glyceryl-2-arachidonate has been researched along with Mood-Disorders* in 4 studies
3 review(s) available for glyceryl-2-arachidonate and Mood-Disorders
Article | Year |
---|---|
Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline?
It has been established that the endogenous cannabinoid (endocannabinoid) system plays key modulatory roles in a wide variety of pathological conditions. The endocannabinoid system comprises both cannabinoid receptors, their endogenous ligands including 2-arachidonoylglycerol (2-AG), N-arachidonylethanolamine (anandamide, AEA), and enzymes that regulate the synthesis and degradation of endogenous ligands which include diacylglycerol lipase alpha (DAGL-α), diacylglycerol lipase beta (DAGL-β), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), α/β hydrolase domain 6 (ABHD6). As the endocannabinoid system exerts considerable involvement in the regulation of homeostasis and disease, much effort has been made towards understanding endocannabinoid-related mechanisms of action at cellular, physiological, and pathological levels as well as harnessing the various components of the endocannabinoid system to produce novel therapeutics. However, drug discovery efforts within the cannabinoid field have been slower than anticipated to reach satisfactory clinical endpoints and raises an important question into the validity of developing novel ligands that therapeutically target the endocannabinoid system. To answer this, we will first examine evidence that supports the existence of an endocannabinoid system role within inflammatory diseases, neurodegeneration, pain, substance use disorders, mood disorders, as well as metabolic diseases. Next, this review will discuss recent clinical studies, within the last 5 years, of cannabinoid compounds in context to these diseases. We will also address some of the challenges and considerations within the cannabinoid field that may be important in the advancement of therapeutics into the clinic. Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Agonists; Cannabinoids; Drug Discovery; Endocannabinoids; Glycerides; Humans; Inflammation; Metabolic Diseases; Mood Disorders; Nervous System Diseases; Pain; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Substance-Related Disorders | 2021 |
Chemical approaches to therapeutically target the metabolism and signaling of the endocannabinoid 2-AG and eicosanoids.
The endocannabinoid system, most popularly known as the target of the psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), is a signaling network that modulates a diverse range of physiological processes including nociception, behavior, cognitive function, appetite, metabolism, motor control, memory formation, and inflammation. While THC and its derivatives have garnered notoriety in the eyes of the public, the endocannabinoid system consists of two endogenous signaling lipids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide), which activate cannabinoid receptors CB1 and CB2 in the nervous system and peripheral tissues. This review will focus on the recent efforts to chemically manipulate 2-AG signaling through the development of inhibitors of the 2-AG-synthesizing enzyme diacylglycerol lipase (DAGL) or the 2-AG-degrading enzyme monoacylglycerol lipase (MAGL), and assessing the therapeutic potential of DAGL and MAGL inhibitors in pain, inflammation, degenerative diseases, tissue injury, and cancer. Topics: Animals; Arachidonic Acids; Dronabinol; Eicosanoids; Endocannabinoids; Enzyme Inhibitors; Glycerides; Humans; Lipoprotein Lipase; Monoacylglycerol Lipases; Mood Disorders; Neoplasms; Neurodegenerative Diseases; Pain; Signal Transduction | 2014 |
Effect of dietary fat on endocannabinoids and related mediators: consequences on energy homeostasis, inflammation and mood.
Among the several known fatty acid-derived chemical signals, the endogenous ligands of cannabinoid receptors type-1 and -2, two G-protein-coupled receptors involved in several aspects of mammalian physiology and pathology, are perhaps those the levels of which have proven to be most sensitive to the fatty acid composition of the diet. The two most studied such ligands, known as endocannabinoids, are N-arachidonoyl-ethanolamine and 2-archidonoylglycerol, and are found in tissues together with other N-acyl-ethanolamines and 2-acylglycerols, not all of which activate the cannabinoid receptors, although several of them do exhibit important pharmacological effects. In this review article, we describe literature data indicating that the tissue concentrations of the endocannabinoids and related signalling molecules, and hence the activity of the respective receptors, can be modulated by modifying the fatty acid composition of the diet, and particularly its content in long chain PUFAs or in long chain PUFA precursors. We also discuss the potential impact of these diet-induced changes of endocannabinoid tone on three of the major pathological conditions in which cannabinoid receptors have been involved, that is metabolic dysfunctions, inflammation and affective disorders. Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Dietary Fats; Endocannabinoids; Energy Metabolism; Fatty Acids, Omega-3; Glycerides; Homeostasis; Humans; Inflammation; Metabolic Diseases; Mood Disorders; Polyunsaturated Alkamides; Signal Transduction; Stress, Physiological | 2010 |
1 other study(ies) available for glyceryl-2-arachidonate and Mood-Disorders
Article | Year |
---|---|
Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain.
In this study, we investigated the role of the endocannabinoid system (ECS) in the emotional and cognitive alterations associated with osteoarthritis pain. The monosodium iodoacetate model was used to evaluate the affective and cognitive manifestations of osteoarthritis pain in type 1 (CB1R) and type 2 (CB2R) cannabinoid receptor knockout and wild-type mice and the ability of CB1R (ACEA) and CB2R (JWH133) selective agonists to improve these manifestations during a 3-week time period. The levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured in plasma and brain areas involved in the control of these manifestations. Patients with knee osteoarthritis and healthy controls were recruited to evaluate pain, affective, and cognitive symptoms, as well as plasma endocannabinoid levels and cannabinoid receptor gene expression in peripheral blood lymphocytes. The affective manifestations of osteoarthritis were enhanced in CB1R knockout mice and absent in CB2R knockouts. Interestingly, both ACEA and JWH133 ameliorated the nociceptive and affective alterations, whereas ACEA also improved the associated memory impairment. An increase of 2-AG levels in prefrontal cortex and plasma was observed in this mouse model of osteoarthritis. In agreement, an increase of 2-AG plasmatic levels and an upregulation of CB1R and CB2R gene expression in peripheral blood lymphocytes were observed in patients with osteoarthritis compared with healthy subjects. Changes found in these biomarkers of the ECS correlated with pain, affective, and cognitive symptoms in these patients. The ECS plays a crucial role in osteoarthritis and represents an interesting pharmacological target and biomarker of this disease. Topics: Aged; Animals; Arachidonic Acids; Cognition Disorders; Corticotropin-Releasing Hormone; Endocannabinoids; Enzyme Inhibitors; Female; Glycerides; Humans; Iodoacetates; Male; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Mood Disorders; Osteoarthritis; Prefrontal Cortex; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Glucocorticoid | 2015 |