gly-phe-leu-gly has been researched along with Breast-Neoplasms* in 2 studies
2 other study(ies) available for gly-phe-leu-gly and Breast-Neoplasms
Article | Year |
---|---|
Peptide dendrimer-Doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy.
Peptide dendrimers have shown promise as an attractive platform for drug delivery. In this study, mPEGylated peptide dendrimer-doxorubicin (dendrimer-DOX) conjugate-based nanoparticle is prepared and characterized as an enzyme-responsive drug delivery vehicle. The drug DOX is conjugated to the periphery of dendrimer via an enzyme-responsive tetra-peptide linker Gly-Phe-Leu-Gly (GFLG). The dendrimer-DOX conjugate can self-assemble into nanoparticle, which is confirmed by dynamic light scattering, scanning electron microscopy, and transmission electron microscopy studies. At equal dose, mPEGylated dendrimer-DOX conjugate-based nanoparticle results in significantly high antitumor activity, and induces apoptosis on the 4T1 breast tumor model due to the evidences from tumor growth curves, an immunohistochemical analysis, and a histological assessment. The in vivo toxicity evaluation demonstrates that nanoparticle substantially avoids DOX-related toxicities and presents good biosafety without obvious side effects to normal organs of both tumor-bearing and healthy mice as measured by body weight shift, blood routine test, and a histological analysis. Thus, the mPEGylated peptide dendrimer-DOX conjugate-based nanoparticle may be a potential nanoscale drug delivery vehicle for the breast cancer therapy. Topics: Animals; Antibiotics, Antineoplastic; Apoptosis; Breast Neoplasms; Cell Line, Tumor; Dendrimers; Doxorubicin; Drug Carriers; Enzymes; Female; Humans; Immunohistochemistry; Mice; Mice, Inbred BALB C; Nanoparticles; Oligopeptides; Particle Size; Polyethylene Glycols; Tissue Distribution; Transplantation, Homologous | 2014 |
Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells.
Breast cancer is the second most common cause of cancer-related deaths in women. Chemotherapy is an important treatment modality, and paclitaxel (PTX) is often the first-line therapy for its metastatic form. The two most notable limitations related to PTX-based treatment are the poor hydrophilicity of the drug and the systemic toxicity due to the drug's nonspecific and indiscriminate distribution among the tissues. The present work describes an approach to counter both challenges by designing a conjugate of PTX with a hydrophilic macromolecule that is coupled through a biocleavable linker, thereby allowing for active targeting to an enzyme significantly upregulated in cancer cells. The resultant strategy would allow for the release of the active ingredient preferentially at the site of action in related cancer cells and spare normal tissue. Thus, PTX was conjugated to the hydrophilic poly(amdioamine) [PAMAM] dendrimer through the cathepsin B-cleavable tetrapeptide Gly-Phe-Leu-Gly. The PTX prodrug conjugate (PGD) was compared to unbound PTX through in vitro evaluations against breast cancer cells and normal kidney cells as well as through in vivo evaluations using xenograft mice models. As compared to PTX, PGD demonstrated a higher cytotoxicity specific to cell lines with moderate-to-high cathepsin B activity; cells with comparatively lower cathepsin B activity demonstrated an inverse of this relationship. Regression analysis between the magnitude of PGD-induced cytotoxic increase over PTX and cathepsin B expression showed a strong, statistically significant correlation (r(2) = 0.652, p < 0.05). The PGD conjugate also demonstrated a markedly higher tumor reduction as compared to PTX treatment alone in MDA-MB-231 tumor xenograft models, with PGD-treated tumor volumes being 48% and 34% smaller than PTX-treated volumes at weeks 2 and 3 after treatment initiation. Topics: Animals; Antineoplastic Agents, Phytogenic; Breast Neoplasms; Cathepsin B; Cell Line, Tumor; Cell Survival; Dendrimers; Female; Humans; Mice; Oligopeptides; Paclitaxel; Prodrugs; Up-Regulation | 2014 |