glutaminase has been researched along with Esophageal-Neoplasms* in 4 studies
4 other study(ies) available for glutaminase and Esophageal-Neoplasms
Article | Year |
---|---|
LncRNA PVT1 Confers Cisplatin Resistance of Esophageal Cancer Cells through Modulating the miR-181a-5p-Glutaminase (GLS) Axis.
Esophageal carcinoma (ESCA) is one of the prevalent malignancies worldwide. Cisplatin (CDDP) is a conventional chemotherapy drug. However, the acquired cisplatin resistance limits its extensively clinical applications. In this study, the roles and underlying mechanisms of lncRNA PVT1 in cisplatin-resistant ESCA are investigated. PVT1 was significantly upregulated in ESCA patient specimens and cell lines. Higher PVT1 level was associated with a poor survival rate of ESCA patients. Silencing PVT1 effectively increased cisplatin sensitivity of ESCA cells. We established cisplatin-resistant ESCA cell line (EC109 CDDP Res) and detected that PVT1 and glutamine metabolism were remarkedly elevated in CDDP-resistant esophageal cancer cells. Bioinformatical analysis and luciferase assay illustrated that PVT1 sponged miR-181a-5p to form a ceRNA network, resulting in the downregulation of miR-181a-5p expression in ESCA cells. Glutaminase (GLS), which is a key enzyme in the glutamine metabolism, was identified and validated as a direct target of miR-181-5p in ESCA cells. Inhibiting glutamine metabolism effectively re-sensitized CDDP-resistant cells. Rescue experiments demonstrated that restoration of miR-181a-5p in PVT1-overexpressing CDDP-resistant ESCA cells successfully overcame the PVT1-promoted cisplatin resistance through targeting GLS. Summarily, our study revealed molecular mechanisms of the lncRNA PVT1-promoted cisplatin resistance in ESCA by modulating the miR-181a-5p-GLS axis. Topics: Cell Line, Tumor; Cell Proliferation; Cisplatin; Esophageal Neoplasms; Glutaminase; Glutamine; Humans; MicroRNAs; RNA, Long Noncoding | 2023 |
Circ_0001093 promotes glutamine metabolism and cancer progression of esophageal squamous cell carcinoma by targeting miR-579-3p/glutaminase axis.
Increasing studies indicate that circular RNAs (circRNAs) play critical roles in tumor metabolism of multiple cancers. However, the contribution of circRNAs in glutamine metabolism of esophageal squamous cell carcinoma (ESCC) remains elusive. The objective of this research was to investigate the role and mechanism of circRNA hsa_circ_0001093 (circ_0001093) in the glutamine metabolism and tumorigenesis of ESCC. Circ_0001093, microRNA-579-3p (miR-579-3p) and glutaminase (GLS) expressions in ESCC tissues and cell lines were measured by qRT-PCR, tissue array or Western blot. Cell proliferation, invasion and migration were assessed by CCK-8 or transwell assays. Glutamine consumption, glutamate and ATP production were detected by indicated assay kits. The relationships between circ_0001093 and miR-579-3p or GLS mRNA were investigated by bioinformatics analysis, RNA pull-down, luciferase reporter and RNA immunoprecipitation (RIP) assays. Here, we found that circ_0001093 expression was up-regulated in ESCC tissues and cell lines. Increased circ_0001093 expression predicted an unfavourable prognosis, and was associated with the lymph node metastasis, TNM staging and tumor size in ESCC tissues. Circ_0001093 knockdown suppressed cell proliferation, invasion, migration and glutamine metabolism of ESCC cells, while circ_0001093 over-expression showed the opposite effects. Mechanistically, circ_0001093 acted as a competing endogenous RNA (ceRNA) by sponging miR-579-3p, thereby increasing GLS expression. Furthermore, the inhibitory effects of circ_0001093 knockdown on the invasion, migration and glutamine metabolism were partly rescued by miR-579-3p inhibition or GLS over-expression in ESCC cells. Additionally, miR-579-3p expression was down-regulated in ESCC tissues, while GLS expression was up-regulated. In conclusion, this study first provides evidence that the circ_0001093/miR-579-3p/GLS regulatory network can affect glutamine metabolism and malignant phenotype of ESCC, which can further impact ESCC progression. Topics: Cell Line, Tumor; Cell Movement; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Gene Expression Regulation, Neoplastic; Glutaminase; Glutamine; Humans; MicroRNAs | 2022 |
Metabolic remodeling by TIGAR overexpression is a therapeutic target in esophageal squamous-cell carcinoma.
Topics: Animals; Antineoplastic Agents; Apoptosis Regulatory Proteins; Cell Line, Tumor; Cell Proliferation; Disease Progression; Drug Delivery Systems; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Female; Glutaminase; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Proteins; Oncogenes; Phosphoric Monoester Hydrolases; Survival Rate; Xenograft Model Antitumor Assays | 2020 |
Targeting glutamine-addiction and overcoming CDK4/6 inhibitor resistance in human esophageal squamous cell carcinoma.
The dysregulation of Fbxo4-cyclin D1 axis occurs at high frequency in esophageal squamous cell carcinoma (ESCC), where it promotes ESCC development and progression. However, defining a therapeutic vulnerability that results from this dysregulation has remained elusive. Here we demonstrate that Rb and mTORC1 contribute to Gln-addiction upon the dysregulation of the Fbxo4-cyclin D1 axis, which leads to the reprogramming of cellular metabolism. This reprogramming is characterized by reduced energy production and increased sensitivity of ESCC cells to combined treatment with CB-839 (glutaminase 1 inhibitor) plus metformin/phenformin. Of additional importance, this combined treatment has potent efficacy in ESCC cells with acquired resistance to CDK4/6 inhibitors in vitro and in xenograft tumors. Our findings reveal a molecular basis for cancer therapy through targeting glutaminolysis and mitochondrial respiration in ESCC with dysregulated Fbxo4-cyclin D1 axis as well as cancers resistant to CDK4/6 inhibitors. Topics: Animals; Antineoplastic Agents; Benzeneacetamides; Cell Line, Tumor; Cyclin D1; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinase 6; Drug Resistance, Neoplasm; Drug Synergism; Energy Metabolism; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; F-Box Proteins; Gene Expression Regulation, Neoplastic; Glutaminase; Glutamine; Humans; Hypoglycemic Agents; Male; Mechanistic Target of Rapamycin Complex 1; Metformin; Mice; Molecular Targeted Therapy; Phenformin; Protein Kinase Inhibitors; Retinoblastoma Protein; Signal Transduction; Thiadiazoles; Xenograft Model Antitumor Assays | 2019 |