusion. The rats were divided into four groups (six rats in each group): Sham + saline, sham + celecoxib, ANP + saline, ANP + celecoxib. Six hours later after the ANP induction, celecoxib (10 mg/kg) or saline was given i.p. In the 12th hour, routine cardiorespiratuar, renal parameters were monitored to assess the organ function. The serum amylase, alanine amino transferase (ALT), interleukin 6 (IL-6), lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid, the serum concentration of the urea, the tissue activity of myeloperoxidase (MPO) and malondialdehyde (MDA) in pancreas and lungs were measured. The pancreas histology was examined. In the second part of the study, 48 rats were studied in four groups similar to the first part. Survival of all the rats after the induction of ANP was observed for 24 h. The induction of the pancreatitis increased the mortality from 0/12, in the sham groups to 4/12 (30%) in the acute pancreatitis with saline group, 5/12 (42%) in the acute pancreatitis with celecoxib group respectively, heart rate, the serum activities of amylase, ALT, the tissue activities of MPO, MDA in the pancreas and lung, and LDH in BAL fluid, the serum concentration of the urea and IL-6, the degree of the pancreatic damage and decreased the blood pressure, the urine production, pO(2) and the serum concentration of calcium. The use of celecoxib did not alter these changes except the serum IL-6 concentration, urine production and MPO, MDA activities in the tissue of the lungs and pancreas. Serum urea concentration and pancreatic damage in ANP + celecoxib group were insignificantly lesser than ANP + saline group. Whereas treatment with celecoxib improves lung and renal functions, the degree of pancreatic damage partially and the serum IL-6 level completely, it does not improve the cardiovascular and liver functions, the mortality rate and the calcium level. Celecoxib may be useful for the support of some organ functions during ANP in rats.

    Topics: Animals; Celecoxib; Ceruletide; Cyclooxygenase Inhibitors; Disease Models, Animal; Edema; Glycodeoxycholic Acid; Inflammation; Interleukin-6; Lung; Male; Malondialdehyde; Multiple Organ Failure; Pancreas; Pancreatitis, Acute Necrotizing; Peroxidase; Pyrazoles; Rats; Rats, Sprague-Dawley; Sulfonamides; Survival Analysis; Urea; Urine

2004
Effects of alpha 1-acid glycoprotein on acute pancreatitis and acute lung injury in rats.
    Arzneimittel-Forschung, 2000, Volume: 50, Issue:11

    alpha 1-Acid glycoprotein (AAG), a highly negatively charged glycoprotein, well known for its capillary stabilizing effect, was tested in rat models of acute edematous pancreatitis, acute hemorrhagic-necrotizing pancreatitis, and acute respiratory distress syndrome (ARDS). In cerulein-elicited edematous pancreatitis AAG improved histological alterations at 200 mg/kg i.v. and plasma amylase activity at 1800 or 4200 mg/kg i.v. All other parameters (edema, plasma lipase) were not affected in a biologically relevant manner. In glycodeoxycholic acid-induced hemorrhagic-necrotizing pancreatitis AAG was without effect on parameters measured (plasma amylase, plasma lipase activity, histological scores) at 1800 or 4200 mg/kg i.v. At the extremely high dose of 1500 mg/kg i.v. plasma amylase and lipase levels were decreased. In lipopolysaccharide-mediated ARDS, AAG was tested at 50, 200 or 600 mg/kg i.v. AAG, but also the placebo formulation decreased the myeloperoxidase content in the bronchoalveolar lavage fluid. Histological alterations were improved by AAG, however, not by the placebo formulation. Lung water content was not significantly influenced by AAG, whereas Evans blue extravasation was significantly diminished by all three doses of AAG. It is concluded that the edematous pancreatitis is the first in vivo condition with increased extravascular fluid accumulation, in which AAG is not effective. Based on data presented here and literature data, there is evidence for a beneficial effect of AAG in acute lung injury.

    Topics: Acute Disease; Animals; Bronchoalveolar Lavage Fluid; Ceruletide; Edema; Glycodeoxycholic Acid; Hemorrhage; Lipopolysaccharides; Lung Diseases; Male; Orosomucoid; Pancreatitis; Rats; Rats, Sprague-Dawley; Respiratory Tract Diseases

2000
Effect of microcirculatory perfusion on distribution of trypsinogen activation peptides in acute experimental pancreatitis.
    Digestive diseases and sciences, 1995, Volume: 40, Issue:10

    Extraintestinal trypsinogen activation peptides (TAP) have been shown to correlate with severity of acute pancreatitis in humans as well as in various animal models. Ischemia superimposed on experimental pancreatitis, however, increases acinar cell injury without increasing TAP in plasma. We speculated that TAP generated in the pancreas might not reach the circulation in necrotizing pancreatitis due to decreased pancreatic perfusion. To test the hypothesis that generation of TAP in plasma is related to pancreatic perfusion and that plasma TAP may therefore underestimate acinar cell injury in necrotizing disease, we correlated TAP in pancreatic tissue and body fluids with capillary pancreatic blood flow in necrotizing and edematous pancreatitis. The ratio between necrosis and TAP in tissue was similar in both models; the ratio between TAP in plasma and tissue, however, was significantly lower in necrotizing pancreatitis, indicating that a certain amount of TAP generated in the pancreas did not reach the circulation. Decreased pancreatic perfusion found in necrotizing pancreatitis was consistent with this finding. Our data suggest that TAP in tissue is most reliable to indicate severity of acute pancreatitis, whereas plasma TAP may underestimate pancreatic injury in necrotizing disease due to decreased pancreatic perfusion.

    Topics: Acute Disease; Animals; Ceruletide; Disease Models, Animal; Edema; Glycodeoxycholic Acid; Male; Microcirculation; Necrosis; Oligopeptides; Pancreas; Pancreatitis; Rats; Rats, Sprague-Dawley; Trypsinogen

1995
Time course of bacterial infection of the pancreas and its relation to disease severity in a rodent model of acute necrotizing pancreatitis.
    Annals of surgery, 1994, Volume: 220, Issue:2

    Bacterial infection of pancreatic necrosis is thought to be a major determinant of outcome in acute necrotizing pancreatitis. The determinants and possibilities for prophylaxis are unknown and difficult to study in humans.. The time course of bacterial infection of the pancreas in a rodent model of acute necrotizing pancreatitis was characterized. The authors ascertained if there is a correlation with the degree of necrosis.. Acute pancreatitis (AP) of graded severity was induced under sterile conditions by an intravenous infusion of cerulein (5 micrograms/kg/hr) for 6 hours (mild AP), or a combination of intravenous cerulein with an intraductal infusion of 10-mM glycodeoxycholic acid (0.2 mL for 2 min for moderate AP, 0.5 mL for 10 min for severe AP). Sham-operated animals (intravenous and intraductal NaCl 0.9%) served as controls. Ninety-six hours after induction, animals were killed for quantitative bacterial examination and histologic scoring of necrosis. In addition, groups of animals with severe AP were investigated at 12, 24, 48, 96, and 144 hours.. No significant pancreatic necrosis was found in control animals (0.3 +/- 0.1) or animals with mild AP (0.6 +/- 0.1) killed at 96 hours. Necrosis scores were 1.1 +/- 0.2 for animals with moderate AP and 1.9 +/- 0.2 for animals with severe AP. Control animals did not develop significant bacterial infection of the pancreas (> or = 10(3) CFU/g). At 96 hours, the prevalence of infection was 37.5% in animals with mild AP and 50% in animals with moderate AP. In animals with severe AP, infection of the pancreas increased from 33% in the first 24 hours to 75% between 48 and 96 hours (p < 0.05). The bacterial counts and the number of different species increased with time and was maximal (> 10(11) CFU/g) at 96 hours.. Bacterial infection of the pancreas in rodent AP increases during the first several days, and its likelihood correlates with the severity of the disease. This model, which closely mimics the features of human acute pancreatitis, provides a unique opportunity to study the pathogenesis of infected necrosis and test therapeutic strategies.

    Topics: Acute Disease; Animals; Bacterial Infections; Ceruletide; Colony Count, Microbial; Disease Models, Animal; Edema; Enterococcus; Escherichia coli Infections; Glycodeoxycholic Acid; Gram-Positive Bacterial Infections; Leukocytes; Male; Necrosis; Pancreas; Pancreatitis; Rats; Rats, Sprague-Dawley; Staphylococcal Infections; Survival Rate; Time Factors

1994
Hypocalcemia in experimental pancreatitis occurs independently of changes in serum nonesterified fatty acid levels.
    International journal of pancreatology : official journal of the International Association of Pancreatology, 1990, Volume: 6, Issue:4

    Hypocalcemia and lipid abnormalities commonly occur in acute pancreatitis. Experimentally, increased plasma concentrations of free fatty acids (NEFA) can lower the serum calcium (Ca). We hypothesized that changes in blood-ionized calcium might parallel changes in NEFA concentration in pancreatitis. This hypothesis was tested in a model of severe necrotizing pancreatitis and a model of mild edematous pancreatitis. Adult male Sprague-Dawley rats (300-400 g) were randomized to receive: 100 microL sodium glycodeoxycholic acid (GDOC 34 mmol/L) infused into the pancreatic duct to produce severe necrotizing pancreatitis (Group 1); 100 microL 0.9% NaCl (NS) infused into the pancreatic duct (Group 2); Sham laparotomy (Group 3); A 6 h IV infusion of cerulein (5 mucg/kg/h) to produce mild edematous pancreatitis (Group 4); and a 6 h IV infusion of NS (Group 5). A significant time dependent decrease in blood-ionized Ca concentration, compared to normal rats, was observed in both GDOC-pancreatitis (0.836 +/- .057 vs 1.069 +/- .038 mmol/L p less than 0.001) and cerulein pancreatitis (0.988 +/- .028 vs 1.069 +/- .038 p less than 0.05), which was maximal 24 h after induction of pancreatitis. The degree of hypocalcemia correlated with the severity of pancreatitis (GDOC 0.836 +/- .057 vs cerulein 0.988 +/- .028 p less than .001). Hypocalcemia was not observed in any of the control groups. All experimental and control groups had significantly increased baseline NEFA concentrations compared with normal rats (p less than 0.001); however, no further increase in NEFA concentration occurred in conjunction with the observed time-dependent decline in ionized calcium concentrations. Although the NEFA concentrations observed in these experiments were comparable to those measured in human acute pancreatitis (exclusive of hyperlipemic pancreatitis), the time course of the changes suggests that increases in serum NEFA concentrations in experimental pancreatitis are not the primary factor mediating hypocalcemia.

    Topics: Acute Disease; Amylases; Animals; Calcium; Ceruletide; Disease Models, Animal; Edema; Fatty Acids, Nonesterified; Glycodeoxycholic Acid; Hypocalcemia; Male; Pancreatic Ducts; Pancreatitis; Random Allocation; Rats; Rats, Inbred Strains

1990