glyceryl-2-arachidonate and Asthma

glyceryl-2-arachidonate has been researched along with Asthma* in 2 studies

Other Studies

2 other study(ies) available for glyceryl-2-arachidonate and Asthma

ArticleYear
Fetal Syndrome of Endocannabinoid Deficiency (FSECD) In Maternal Obesity.
    Medical hypotheses, 2016, Volume: 96

    The theory of a fetal origin of adult diseases links many pathological conditions to very early life events and is known as a "developmental programming" phenomenon. The mechanisms of this phenomenon are not quite understood and have been explained by inflammation, stress, etc. In particular the epidemic of obesity, with more than 64% of women being overweight or obese, has been associated with conditions in later life such as mental disorders, diabetes, asthma, and irritable bowel syndrome. Interestingly, these diseases were classified a decade ago as Clinical Syndrome of Endocannabinoid Deficiency (CECD), which was first described by Russo in 2004. Cannabinoids have been used for the treatment of chronic pain for millenniums and act through the mechanism of "kick-starting" the components of the endogenous cannabinoid system (ECS). ECS is a pharmacological target for the treatment of obesity, inflammation, cardiovascular and neuronal damage, and pain. We hypothesize that the deteriorating effect of maternal obesity on offspring health is explained by the mechanism of Fetal Syndrome of Endocannabinoid Deficiency (FSECD), which accompanies maternal obesity. Here we provide support for this hypothesis.

    Topics: Adult; Animals; Arachidonic Acids; Asthma; Autism Spectrum Disorder; Cannabinoids; Endocannabinoids; Female; Fetal Nutrition Disorders; Glycerides; Humans; Insulin Resistance; Irritable Bowel Syndrome; Models, Theoretical; Obesity; Phenotype; Polyunsaturated Alkamides; Pregnancy; Pregnancy Complications; Syndrome; Young Adult

2016
Exposure to Allergen Causes Changes in NTS Neural Activities after Intratracheal Capsaicin Application, in Endocannabinoid Levels and in the Glia Morphology of NTS.
    BioMed research international, 2015, Volume: 2015

    Allergen exposure may induce changes in the brainstem secondary neurons, with neural sensitization of the nucleus solitary tract (NTS), which in turn can be considered one of the causes of the airway hyperresponsiveness, a characteristic feature of asthma. We evaluated neurofunctional, morphological, and biochemical changes in the NTS of naive or sensitized rats. To evaluate the cell firing activity of NTS, in vivo electrophysiological experiments were performed before and after capsaicin challenge in sensitized or naive rats. Immunohistochemical studies, endocannabinoid, and palmitoylethanolamide quantification in the NTS were also performed. This study provides evidence that allergen sensitization in the NTS induced: (1) increase in the neural firing response to intratracheal capsaicin application, (2) increase of endocannabinoid anandamide and palmitoylethanolamide, a reduction of 2-arachidonoylglycerol levels in the NTS, (3) glial cell activation, and (4) prevention by a Group III metabotropic glutamate receptor activation of neural firing response to intratracheal application of capsaicin in both naïve and sensitized rats. Therefore, normalization of ovalbumin-induced NTS neural sensitization could open up the prospect of new treatments based on the recovery of specific brain nuclei function and for extensive studies on acute or long-term efficacy of selective mGlu ligand, in models of bronchial hyperreactivity.

    Topics: Allergens; Amides; Animals; Arachidonic Acids; Asthma; Brain Stem; Capsaicin; Endocannabinoids; Ethanolamines; Glycerides; Humans; Neuroglia; Neurons; Palmitic Acids; Polyunsaturated Alkamides; Propionates; Rats; Receptors, Glutamate; Respiratory Hypersensitivity; Solitary Nucleus

2015