glyceryl-2-arachidonate and Fatty-Liver

glyceryl-2-arachidonate has been researched along with Fatty-Liver* in 3 studies

Other Studies

3 other study(ies) available for glyceryl-2-arachidonate and Fatty-Liver

ArticleYear
Dose-Specific Effects of Di-Isononyl Phthalate on the Endocannabinoid System and on Liver of Female Zebrafish.
    Endocrinology, 2017, 10-01, Volume: 158, Issue:10

    Phthalates, used as plasticizers, have become a ubiquitous contaminant and have been reported for their potential to induce toxicity in living organisms. Among them, di-isononyl phthalate (DiNP) has been recently used to replace di(2-ethylhexyl) phthalate (DEHP). Nowadays, there is evidence that DiNP is an endocrine-disrupting chemical; however, little is known about its effects on the endocannabinoid system (ECS) and lipid metabolism. Hence, the aim of our study was to investigate the effects of DiNP on the ECS in zebrafish liver and brain and on hepatic lipid storage. To do so, adult female zebrafish were exposed to three concentrations (0.42 µg/L, 4.2 µg/L, and 42 µg/L) of DiNP via water for 3 weeks. Afterwards, we investigated transcript levels for genes involved in the ECS of the brain and liver as well as liver histology and image analysis, Fourier-transform infrared spectroscopy imaging, and measurement of endocannabinoid levels. Our results demonstrate that DiNP upregulates orexigenic signals and causes hepatosteatosis together with deregulation of the peripheral ECS and lipid metabolism. A decrease in the levels of ECS components at the central level was observed after exposure to the highest DiNP concentration tested. These findings suggest that replacement of DEHP with DiNP should be considered with caution because of observed adverse DiNP effects on aquatic organisms.

    Topics: Animals; Arachidonic Acids; Brain; Dose-Response Relationship, Drug; Endocannabinoids; Endocrine Disruptors; Fatty Liver; Female; Gene Expression; Glycerides; Lipid Metabolism; Lipoprotein Lipase; Liver; Phospholipase D; Phthalic Acids; Plasticizers; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Zebrafish

2017
Bisphenol A Induces Fatty Liver by an Endocannabinoid-Mediated Positive Feedback Loop.
    Endocrinology, 2016, Volume: 157, Issue:5

    The xenoestrogen bisphenol A (BPA) is a widespread plasticizer detectable within several ecosystems. BPA is considered a metabolic disruptor, affecting different organs; however, little is known about its mechanism of action in the liver, in which it triggers triglyceride accumulation. Adult zebrafish (Danio rerio) exposed to BPA developed hepatosteatosis, which was associated with an increase in the liver levels of the obesogenic endocannabinoids 2-arachidonoylglycerol and anandamide and a concomitant decrease in palmitoylethanolamide. These changes were associated with variations in the expression of key endocannabinoid catabolic and metabolic enzymes and an increase in the expression of the endocannabinoid receptor cnr1. Acute and chronic in vitro treatments with nano- and micromolar BPA doses showed increased anandamide levels in line with decreased activity of fatty acid amide hydrolase, the main anandamide hydrolytic enzyme, and induced triglyceride accumulation in HHL-5 cells in a CB1-dependent manner. We conclude that BPA is able to produce hepatosteatosis in zebrafish and human hepatocytes by up-regulating the endocannabinoid system.

    Topics: Amides; Animals; Arachidonic Acids; Benzhydryl Compounds; Cell Line; Endocannabinoids; Endocrine Disruptors; Ethanolamines; Fatty Liver; Feedback, Physiological; Glycerides; Hepatocytes; Humans; Liver; Palmitic Acids; Phenols; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Triglycerides; Zebrafish; Zebrafish Proteins

2016
Transcriptional regulation of cannabinoid receptor-1 expression in the liver by retinoic acid acting via retinoic acid receptor-gamma.
    The Journal of biological chemistry, 2010, Jun-18, Volume: 285, Issue:25

    Alcoholism can result in fatty liver that can progress to steatohepatitis, cirrhosis, and liver cancer. Mice fed alcohol develop fatty liver through endocannabinoid activation of hepatic CB(1) cannabinoid receptors (CB(1)R), which increases lipogenesis and decreases fatty acid oxidation. Chronic alcohol feeding also up-regulates CB(1)R in hepatocytes in vivo, which could be replicated in vitro by co-culturing control hepatocytes with hepatic stellate cells (HSC) isolated from ethanol-fed mice, implicating HSC-derived mediator(s) in the regulation of hepatic CB(1)R (Jeong, W. I., Osei-Hyiaman, D., Park, O., Liu, J., Bátkai, S., Mukhopadhyay, P., Horiguchi, N., Harvey-White, J., Marsicano, G., Lutz, B., Gao, B., and Kunos, G. (2008) Cell Metab. 7, 227-235). HSC being a rich source of retinoic acid (RA), we tested whether RA and its receptors may regulate CB(1)R expression in cultured mouse hepatocytes. Incubation of hepatocytes with RA or RA receptor (RAR) agonists increased CB(1)R mRNA and protein, the most efficacious being the RARgamma agonist CD437 and the pan-RAR agonist TTNPB. The endocannabinoid 2-arachidonoylglycerol (2-AG) also increased hepatic CB(1)R expression, which was mediated indirectly via RA, because it was absent in hepatocytes from mice lacking retinaldehyde dehydrogenase 1, the enzyme catalyzing the generation of RA from retinaldehyde. The binding of RARgamma to the CB(1)R gene 5' upstream domain in hepatocytes treated with RAR agonists or 2-AG was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift and antibody supershift assays. Finally, TTNPB-induced CB(1)R expression was attenuated by small interfering RNA knockdown of RARgamma in hepatocytes. We conclude that RARgamma regulates CB(1)R expression and is thus involved in the control of hepatic fat metabolism by endocannabinoids.

    Topics: Animals; Arachidonic Acids; Catalysis; Chromatin Immunoprecipitation; Endocannabinoids; Fatty Liver; Glycerides; Hepatocytes; Liver; Male; Mice; Mice, Inbred C57BL; Protein Structure, Tertiary; Receptor, Cannabinoid, CB1; Receptors, Retinoic Acid; Retinoic Acid Receptor gamma; Retinoids; Transcription, Genetic; Tretinoin

2010