glyceryl-2-arachidonate and Parkinson-Disease

glyceryl-2-arachidonate has been researched along with Parkinson-Disease* in 4 studies

Reviews

2 review(s) available for glyceryl-2-arachidonate and Parkinson-Disease

ArticleYear
The cannabinoid system and microglia in health and disease.
    Neuropharmacology, 2021, 06-01, Volume: 190

    Recent years have yielded significant advances in our understanding of microglia, the immune cells of the central nervous system (CNS). Microglia are key players in CNS development, immune surveillance, and the maintenance of proper neuronal function throughout life. In the healthy brain, homeostatic microglia have a unique molecular signature. In neurological diseases, microglia become activated and adopt distinct transcriptomic signatures, including disease-associated microglia (DAM) implicated in neurodegenerative disorders. Homeostatic microglia synthesise the endogenous cannabinoids 2-arachidonoylglycerol and anandamide and express the cannabinoid receptors CB1 and CB2 at constitutively low levels. Upon activation, microglia significantly increase their synthesis of endocannabinoids and upregulate their expression of CB2 receptors, which promote a protective microglial phenotype by enhancing their production of neuroprotective factors and reducing their production of pro-inflammatory factors. Here, we summarise the effects of the microglial cannabinoid system in the CNS demyelinating disease multiple sclerosis, the neurodegenerative diseases Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, chronic inflammatory and neuropathic pain, and psychiatric disorders including depression, anxiety and schizophrenia. We discuss the therapeutic potential of cannabinoids in regulating microglial activity and highlight the need to further investigate their specific microglia-dependent immunomodulatory effects.

    Topics: Alzheimer Disease; Amyotrophic Lateral Sclerosis; Anxiety Disorders; Arachidonic Acids; Chronic Pain; Depressive Disorder; Endocannabinoids; Glycerides; Humans; Mental Disorders; Microglia; Multiple Sclerosis; Neuralgia; Neurodegenerative Diseases; Parkinson Disease; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Schizophrenia

2021
Molecular Imaging of the Cannabinoid System in Idiopathic Parkinson's Disease.
    International review of neurobiology, 2018, Volume: 141

    The endocannabinoid system is a modulator of neurotransmitter release and is involved in several physiological functions. Hence, it has been increasingly studied as a potential pharmacologic target of Parkinson's disease. Several preclinical and clinical studies evidenced a substantial rearrangement of the endocannabinoid system in the basal ganglia circuit following dopamine depletion. The endocannabinoid system has been additionally implicated in the regulation of neuroinflammation and neuroprotection through the activation of CB2 receptors, suggesting a potential target for disease modifying therapies in Parkinson's disease. In this chapter, current pharmacological and physiological knowledge on the role of the endocannabinoid system will be reviewed, focusing on preclinical studies animal models and clinical studies in patients with idiopathic Parkinson's disease. The main strategies for imaging the brain cannabinoid system will be summarized to finally focus on in vivo imaging of patients with Parkinson's disease.

    Topics: Animals; Arachidonic Acids; Endocannabinoids; Glycerides; Humans; Molecular Imaging; Parkinson Disease; Polyunsaturated Alkamides; Positron-Emission Tomography; Receptors, Cannabinoid

2018

Other Studies

2 other study(ies) available for glyceryl-2-arachidonate and Parkinson-Disease

ArticleYear
A micro salting-out assisted liquid-liquid extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry to determine anandamide and 2-arachidonoylglycerol in rat brain samples.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2020, Nov-20, Volume: 1158

    A simple and reliable method was developed and validated to determine the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in rat brain samples by micro salting-out assisted liquid-liquid extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry (SALLLE/UHPLC-MS/MS). The SALLE parameters (brain homogenate volume, salting-out agent, salt concentration, salt solution volume, organic solvent, organic solvent volume, and centrifugation temperature) were optimized to improve sensitivity and selectivity of the method. The SALLE/UHPLC-MS/MS method presented linear ranges from 2.00 to 20.00 ng mL

    Topics: Animals; Arachidonic Acids; Brain Chemistry; Chromatography, High Pressure Liquid; Disease Models, Animal; Endocannabinoids; Glycerides; Limit of Detection; Linear Models; Liquid-Liquid Extraction; Male; Parkinson Disease; Polyunsaturated Alkamides; Rats; Rats, Wistar; Reproducibility of Results; Tandem Mass Spectrometry

2020
Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.
    Experimental neurology, 2015, Volume: 273

    Parkinson's disease (PD) is a common chronic neurodegenerative disorder, usually of idiopathic origin. Symptoms including tremor, bradykinesia, rigidity and postural instability are caused by the progressive loss of dopaminergic neurons in the nigrostriatal region of the brain. Symptomatic therapies are available but no treatment slows or prevents the loss of neurons. Neuroinflammation has been implicated in its pathogenesis. To this end, the present study utilises the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin to reproduce the pattern of cell death evident in PD patients. Herein, the role of a potential regulator of an immune response, the endocannabinoid system (ECS), is investigated. The most prevalent endocannabinoid, 2-arachidonoylglycerol (2-AG) (3 and 5mg/kg), was added exogenously and its enzymatic degradation inhibited to provide protection against MPTP-induced cell death. Furthermore, the addition of DFU (25mg/kg), a selective inhibitor of inflammatory mediator cyclooxygenase-2 (COX-2), potentiated these effects. Levels of 2-AG were shown to be upregulated in a time- and region-specific manner following MPTP administration, indicating that the ECS represents a natural defence mechanism against inflammation, potentiation of which could provide therapeutic benefits. The results expand the current understanding of the role that this signalling system has and its potential influence in PD.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Arachidonic Acids; Benzodioxoles; Brain; Cell Death; Cyclooxygenase 2; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Furans; Gait Disorders, Neurologic; Glycerides; Male; Mice; Mice, Inbred C57BL; Motor Activity; Neuroprotective Agents; Neurotoxins; Parkinson Disease; Piperidines; Time Factors; Tyrosine 3-Monooxygenase

2015