glyceryl-2-arachidonate has been researched along with Colonic-Neoplasms* in 2 studies
2 other study(ies) available for glyceryl-2-arachidonate and Colonic-Neoplasms
Article | Year |
---|---|
Interferon γ treatment increases endocannabinoid and related N-acylethanolamine levels in T84 human colon carcinoma cells.
Endocannabinoids and related N-acylethanolamines (NAEs) are involved in regulation of gut function, but relatively little is known as to whether inflammatory cytokines such as IFNγ affect their levels. We have investigated this in vitro using cultures of T84 colon cancer cells.. T84 cells, when cultured in monolayers, differentiate to form adult colonic crypt-like cells with excellent permeability barrier properties. The integrity of the permeability barrier in these monolayers was measured using transepithelial electrical resistance (TEER). NAE levels were determined by ultra-performance liquid chromatography-tandem mass spectrometric analysis. Expression of the enzymes involved in NAE and 2-arachidonoylglycerol (2-AG) turnover were assessed with qPCR.. IFNγ treatment for 8 or 24 h increased levels of both endocannabinoids (anandamide and 2-AG) and the related NAEs. The treatment did not affect the rate of hydrolysis of either anandamide or palmitoylethanolamide by intact cells, and in both cases, fatty acid amide hydrolase (FAAH) rather than NAE-hydrolysing acid amidase (NAAA) was mainly responsible for the hydrolysis of these NAEs. IFNγ treatment reduced the TEER of the cells in a manner that was not prevented by inhibition of either FAAH or NAAA but was partially reversed by apical administration of the NAE palmitoylethanolamide.. IFNγ treatment mobilized endocannabinoid and related NAE levels in T84 cells. However, blockade of anandamide or NAE hydrolysis was insufficient to negate the deleterious effects of this cytokine upon the permeability barrier of the cell monolayers. Topics: Amides; Arachidonic Acids; Cell Culture Techniques; Cell Line, Tumor; Chromatography, High Pressure Liquid; Colonic Neoplasms; Endocannabinoids; Ethanolamines; Glycerides; Humans; Interferon-gamma; Ionomycin; Palmitic Acids; Polyunsaturated Alkamides | 2019 |
Members of the endocannabinoid system are distinctly regulated in inflammatory bowel disease and colorectal cancer.
Preclinical studies have demonstrated that the endocannabinoid system (ECS) plays an important role in the protection against intestinal inflammation and colorectal cancer (CRC); however, human data are scarce. We determined members of the ECS and related components of the 'endocannabinoidome' in patients with inflammatory bowel disease (IBD) and CRC, and compared them to control subjects. Anandamide (AEA) and oleoylethanolamide (OEA) were increased in plasma of ulcerative colitis (UC) and Crohn's disease (CD) patients while 2-arachidonoylglycerol (2-AG) was elevated in patients with CD, but not UC. 2-AG, but not AEA, PEA and OEA, was elevated in CRC patients. Lysophosphatidylinositol (LPI) 18:0 showed higher levels in patients with IBD than in control subjects whereas LPI 20:4 was elevated in both CRC and IBD. Gene expression in intestinal mucosal biopsies revealed different profiles in CD and UC. CD, but not UC patients, showed increased gene expression for the 2-AG synthesizing enzyme diacylglycerol lipase alpha. Transcripts of CNR1 and GPR119 were predominantly decreased in CD. Our data show altered plasma levels of endocannabinoids and endocannabinoid-like lipids in IBD and CRC and distinct transcript profiles in UC and CD. We also report alterations for less known components in intestinal inflammation, such as GPR119, OEA and LPI. Topics: Adult; Aged; Aged, 80 and over; Arachidonic Acids; Colitis, Ulcerative; Colonic Neoplasms; Colorectal Neoplasms; Crohn Disease; Endocannabinoids; Female; Glycerides; Humans; Inflammation; Inflammatory Bowel Diseases; Male; Middle Aged; Oleic Acids; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptors, G-Protein-Coupled | 2019 |