glycidyl nitrate has been researched along with Infections, Pseudomonas in 18 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 2 (11.11) | 18.7374 |
1990's | 1 (5.56) | 18.2507 |
2000's | 5 (27.78) | 29.6817 |
2010's | 8 (44.44) | 24.3611 |
2020's | 2 (11.11) | 2.80 |
Authors | Studies |
---|---|
Barceló, IM; Capó-Bauzá, MM; Escobar-Salom, M; Fraile-Ribot, PA; García-Cuaresma, D; Jordana-Lluch, E; Juan, C; Mulet, X; Oliver, A; Ramón-Pallín, C; Torrens, G | 1 |
Hernando-Amado, S; Laborda, P; Martínez, JL | 1 |
Braun, Y; Elamin, AA; Huck, C; Maringer, M; Oehlmann, W; Rohde, M; Shuralev, EA; Singh, M; Steinicke, S; Wanas, H | 1 |
Cao, Y; Chen, Z; Gu, J; Lin, S; Lin, X; Lu, G; Yang, F; Ye, F | 1 |
Barceló, IM; Jordana-Lluch, E; Juan, C; Oliver, A; Sánchez-Diener, I; Torrens, G; Zamorano, L | 1 |
Bertin, J; Boneca, IG; Casillas, LN; Ferrero, RL; Gantier, MP; Irving, AT; Kaparakis-Liaskos, M; Kufer, TA; Lo, C; Malosse, C; Mimuro, H; Philpott, DJ; Sasakawa, C; Thomas, BJ; Turner, LJ; Votta, BJ; Wheeler, R | 1 |
Aertsen, A; Biebl, M; Briers, Y; Cenens, W; Defraine, V; Grymonprez, B; Lavigne, R; Michiels, J; Miller, S; Pirnay, JP; Walmagh, M | 1 |
Blázquez, J; Juan, C; Moyà, B; Mulet, X; Oliver, A; Zamorano, L | 1 |
Murphey, ED; Sherwood, ER | 1 |
Bernardini, ML; Bianconi, I; Bragonzi, A; Cigana, C; Cozzolino, F; Curcurù, L; Ieranò, T; Lanzetta, R; Leone, MR; Lorè, NI; Molinaro, A; Silipo, A | 1 |
Giacalone, N; Haar, L; James, L; Noel, G; Ogle, C; Osterburg, A; Schwemberger, S; Thomas, I; Wang, Q | 1 |
Korgaonkar, A; Rumbaugh, KP; Trivedi, U; Whiteley, M | 1 |
Bilocq, F; Chablain, P; Colak, H; Cornelis, P; De Vos, D; Matthijs, S; Pirnay, JP; Triest, L; Van Eldere, J; Zizi, M | 1 |
Bertin, J; Boneca, IG; Bozza, MT; Carneiro, LA; Coyle, AJ; Domingues, RC; Girardin, SE; Lemos, R; Philpott, DJ; Plotkowski, MC; Travassos, LH | 1 |
Akinbi, HT; Ballard, TN; Nash, JA; Weaver, TE | 1 |
Mirelman, D; Nuchamowitz, Y; Rubinstein, E | 1 |
Cornelis, P; De Vos, D; Duinslaeger, L; Lim, A; Pirnay, JP; Struelens, M; Vandenvelde, C; Vanderkelen, A | 1 |
Mutai, M; Nagaoka, M; Nomoto, K; Yokokura, T | 1 |
18 other study(ies) available for glycidyl nitrate and Infections, Pseudomonas
Article | Year |
---|---|
Impact of Peptidoglycan Recycling Blockade and Expression of Horizontally Acquired β-Lactamases on Pseudomonas aeruginosa Virulence.
Topics: Animals; Anti-Bacterial Agents; Bacterial Proteins; beta-Lactam Resistance; beta-Lactamases; Cell Wall; Cephalosporinase; Gene Transfer, Horizontal; Membrane Transport Proteins; Microbial Sensitivity Tests; Moths; Peptidoglycan; Pseudomonas aeruginosa; Pseudomonas Infections; Virulence | 2022 |
Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic-resistant mutants.
Topics: Anti-Bacterial Agents; Drug Collateral Sensitivity; Fosfomycin; Humans; Microbial Sensitivity Tests; Peptidoglycan; Phenotype; Pseudomonas aeruginosa; Pseudomonas Infections | 2022 |
Novel drug targets in cell wall biosynthesis exploited by gene disruption in Pseudomonas aeruginosa.
Topics: Animals; Anti-Bacterial Agents; Biosynthetic Pathways; Cell Wall; Colony Count, Microbial; DNA, Bacterial; Extracellular Space; Female; Gene Knockdown Techniques; Genes, Bacterial; Genetic Vectors; Lactuca; Lipopolysaccharides; Lung; Macrophages; Mice; Models, Biological; Mutation; Peptidoglycan; Plant Diseases; Pseudomonas aeruginosa; Pseudomonas Infections; Respiratory Tract Diseases; Virulence | 2017 |
Crystal structure of PA0833 periplasmic domain from Pseudomonas aeruginosa reveals an unexpected enlarged peptidoglycan binding pocket.
Topics: Amino Acid Sequence; Binding Sites; Crystallography, X-Ray; Humans; Models, Molecular; Peptidoglycan; Protein Binding; Protein Conformation; Protein Domains; Pseudomonas aeruginosa; Pseudomonas Infections; Sequence Alignment | 2019 |
In Vivo Validation of Peptidoglycan Recycling as a Target to Disable AmpC-Mediated Resistance and Reduce Virulence Enhancing the Cell-Wall-Targeting Immunity.
Topics: Animals; Bacteremia; Bacterial Load; Bacterial Proteins; beta-Lactam Resistance; beta-Lactamases; beta-Lactams; Ceftazidime; Cell Wall; Disease Models, Animal; Female; Membrane Transport Proteins; Mice; Mice, Inbred C57BL; Peptidoglycan; Pseudomonas aeruginosa; Pseudomonas Infections; Respiratory Tract Infections; Survival Analysis; Treatment Outcome; Virulence | 2019 |
The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling.
Topics: Animals; Autophagy; Cell Line; Endosomes; Helicobacter Infections; Helicobacter pylori; Humans; Mice; Nod1 Signaling Adaptor Protein; Peptidoglycan; Protein Binding; Pseudomonas aeruginosa; Pseudomonas Infections; Receptor-Interacting Protein Serine-Threonine Kinase 2; Receptors, Immunologic; Signal Transduction | 2014 |
Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa.
Topics: Animals; Anti-Bacterial Agents; Cathelicidins; Cell Survival; Cloning, Molecular; Drug Resistance, Multiple, Bacterial; Endopeptidases; Humans; Mice; Microbial Sensitivity Tests; Peptidoglycan; Pseudomonas aeruginosa; Pseudomonas Infections; Recombinant Fusion Proteins; Recombinant Proteins | 2014 |
The Pseudomonas aeruginosa CreBC two-component system plays a major role in the response to β-lactams, fitness, biofilm growth, and global regulation.
Topics: Bacterial Proteins; beta-Lactam Resistance; beta-Lactamases; Biofilms; Membrane Proteins; Penicillin-Binding Proteins; Peptidoglycan; Pseudomonas aeruginosa; Pseudomonas Infections | 2014 |
Pretreatment with the Gram-positive bacterial cell wall molecule peptidoglycan improves bacterial clearance and decreases inflammation and mortality in mice challenged with Pseudomonas aeruginosa.
Topics: Animals; Cell Wall; Gram-Positive Bacteria; Immunity, Innate; Inflammation; Male; Mice; Mice, Inbred C3H; Mice, Inbred C57BL; Peptidoglycan; Pseudomonas aeruginosa; Pseudomonas Infections; Staphylococcus aureus | 2008 |
Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection.
Topics: Animals; Cell Line; Cell Movement; Chronic Disease; Colony Count, Microbial; Cystic Fibrosis; Cytokines; Humans; Immunity, Innate; Inflammation; Leukocytes; Lipid A; Lung; Mice; Nod1 Signaling Adaptor Protein; Peptides; Peptidoglycan; Pseudomonas aeruginosa; Pseudomonas Infections | 2009 |
A ribonucleotide reductase inhibitor reverses burn-induced inflammatory defects.
Topics: Animals; Burns; Concanavalin A; Deoxycytidine; Drug Evaluation, Preclinical; Gemcitabine; Interleukin-10; Interleukin-6; Leukocyte Count; Lipopolysaccharides; Lymphocyte Activation; Macrophages; Male; Mice; Mice, Inbred C57BL; Monocytes; Myeloid Cells; Nitric Oxide; Peptidoglycan; Pseudomonas Infections; Ribonucleotide Reductases; Spleen; T-Lymphocyte Subsets; Tumor Necrosis Factor-alpha | 2010 |
Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection.
Topics: Animals; Base Sequence; Coinfection; Disease Models, Animal; DNA, Bacterial; Drosophila melanogaster; Female; Genes, Bacterial; Humans; Male; Mice; Mutation; Peptidoglycan; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing; Staphylococcal Infections; Staphylococcus aureus; Virulence | 2013 |
Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river.
Topics: Anti-Bacterial Agents; Bacterial Outer Membrane Proteins; Belgium; Biodiversity; Culture Media; Environmental Microbiology; Escherichia coli Proteins; Humans; Lipoproteins; Microbial Sensitivity Tests; Oligopeptides; Peptidoglycan; Polymerase Chain Reaction; Pseudomonas aeruginosa; Pseudomonas Infections; Rivers; Sequence Analysis, DNA | 2005 |
Nod1 participates in the innate immune response to Pseudomonas aeruginosa.
Topics: Adaptor Proteins, Signal Transducing; Animals; Apoptosis; Cytokines; Epithelial Cells; Genes, Dominant; Humans; Immunity, Innate; Kinetics; Mice; Mice, Knockout; NF-kappa B; Nod1 Signaling Adaptor Protein; Peptidoglycan; Pseudomonas aeruginosa; Pseudomonas Infections | 2005 |
The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo.
Topics: Animals; Aspartic Acid; Blood Bactericidal Activity; Bronchoalveolar Lavage Fluid; Klebsiella Infections; Klebsiella pneumoniae; Mice; Mice, Knockout; Mice, Transgenic; Muramidase; Mutagenesis, Site-Directed; Peptidoglycan; Pseudomonas aeruginosa; Pseudomonas Infections; Recombinant Proteins; Respiratory Mucosa; Serine; Staphylococcal Infections; Staphylococcus aureus | 2006 |
Insensitivity of peptidoglycan biosynthetic reactions to beta-lactam antibiotics in a clinical isolate of Pseudomonas aeruginosa.
Topics: Anti-Bacterial Agents; beta-Lactamases; beta-Lactams; Cell Wall; Drug Resistance, Microbial; Humans; Peptidoglycan; Protein Binding; Pseudomonas aeruginosa; Pseudomonas Infections; Species Specificity | 1981 |
Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprI and oprL.
Topics: Bacterial Outer Membrane Proteins; Bacterial Proteins; Burns; Cystic Fibrosis; DNA, Bacterial; Escherichia coli Proteins; Humans; Lipoproteins; Molecular Sequence Data; Peptidoglycan; Polymerase Chain Reaction; Proteoglycans; Pseudomonas aeruginosa; Pseudomonas Infections; Sensitivity and Specificity; Skin; Sputum | 1997 |
Augmentation of resistance of mice to bacterial infection by a polysaccharide-peptidoglycan complex (PSPG) extracted from Lactobacillus casei.
Topics: Animals; Bacterial Infections; Carrageenan; Escherichia coli Infections; Female; Lacticaseibacillus casei; Listeriosis; Mice; Mice, Inbred BALB C; Peptidoglycan; Polysaccharides; Pseudomonas Infections; Salmonella Infections, Animal; Salmonella typhimurium | 1989 |