glutaminase has been researched along with Fibrosis* in 3 studies
3 other study(ies) available for glutaminase and Fibrosis
Article | Year |
---|---|
Emodin promotes hepatic stellate cell senescence and alleviates liver fibrosis via a nuclear receptor (Nur77)-mediated epigenetic regulation of glutaminase 1.
Senescence in hepatic stellate cells (HSCs) limits liver fibrosis. Glutaminolysis promotes HSC activation. Here, we investigated how emodin affected HSC senescence involving glutaminolysis.. Senescence, glutaminolysis metabolites, Nur77 nuclear translocation, glutaminase 1 (GLS1) promoter methylation and related signalling pathways were examined in human HSC-LX2 cells using multiple cellular and molecular approaches. Fibrotic mice with shRNA-mediated knockdown of Nur77 were treated with emodin-vitamin A liposome for investigating the mechanisms in vivo. Human fibrotic liver samples were examined to verify the clinical relevance.. Emodin upregulated several key markers of senescence and inhibited glutaminolysis cascade in HSCs. Emodin promoted Nur77 nuclear translocation, and knockdown of Nur77 abolished emodin blockade of glutaminolysis and induction of HSC senescence. Mechanistically, emodin facilitated Nur77/DNMT3b interaction and increased GLS1 promoter methylation, leading to inhibited GLS1 expression and blockade of glutaminolysis. Moreover, the glutaminolysis intermediate α-ketoglutarate promoted extracellular signal-regulated kinase (ERK) phosphorylation, which in turn phosphorylated Nur77 and reduced its interaction with DNMT3b. This led to decreased GLS1 promoter methylation and increased GLS1 expression, forming an ERK/Nur77/glutaminolysis positive feedback loop. However, emodin repressed ERK phosphorylation and interrupted the feedback cascade, stimulating senescence in HSCs. Studies in mice showed that emodin-vitamin A liposome inhibited glutaminolysis and induced senescence in HSCs, and consequently alleviated liver fibrosis; but knockdown of Nur77 abrogated these beneficial effects. Similar alterations were validated in human fibrotic liver tissues.. Emodin stimulated HSC senescence through interruption of glutaminolysis. HSC-targeted delivery of emodin represented a therapeutic option for liver fibrosis. Topics: Animals; Cell Proliferation; Emodin; Epigenesis, Genetic; Extracellular Signal-Regulated MAP Kinases; Fibrosis; Glutaminase; Hepatic Stellate Cells; Humans; Liposomes; Liver; Liver Cirrhosis; Mice; Receptors, Cytoplasmic and Nuclear; Vitamin A | 2023 |
SIRT4 protects against intestinal fibrosis by facilitating GLS1 degradation.
Intestinal fibrosis is a prevalent complication of Crohn's disease (CD), characterized by excessive deposition of extracellular matrix (ECM), and no approved drugs are currently available for its treatment. Sirtuin 4 (SIRT4), a potent anti-fibrosis factor in mitochondria, has an unclear role in intestinal fibrosis. In this study, fibroblasts isolated from biopsies of stenotic ileal mucosa in CD patients were analyzed to identify the most down-regulated protein among SIRT1-7, and SIRT4 was found to be the most affected. Moreover, in vivo and in vitro models of intestinal fibrosis, SIRT4 expression was significantly decreased in a TGF-β dependent manner, and its decrease was negatively associated with disease severity. SIRT4 impeded ECM deposition by inhibiting glutaminolysis, but not glycolysis, and α-ketoglutarate (α-KG) was identified as the key metabolite. Specifically, SIRT4 hinders SIRT5's stabilizing interaction with glutaminase 1 (GLS1), thereby facilitating the degradation of GLS1. KDM6, rather than KDM4, is a potential mediator for α-KG-induced transcription of ECM components, and SIRT4 enhances the enrichment of H3K27me3 on their promotors and enhancers. These findings indicate that the activation of TGF-β signals decreases the expression of SIRT4 in intestinal fibrosis, and SIRT4 can facilitate GLS1 degradation, thereby resisting glutaminolysis and alleviating intestinal fibrosis, providing a novel therapeutic target for intestinal fibrosis. Topics: Fibroblasts; Fibrosis; Glutaminase; Humans; Intestines; Mitochondrial Proteins; Sirtuins; Transforming Growth Factor beta | 2023 |
Inhibition of glutaminase to reverse fibrosis in iatrogenic laryngotracheal stenosis.
Glutamine metabolism is a critical energy source for iatrogenic laryngotracheal stenosis (iLTS) scar fibroblasts, and glutaminase (GLS) is an essential enzyme converting glutamine to glutamate. We hypothesize that the GLS-specific inhibitor BPTES will block glutaminolysis and reduce iLTS scar fibroblast proliferation, collagen deposition, and fibroblast metabolism in vitro.. Test-tube Lab Research.. Immunohistochemistry of a cricotracheal resection (n = 1) and a normal airway specimen (n = 1) were assessed for GLS expression. GLS expression was assessed in brush biopsies of subglottic/tracheal fibrosis and normal airway from patients with iLTS (n = 6). Fibroblasts were isolated and cultured from biopsies of subglottic/tracheal fibrosis (n = 6). Fibroblast were treated with BPTES and BPTES + dimethyl α-ketoglutarate (DMK), an analogue of the downstream product of GLS. Fibroblast proliferation, gene expression, protein production, and metabolism were assessed in all treatment conditions and compared to control.. GLS was overexpressed in brush biopsies of iLTS scar specimens (P = .029) compared to normal controls. In vitro, BPTES inhibited iLTS scar fibroblast proliferation (P = .007), collagen I (Col I) (P < .0001), collagen III (P = .004), and α-smooth muscle actin (P = .0025) gene expression and protein production (P = .031). Metabolic analysis demonstrated that BPTES reduced glycolytic reserve (P = .007) but had no effects on mitochondrial oxidative phosphorylation. DMK rescued BPTES inhibition of Col I gene expression (P = .0018) and protein production (P = .021).. GLS is overexpressed in iLTS scar. Blockage of GLS with BPTES significantly inhibits iLTS scar fibroblasts proliferation and function, demonstrating a critical role for GLS in iLTS. Targeting GLS to inhibit glutaminolysis may be a successful strategy to reverse scar formation in the airway.. NA Laryngoscope, 2020. Topics: Adult; Aged; Biopsy; Cell Culture Techniques; Female; Fibrosis; Glutaminase; Humans; Iatrogenic Disease; In Vitro Techniques; Ketoglutaric Acids; Laryngostenosis; Male; Middle Aged; Sulfides; Thiadiazoles | 2020 |