glutamic acid and Epilepsy, Temporal Lobe

glutamic acid has been researched along with Epilepsy, Temporal Lobe in 109 studies

Research

Studies (109)

TimeframeStudies, this research(%)All Research%
pre-19903 (2.75)18.7374
1990's18 (16.51)18.2507
2000's47 (43.12)29.6817
2010's32 (29.36)24.3611
2020's9 (8.26)2.80

Authors

AuthorsStudies
Inoue, A; Kanemura, Y; Kitazawa, R; Kunieda, T; Kusakabe, K; Nakamura, Y; Nishikawa, M; Ohnishi, T; Ohtsuka, Y; Ozaki, S; Shigekawa, S; Suehiro, S; Tanaka, J; Watanabe, H; Yamashita, D; Yano, H1
Chen, S; Das, S; Davis, KA; Detre, JA; Elliott, MA; Gibson, A; Hadar, P; Lucas, A; Nanga, RPR; Oechsel, K; Reddy, R; Stein, JM1
Jayalakshmi, S; Madhamanchi, K; Madhamanchi, P; Panigrahi, M; Patil, A; Phanithi, PB1
Alonso-Vanegas, M; Beas-Zárate, C; Castro-Torres, RD; Estupiñan-Díaz, B; Lorigados-Pedre, L; Morales-Chacón, LM; Orozco-Suárez, S; Rivera-Cervantes, MC; Rocha, L; Ureña-Guerrero, ME1
Alvim, MKM; Campos, BAG; Casseb, RF; Cendes, F; Cordeiro, MM; Pimentel-Silva, LR; Rogerio, F; Yasuda, CL1
Adorjan, I; Asenjo-Martinez, A; Batiuk, MY; Demharter, S; Kharchenko, PV; Khodosevich, K; Meichsner, J; Mikkelsen, J; Pers, TH; Petukhov, V; Pfisterer, U; Pinborg, LH; Thakur, A; Thompson, JJ; Vasistha, NA; von Engelhardt, J1
Desmond, PM; Gonen, OM; Kwan, P; Lui, E; Moffat, BA; O'Brien, TJ1
Curia, G; Ren, E1
Chen, SH; Das, S; Davis, KA; Detre, JA; Elliott, MA; Hadar, PN; Hariharan, H; Kini, LG; Nanga, RPR; Reddy, R; Shah, P; Shinohara, RT; Stein, JM; Wisse, LEM1
Kanamori, K1
Bartnik-Olson, BL; Ding, D; Howe, J; Losey, T; Shah, A1
Huang, Q; Huang, Y; Liao, Y; Liu, X; Wei, X; Wu, Y; Zou, D1
Cai, Y; Chen, J; Chen, Y; Cui, L; Fu, J; Li, K; Li, Y; Liu, Z; Ma, G; Ma, Z; Mai, H; Qi, W; Sun, C; Sun, F; Tao, H; Xie, Q; Zhao, B; Zhao, J; Zhou, H; Zhou, X1
Umpierre, AD; West, PJ; White, JA; Wilcox, KS1
Bedner, P; Steinhäuser, C1
Brandt, C; Klein, J; Löscher, W; Meller, S; Theilmann, W1
Deng, X; Hu, J; Liu, X; Song, P1
Kouroupi, G; Koutsoudaki, PN; Matsas, R; Miltiadous, P; Stamatakis, A; Stylianopoulou, F1
Anju, TR; Antony, S; Jayanarayanan, S; Paulose, CS; Soman, S1
Borges, K; Hadera, MG; McDonald, TS; Smeland, OB; Sonnewald, U1
Carmignoto, G; Crunelli, V; Steinhäuser, C1
Fujii, M; He, Y; Imoto, H; Inoue, T; Ishihara, H; Koizumi, H; Maruta, Y; Matsumoto, M; Nomura, S; Oka, F; Owada, Y; Suehiro, E; Suzuki, M; Yamakawa, T1
D'Alfonso, A; Martinez, A; Nugent, AC; Theodore, WH; Zarate, CA1
Coulter, DA; Steinhäuser, C1
Guidine, PA; Medeiros, Dde C; Mello, LE; Moraes, MF; Moraes-Santos, T; Rezende, GH1
Chen, SH; Das, S; Davis, KA; Detre, JA; Elliott, MA; Hadar, PN; Hariharan, H; Litt, B; Lucas, TH; Nanga, RP; Pollard, JR; Reddy, R; Shinohara, RT1
Cheng, SJ; Hung, WC; Lee, WT; Min, MY; Wong, SB1
Albrecht, J; Zielińska, M1
Li, J; Sha, L; Shen, Y; Shi, X; Wang, X; Wu, L; Xu, Q1
Cheng, J; Li, M; Li, Z; Pang, L; Wang, L; You, Z1
Barker, GJ; Duncan, JS; McLean, MA; Simister, RJ1
Mitsuya, K; Nitta, N; Suzuki, F1
de Graan, PN; de Wit, M; Meijer, DH; Rensen, MG; van der Hel, WS; van Gassen, KL; van Rijen, PC; van Veelen, CW; Verlinde, SA1
Eichler, SA; Fähling, M; Förstera, B; Jüttner, R; Legendre, P; Lehmann, TN; Meier, JC; Schwarz, G; Smolinsky, B1
Aldouby, Y; Domb, AJ; Kubek, MJ; Veronesi, MC1
Patel, M; Waldbaum, S1
Bentzen, NC; Laugesen, JL; Zhabotinsky, AM1
Bhaskaran, MD; Smith, BN1
Kanamori, K; Ross, BD1
Amado, D; Caboclo, LO; Canzian, M; Carrete, H; Castro Neto, EF; Cavalheiro, EA; Centeno, RS; Higa, EM; Naffah-Mazzacoratti, Mda G; Santiago, JF; Varella, PP; Yacubian, EM1
Adam, C; Baulac, M; Clemenceau, S; Cohen, I; Huberfeld, G; Le Van Quyen, M; Menendez de la Prida, L; Miles, R; Pallud, J1
Alvestad, S; Håberg, A; Hammer, J; Ottersen, OP; Qu, H; Sonnewald, U1
Aniksztejn, L; Cattani, AA; Mdzomba, JB; Molinari, F1
Bergersen, LH; Chaudhry, FA; Eid, T; Kang, D; Lauritzen, F; Lee, TS; Ottersen, OP; Perez, EL; Wang, Y; Zaveri, HP1
Guo, W; Li, S; Liu, SY; Shu, HF; Sun, FJ; Yang, H; Yin, Q; Zhang, CQ; Zheng, DH1
Carobrez, AP; De Lima, TC; Duarte, FS; Duzzioni, M; Ern, AL; Gavioli, EC; Hoeller, AA; Lemos, T; Piermartiri, TC; Silva, NM; Tasca, CI1
Bergersen, LH; de Lanerolle, NC; Drummond, J; Eid, T; Lauritzen, F; Lee, TS; McCullumsmith, RE; Meador-Woodruff, JH; Perez, E; Spencer, DD; Wang, Y1
Berg-Johnsen, J; Larsen, GA; Moe, MC; Røste, GK; Vinje, ML1
Errante, LD; Kim, JH; Petroff, OA; Rothman, DL; Spencer, DD1
Baulac, M; Clemenceau, S; Cohen, I; Miles, R; Navarro, V1
Ebert, U; Grüne, U; Gümbel, C; Hiemisch, H; Keller, A; Kramps, S; Krupp, E; Leichtlein, C; Lorch, B; Löscher, W; Pickert, A; Potschka, H; Vogt, G; Welschof, M; Worley, PF; Xiao, B; Young, K1
Dezortová, M; Hájek, M; Liscák, R; Vladyka, V; Vymazal, J1
Delanty, N; O'Connor, WT; Phillips, JP; Thomas, PM1
Maidment, NT; Rocha, L1
Danbolt, NC; de Lanerolle, NC; Eid, T; Kim, JH; Lai, JC; Malthankar, GV; Ottersen, OP; Rundén-Pran, E; Spencer, DD; Thomas, MJ1
O'Connor, WT; Phillips, JP; Thomas, PM2
de Graan, PN; Hoogland, G; Spierenburg, HA; van Huffelen, AC; van Rijen, PC; van Veelen, CW1
Bausch, SB; McNamara, JO2
Bos, IW; de Graan, PN; Notenboom, RG; van der Hel, WS; van Rijen, PC; van Veelen, CW1
Abi-Saab, WM; Cassaday, MP; Cavus, I; Gueorguieva, R; Jacob, R; Kasoff, WS; Krystal, JH; Sherwin, RS; Spencer, DD1
Minabe, Y; Ogino, T; Shirayama, Y; Takahashi, S1
Melø, TM; Nehlig, A; Sonnewald, U1
Chauzit, E; Feuerstein, TJ; Huppertz, HJ; Steffens, M; Zentner, J1
Kullmann, DM; Schorge, S; Scimemi, A; Walker, MC1
Baumgartner, C; Bittsanský, M; Mlynárik, V; Moser, E; Riederer, F; Schmidt, C; Serles, W1
Behar, KL; de Lanerolle, N; Eid, T; Kim, JH; Lai, JC; Malthankar-Phatak, GH; Spencer, DD; Spencer, SS1
Herzog, H; Jiao, Y; Nadler, JV; Tu, B1
Bjørnsen, LP; Danbolt, NC; de Lanerolle, NC; Eid, T; Holmseth, S; Spencer, DD1
Abbott, DF; Berkovic, SF; Briellmann, RS; Jackson, GD; Mark Wellard, R; Masterton, RA1
Becker, AJ; Flor, PJ; Gueler, N; Pitsch, J; Schoch, S; van der Putten, H1
Avoli, M; Sudbury, JR1
Agasse, F; Ferreira, R; Malva, JO; Silva, AP; Xapelli, S1
Doelken, MT; Doerfler, A; Engelhorn, T; Ganslandt, O; Hammen, T; Pauli, E; Richter, G; Stadlbauer, A; Stefan, H; Struffert, T1
Bankstahl, JP; Bethmann, K; Hoffmann, K; Löscher, W1
Lasoń, W; Leśkiewicz, M1
Abi-Saab, W; Cavus, I; Hetherington, HP; Krystal, JH; Pan, JW; Spencer, DD; Spencer, SS; Vives, KP; Zaveri, HP1
During, MJ; Ryder, KM; Spencer, DD1
Behar, KL; Petroff, OA; Rothman, DL; Spencer, DD1
Peeling, J; Sutherland, G1
Petroff, OA; Pleban, LA; Spencer, DD1
Haberly, LB; Hoffman, WH1
Engel, J; Fried, I; Isokawa, M; Levesque, M1
Brines, ML; de Lanerolle, NC; Spencer, DD; Sundaresan, S1
Kofler, N; Schwarzer, C; Sperk, G1
Adelson, PD; Assirati, JA; Born, DE; Chimelli, L; Fried, I; Kornblum, HI; Leite, JP; Lozada, A; Mathern, GW; Mendoza, D; Ojemann, GA; Peacock, WJ; Pretorius, JK; Sakamoto, AC1
Dezortová, M; Hájek, M; Komárek, V1
Ben-Ari, Y; Bernard, C; Esclapez, M; Hirsch, JC1
Blomenröhr, M; de Graan, PN; de Wit, M; Dijstelbloem, H; Gispen, WH; Hoogland, G; Spierenburg, HA; van Huffelen, AC; van Rijen, PC; van Veelen, CW1
Berg-Johnsen, J; Røste, GK; Valø, ET; Vinje, ML1
de Graan, PN; De Wit, M; Gispen, WH; Hens, JJ; Hoogland, G; van Huffelen, AC; van Veelen, CW1
Ben-Ari, Y; Cossart, R1
Isokawa, M1
D'Hooge, R; De Deyn, PP; Engelborghs, S1
Dalby, NO; Mody, I1
DeLorenzo, RJ; Pal, S; Rafiq, A; Raza, M1
Emson, PC; Ingram, EM; Tessler, S; Wiseman, JW1
Aronica, E; De Graan, PN; Ghijsen, WE; Gorter, JA; Lopes Da Silva, FH; Proper, EA; Van Vliet, EA1
Aker, R; Eşkazan, E; Gören, MZ; Onat, F; Ozkara, C; Ozyurt, E1
de Graan, PN; Gispen, WH; Hoogland, G; Jansen, GH; Kappen, SM; Proper, EA; Rensen, MG; Schrama, LH; van Nieuwenhuizen, O; van Rijen, PC; van Veelen, CW1
Du, F; Schwarcz, R1
Hentschel, D; Huk, W; Ladebeck, R; Neundörfer, B; Schuierer, G; Schüler, P; Stefan, H; Wittig, R1
Meldrum, BS1
Ishijima, B; Karasawa, N; Kawakami, Y; Koyama, I; Nagatsu, I; Shimizu, H; Ueki, K1
Kirino, T; Sano, K1
Ben-Ari, Y1
Grisar, TM1
Dixon, LM; Kish, SJ; Sherwin, AL1

Reviews

16 review(s) available for glutamic acid and Epilepsy, Temporal Lobe

ArticleYear
Synaptic Reshaping and Neuronal Outcomes in the Temporal Lobe Epilepsy.
    International journal of molecular sciences, 2021, Apr-08, Volume: 22, Issue:8

    Topics: Animals; Astrocytes; Disease Susceptibility; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; Neurons; Oligodendroglia; Receptors, GABA; Receptors, Ionotropic Glutamate; Synapses; Synaptic Transmission

2021
Novel astrocyte targets: new avenues for the therapeutic treatment of epilepsy.
    The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 2015, Volume: 21, Issue:1

    Topics: Animals; Aquaporins; Astrocytes; Brain; Calcium Signaling; Epilepsy; Epilepsy, Absence; Epilepsy, Temporal Lobe; Gap Junctions; Glutamic Acid; Humans; Potassium Channels

2015
Role of astrocytes in epilepsy.
    Cold Spring Harbor perspectives in medicine, 2015, Mar-02, Volume: 5, Issue:3

    Topics: Animals; Aquaporin 4; Astrocytes; Epilepsy, Temporal Lobe; Gap Junctions; Glutamic Acid; Homeostasis; Humans; Potassium Channels; Synaptic Transmission

2015
Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy.
    Neurochemical research, 2017, Volume: 42, Issue:6

    Topics: Animals; Astrocytes; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 2; Extracellular Fluid; Glutamate Plasma Membrane Transport Proteins; Glutamic Acid; Hippocampus; Humans; Neurons

2017
Mitochondria, oxidative stress, and temporal lobe epilepsy.
    Epilepsy research, 2010, Volume: 88, Issue:1

    Topics: Animals; Antioxidants; DNA, Mitochondrial; Electron Transport Complex I; Epilepsy, Temporal Lobe; Glutamic Acid; Humans; Ion Channels; Lipids; Mitochondria; Models, Biological; Neurons; Oxidation-Reduction; Oxidative Stress

2010
Neuropeptide Y as an endogenous antiepileptic, neuroprotective and pro-neurogenic peptide.
    Recent patents on CNS drug discovery, 2006, Volume: 1, Issue:3

    Topics: Animals; Drug Design; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Humans; Neurons; Neuropeptide Y; Neuroprotective Agents; Receptors, Neuropeptide Y

2006
[The neurochemical mechanisms of temporal lobe epilepsy: an update].
    Przeglad lekarski, 2007, Volume: 64, Issue:11

    Topics: Animals; Calcium Channels; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamic Acid; Humans; Ion Transport; Neurons; Receptors, GABA; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission

2007
1H MR spectroscopy in patients with mesial temporal epilepsy.
    Magma (New York, N.Y.), 1998, Volume: 7, Issue:2

    Topics: Aspartic Acid; Choline; Creatine; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamic Acid; Glutamine; Hippocampus; Humans; Magnetic Resonance Imaging

1998
Kainate, a double agent that generates seizures: two decades of progress.
    Trends in neurosciences, 2000, Volume: 23, Issue:11

    Topics: Animals; Disease Models, Animal; Electric Conductivity; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; gamma-Aminobutyric Acid; GluK2 Kainate Receptor; Glutamic Acid; Kainic Acid; Neural Inhibition; Presynaptic Terminals; Pyramidal Cells; Receptors, Kainic Acid; Seizures; Synapses

2000
Pathophysiology of epilepsy.
    Acta neurologica Belgica, 2000, Volume: 100, Issue:4

    Topics: Adult; Animals; Anticonvulsants; Autoimmune Diseases; Calcium; Catecholamines; Cell Movement; Child; Child, Preschool; Electroencephalography; Encephalitis; Epilepsies, Partial; Epilepsy; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Genes, Dominant; Genetic Predisposition to Disease; Glutamic Acid; Hamartoma; Humans; Infant; Infant, Newborn; Ion Channels; Kindling, Neurologic; Membrane Potentials; Neurons; Potassium; Rats; Receptors, AMPA; Receptors, GABA; Receptors, Glutamate; Sodium; Spasms, Infantile; Syndrome; Thalamic Diseases

2000
The process of epileptogenesis: a pathophysiological approach.
    Current opinion in neurology, 2001, Volume: 14, Issue:2

    Topics: Animals; Disease Models, Animal; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; Interneurons; Mossy Fibers, Hippocampal; Neural Inhibition; Neuronal Plasticity

2001
Quinolinic acid and kynurenic acid in the mammalian brain.
    Advances in experimental medicine and biology, 1991, Volume: 294

    Topics: 3-Hydroxyanthranilate 3,4-Dioxygenase; AIDS Dementia Complex; Animals; Aspartic Acid; Biological Transport; Brain Chemistry; Brain Diseases; Dioxygenases; Epilepsy, Temporal Lobe; Glutamates; Glutamic Acid; Humans; Kynurenic Acid; Kynurenine; Lyases; Nerve Degeneration; Oxygenases; Quinolinic Acid; Quinolinic Acids; Rats; Receptors, Neurotransmitter; Transaminases

1991
Excitatory amino acid transmitters in epilepsy.
    Epilepsia, 1991, Volume: 32 Suppl 2

    Topics: Anticonvulsants; Aspartic Acid; Epilepsy; Epilepsy, Temporal Lobe; Glutamates; Glutamic Acid; Humans; Ion Channels; Lamotrigine; Neurotransmitter Agents; Triazines

1991
Ammon's horn sclerosis: its pathogenesis and clinical significance.
    The Tohoku journal of experimental medicine, 1990, Volume: 161 Suppl

    Topics: Animals; Brain Ischemia; Cell Survival; Epilepsy, Temporal Lobe; Gerbillinae; Glutamates; Glutamic Acid; Hippocampus; Humans; Hypoxia; Kainic Acid; Models, Neurological; Neurons; Sclerosis; Status Epilepticus; Synaptic Transmission; Temporal Lobe; Terminology as Topic

1990
Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy.
    Neuroscience, 1985, Volume: 14, Issue:2

    Topics: Animals; Binding Sites; Brain; Calcium; Disease Models, Animal; Drug Interactions; Epilepsy, Temporal Lobe; Glucose; Glutamates; Glutamic Acid; Humans; Kainic Acid; Limbic System; Pyrrolidines; Status Epilepticus; Zinc

1985
Neuron-glia relationships in human and experimental epilepsy: a biochemical point of view.
    Advances in neurology, 1986, Volume: 44

    Topics: Amino Acids; Animals; Biological Transport; Brain; Carbonic Anhydrases; Epilepsy; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Glutamine; Homeostasis; Humans; Ions; Neuroglia; Neurons; Neurotransmitter Agents; Potassium; Sodium-Potassium-Exchanging ATPase

1986

Trials

3 trial(s) available for glutamic acid and Epilepsy, Temporal Lobe

ArticleYear
Proton MR spectroscopy of metabolite concentrations in temporal lobe epilepsy and effect of temporal lobe resection.
    Epilepsy research, 2009, Volume: 83, Issue:2-3

    Topics: Adolescent; Adult; Aspartic Acid; Brain Chemistry; Brain Mapping; Carnosine; Creatine; Epilepsy, Temporal Lobe; Female; gamma-Aminobutyric Acid; Glutamic Acid; Humans; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Male; Middle Aged; Protons; Young Adult

2009
Sevoflurane reduces synaptic glutamate release in human synaptosomes.
    Journal of neurosurgical anesthesiology, 2002, Volume: 14, Issue:3

    Topics: 4-Aminopyridine; Adult; Anesthetics, Inhalation; Calcium; Cytosol; Epilepsy, Temporal Lobe; Glutamic Acid; Humans; In Vitro Techniques; Kinetics; Methyl Ethers; Sevoflurane; Synapses; Synaptosomes; Temporal Lobe

2002
Elevated extracellular levels of glutamate, aspartate and gamma-aminobutyric acid within the intraoperative, spontaneously epileptiform human hippocampus.
    Epilepsy research, 2003, Volume: 54, Issue:1

    Topics: Adult; Anesthesia, General; Aspartic Acid; Electroencephalography; Epilepsy, Temporal Lobe; Female; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; Intraoperative Period; Male

2003

Other Studies

90 other study(ies) available for glutamic acid and Epilepsy, Temporal Lobe

ArticleYear
Quantitative measurement of peritumoral concentrations of glutamate, N-acetyl aspartate, and lactate on magnetic resonance spectroscopy predicts glioblastoma-related refractory epilepsy.
    Acta neurochirurgica, 2022, Volume: 164, Issue:12

    Topics: Aspartic Acid; Creatine; Drug Resistant Epilepsy; Epilepsy, Temporal Lobe; Glioblastoma; Glutamic Acid; Humans; Lactic Acid; Magnetic Resonance Spectroscopy

2022
Mapping hippocampal glutamate in mesial temporal lobe epilepsy with glutamate weighted CEST (GluCEST) imaging.
    Human brain mapping, 2023, 02-01, Volume: 44, Issue:2

    Topics: Epilepsy; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Humans; Magnetic Resonance Imaging; Sclerosis

2023
Dopamine and Glutamate Crosstalk Worsen the Seizure Outcome in TLE-HS Patients.
    Molecular neurobiology, 2023, Volume: 60, Issue:9

    Topics: Dopamine; Drug Resistant Epilepsy; Epilepsy; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Humans; Treatment Outcome

2023
New Aspects of VEGF, GABA, and Glutamate Signaling in the Neocortex of Human Temporal Lobe Pharmacoresistant Epilepsy Revealed by RT-qPCR Arrays.
    Journal of molecular neuroscience : MN, 2020, Volume: 70, Issue:6

    Topics: Adolescent; Adult; Drug Resistant Epilepsy; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Humans; Male; MAP Kinase Signaling System; Membrane Proteins; Middle Aged; Neocortex; Phosphatidylinositol 3-Kinases; Racemases and Epimerases; Receptors, GABA; Transcriptome; Vascular Endothelial Growth Factor A

2020
Interactions between in vivo neuronal-glial markers, side of hippocampal sclerosis, and pharmacoresponse in temporal lobe epilepsy.
    Epilepsia, 2020, Volume: 61, Issue:5

    Topics: Adult; Anticonvulsants; Biomarkers; Case-Control Studies; Creatine; Drug Resistant Epilepsy; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Hippocampus; Humans; Inositol; Magnetic Resonance Imaging; Male; Middle Aged; N-Methylaspartate; Neuroglia; Neuroimaging; Neurons; Proton Magnetic Resonance Spectroscopy; Sclerosis; Treatment Outcome; Young Adult

2020
Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis.
    Nature communications, 2020, 10-07, Volume: 11, Issue:1

    Topics: Adolescent; Adult; Biopsy; Case-Control Studies; Cell Nucleus; Datasets as Topic; Drug Resistant Epilepsy; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Humans; Magnetic Resonance Imaging; Male; Microdissection; Middle Aged; Models, Genetic; Nerve Net; Neurons; Receptors, AMPA; Receptors, Glutamate; RNA-Seq; Signal Transduction; Single-Cell Analysis; Temporal Lobe; Transcription, Genetic; Transcriptome; Up-Regulation; Young Adult

2020
Seven-tesla quantitative magnetic resonance spectroscopy of glutamate, γ-aminobutyric acid, and glutathione in the posterior cingulate cortex/precuneus in patients with epilepsy.
    Epilepsia, 2020, Volume: 61, Issue:12

    Topics: Adult; Aged; Case-Control Studies; Epilepsy; Epilepsy, Generalized; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamic Acid; Glutathione; Gyrus Cinguli; Humans; Magnetic Resonance Spectroscopy; Male; Middle Aged; Parietal Lobe; Young Adult

2020
Volumetric glutamate imaging (GluCEST) using 7T MRI can lateralize nonlesional temporal lobe epilepsy: A preliminary study.
    Brain and behavior, 2021, Volume: 11, Issue:8

    Topics: Epilepsy, Temporal Lobe; Female; Glutamic Acid; Hippocampus; Humans; Magnetic Resonance Imaging; Male; Neuroimaging

2021
Faster flux of neurotransmitter glutamate during seizure - Evidence from 13C-enrichment of extracellular glutamate in kainate rat model.
    PloS one, 2017, Volume: 12, Issue:4

    Topics: Animals; Carbon Isotopes; Electroencephalography; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Kainic Acid; Male; Neurotransmitter Agents; Rats, Wistar; Seizures

2017
Glutamate metabolism in temporal lobe epilepsy as revealed by dynamic proton MRS following the infusion of [U
    Epilepsy research, 2017, Volume: 136

    Topics: Adult; Brain; Carbon Isotopes; Electroencephalography; Epilepsy, Temporal Lobe; Female; Fluorodeoxyglucose F18; Functional Laterality; Glucose; Glutamic Acid; Humans; Magnetic Resonance Imaging; Male; Middle Aged; Organ Size; Positron-Emission Tomography; Proton Magnetic Resonance Spectroscopy; Radiopharmaceuticals; Young Adult

2017
Role of miR-34c in the cognitive function of epileptic rats induced by pentylenetetrazol.
    Molecular medicine reports, 2018, Volume: 17, Issue:3

    Topics: Animals; Cognition; Disease Models, Animal; Epilepsy, Temporal Lobe; Gene Expression Regulation; Glutamic Acid; Hippocampus; Long-Term Potentiation; Male; Maze Learning; Memory; MicroRNAs; Oligoribonucleotides; Pentylenetetrazole; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Signal Transduction

2018
SRR intronic variation inhibits expression of its neighbouring SMG6 gene and protects against temporal lobe epilepsy.
    Journal of cellular and molecular medicine, 2018, Volume: 22, Issue:3

    Topics: Animals; Case-Control Studies; Cohort Studies; Computational Biology; Disease Models, Animal; Epilepsy, Temporal Lobe; Female; Gene Expression Regulation; Genes, Reporter; Genotype; Glutamic Acid; Hippocampus; Humans; Introns; Luciferases; Male; Polymorphism, Single Nucleotide; Promoter Regions, Genetic; Racemases and Epimerases; Rats; Receptors, N-Methyl-D-Aspartate; Serine; Signal Transduction; Telomerase

2018
Conditional Knock-out of mGluR5 from Astrocytes during Epilepsy Development Impairs High-Frequency Glutamate Uptake.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2019, 01-23, Volume: 39, Issue:4

    Topics: Animals; Astrocytes; Calcium Signaling; Cell Communication; Computer Simulation; Electroencephalography; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; Female; Gliosis; Glutamic Acid; Male; Mice; Mice, Knockout; Neurons; Patch-Clamp Techniques; Receptors, Kainic Acid

2019
TNFα-Driven Astrocyte Purinergic Signaling during Epileptogenesis.
    Trends in molecular medicine, 2019, Volume: 25, Issue:2

    Topics: Astrocytes; Epilepsy, Temporal Lobe; Glutamic Acid; Humans; Signal Transduction; Tumor Necrosis Factor-alpha

2019
Commonalities and differences in extracellular levels of hippocampal acetylcholine and amino acid neurotransmitters during status epilepticus and subsequent epileptogenesis in two rat models of temporal lobe epilepsy.
    Brain research, 2019, 06-01, Volume: 1712

    Topics: Acetylcholine; Amino Acids; Animals; Aspartic Acid; Disease Models, Animal; Electroencephalography; Epilepsy; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Hippocampus; Lysine; Microdialysis; Neurotransmitter Agents; Pilocarpine; Rats; Scopolamine; Seizures; Status Epilepticus; Temporal Lobe

2019
Increased expression of the P2X7 receptor in temporal lobe epilepsy: Animal models and clinical evidence.
    Molecular medicine reports, 2019, Volume: 19, Issue:6

    Topics: Adolescent; Adult; Animals; Behavior, Animal; Brain; CA3 Region, Hippocampal; Disease Models, Animal; Electroencephalography; Epilepsy, Temporal Lobe; Female; Glial Fibrillary Acidic Protein; Glutamic Acid; Humans; Male; Middle Aged; Rats; Rats, Sprague-Dawley; Receptors, Purinergic P2X7; Up-Regulation; Young Adult

2019
Subventricular zone-derived neural stem cell grafts protect against hippocampal degeneration and restore cognitive function in the mouse following intrahippocampal kainic acid administration.
    Stem cells translational medicine, 2013, Volume: 2, Issue:3

    Topics: Animals; Astrocytes; Behavior, Animal; Cell Movement; Cell Proliferation; Cell Survival; Cognition; Disease Models, Animal; Epilepsy, Temporal Lobe; Genetic Therapy; Genetic Vectors; Glutamic Acid; Green Fluorescent Proteins; Hippocampus; Insulin-Like Growth Factor I; Kainic Acid; Lentivirus; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Nerve Degeneration; Neural Stem Cells; Neurogenesis; Neurons; Spheroids, Cellular; Time Factors; Transduction, Genetic

2013
Impaired motor learning attributed to altered AMPA receptor function in the cerebellum of rats with temporal lobe epilepsy: ameliorating effects of Withania somnifera and withanolide A.
    Epilepsy & behavior : E&B, 2013, Volume: 27, Issue:3

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anticonvulsants; Carbamazepine; Cerebellum; Disease Models, Animal; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 1; Gene Expression Regulation; Glutamate Decarboxylase; Glutamic Acid; Inositol 1,4,5-Trisphosphate; Learning Disabilities; Linear Models; Locomotion; Male; Motor Activity; Phytotherapy; Pilocarpine; Protein Binding; Psychomotor Performance; Rats; Rats, Wistar; Receptors, AMPA; RNA, Messenger; Time Factors; Tritium; Withania; Withanolides

2013
Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2013, Volume: 33, Issue:7

    Topics: Amino Acids; Animals; Brain; Chromatography, High Pressure Liquid; Disease Models, Animal; Epilepsy, Temporal Lobe; Gas Chromatography-Mass Spectrometry; Glucose; Glutamic Acid; Magnetic Resonance Spectroscopy; Male; Mice; Mice, Inbred Strains; Mitochondria; Neurotransmitter Agents; Pilocarpine

2013
Changes in glutamate concentration, glucose metabolism, and cerebral blood flow during focal brain cooling of the epileptogenic cortex in humans.
    Epilepsia, 2014, Volume: 55, Issue:5

    Topics: Adolescent; Adult; Blood Glucose; Brain; Cerebral Cortex; Electroencephalography; Epilepsies, Partial; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Glycerol; Hippocampus; Humans; Hypothermia, Induced; Lactic Acid; Male; Middle Aged; Preoperative Care; Pyruvic Acid; Regional Blood Flow; Rewarming; Signal Processing, Computer-Assisted; Young Adult

2014
The relationship between glucose metabolism, resting-state fMRI BOLD signal, and GABAA-binding potential: a preliminary study in healthy subjects and those with temporal lobe epilepsy.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2015, Mar-31, Volume: 35, Issue:4

    Topics: Adult; Brain; Brain Mapping; Epilepsy, Temporal Lobe; Female; gamma-Aminobutyric Acid; Glucose; Glutamic Acid; Humans; Magnetic Resonance Imaging; Male; Middle Aged; Oxygen; Positron-Emission Tomography; Young Adult

2015
Protein-caloric dietary restriction inhibits mossy fiber sprouting in the pilocarpine model of TLE without significantly altering seizure phenotype.
    Epilepsy research, 2015, Volume: 117

    Topics: Animals; Caloric Restriction; Diet, Protein-Restricted; Disease Models, Animal; Electroencephalography; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Male; Mossy Fibers, Hippocampal; Phenotype; Pilocarpine; Rats; Rats, Wistar; Seizures; Status Epilepticus

2015
Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy.
    Science translational medicine, 2015, Oct-14, Volume: 7, Issue:309

    Topics: Adult; Drug Resistant Epilepsy; Epilepsies, Partial; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Humans; Magnetic Resonance Imaging; Male; Middle Aged; Neuroimaging

2015
Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy.
    PloS one, 2015, Volume: 10, Issue:12

    Topics: Action Potentials; Anilides; Animals; CA1 Region, Hippocampal; Culture Media; Epilepsy, Temporal Lobe; Excitatory Postsynaptic Potentials; Gene Expression Regulation; Glutamic Acid; Magnesium; Microtomy; Models, Biological; Neurons; Neuroprotective Agents; PPAR gamma; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Rosiglitazone; Seizures; Synaptic Transmission; Thiazolidinediones; Tissue Culture Techniques

2015
Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy.
    The Journal of experimental medicine, 2017, Volume: 214, Issue:2

    Topics: Animals; Astrocytes; Benzoquinones; Cells, Cultured; Epilepsy; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 2; Glutamic Acid; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Proteasome Endopeptidase Complex; Seizures, Febrile

2017
Protective Effect of Resveratrol on the Brain in a Rat Model of Epilepsy.
    Neuroscience bulletin, 2017, Volume: 33, Issue:3

    Topics: Animals; Anticonvulsants; CA1 Region, Hippocampal; Disease Models, Animal; Down-Regulation; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; gamma-Aminobutyric Acid; GluK2 Kainate Receptor; Glutamic Acid; Kainic Acid; Male; Neuroprotective Agents; Rats; Rats, Wistar; Receptors, GABA-A; Receptors, Kainic Acid; Resveratrol; Stilbenes; Up-Regulation

2017
Persistent zinc depletion in the mossy fiber terminals in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy.
    Epilepsia, 2009, Volume: 50, Issue:8

    Topics: Animals; Carrier Proteins; Cation Transport Proteins; Disease Models, Animal; Electroencephalography; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Hypnotics and Sedatives; Kainic Acid; Male; Membrane Proteins; Membrane Transport Proteins; Mice; Mice, Inbred C57BL; Microdialysis; Midazolam; Mossy Fibers, Hippocampal; Synapsins; Time Factors; Vesicular Glutamate Transport Protein 1; Zinc

2009
Hippocampal distribution of vesicular glutamate transporter 1 in patients with temporal lobe epilepsy.
    Epilepsia, 2009, Volume: 50, Issue:7

    Topics: Animals; Dentate Gyrus; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Humans; Immunohistochemistry; Mossy Fibers, Hippocampal; Neurons; Neuropeptide Y; Rats; Sclerosis; Synapses; Synaptic Vesicles; Synaptophysin; Tissue Distribution; Vesicular Glutamate Transport Protein 1

2009
Splice-specific roles of glycine receptor alpha3 in the hippocampus.
    The European journal of neuroscience, 2009, Volume: 30, Issue:6

    Topics: Animals; Blotting, Western; Cells, Cultured; Epilepsy, Temporal Lobe; Fluorescent Antibody Technique; Glutamic Acid; Hippocampus; Humans; Microscopy, Confocal; Neurons; Presynaptic Terminals; Protein Isoforms; Rats; Rats, Wistar; Receptors, Glycine; Reverse Transcriptase Polymerase Chain Reaction; RNA Splicing; RNA, Messenger; Severity of Illness Index; Transfection; Up-Regulation

2009
Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo.
    Brain research, 2009, Dec-15, Volume: 1303

    Topics: Administration, Intranasal; Amygdala; Animals; Biological Availability; Cells, Cultured; Drug Delivery Systems; Electroencephalography; Epilepsy; Epilepsy, Temporal Lobe; Evoked Potentials; Glutamic Acid; Hippocampus; Kindling, Neurologic; Nanoparticles; Nerve Degeneration; Neuroprotective Agents; Polyesters; Rats; Rats, Sprague-Dawley; Thyrotropin-Releasing Hormone; Treatment Outcome

2009
Modeling of glutamate-induced dynamical patterns.
    International journal of neural systems, 2009, Volume: 19, Issue:6

    Topics: Action Potentials; Animals; Computer Simulation; Epilepsy, Temporal Lobe; Extracellular Space; Glutamate Plasma Membrane Transport Proteins; Glutamic Acid; Hippocampus; Humans; Mathematical Concepts; Neural Pathways; Nonlinear Dynamics; Pyramidal Cells; Rats; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptic Transmission

2009
Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy.
    PloS one, 2010, May-17, Volume: 5, Issue:5

    Topics: Action Potentials; Animals; Arachidonic Acids; Blotting, Western; Cannabinoids; Dentate Gyrus; Disease Models, Animal; Endocannabinoids; Epilepsy, Temporal Lobe; Excitatory Postsynaptic Potentials; Glutamic Acid; Male; Mice; Mossy Fibers, Hippocampal; Photolysis; Pilocarpine; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Status Epilepticus; Synapses

2010
Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain.
    Brain research, 2011, Jan-31, Volume: 1371

    Topics: Animals; Brain Chemistry; Chromatography, High Pressure Liquid; Chronic Disease; Disease Models, Animal; Electroencephalography; Epilepsy, Temporal Lobe; Extracellular Fluid; Glutamic Acid; Glutamine; Hippocampus; Intracellular Fluid; Kainic Acid; Male; Microdialysis; Neurotoxins; Rats; Rats, Wistar; Synaptic Vesicles

2011
Relationship between fluid-attenuated inversion-recovery (FLAIR) signal intensity and inflammatory mediator's levels in the hippocampus of patients with temporal lobe epilepsy and mesial temporal sclerosis.
    Arquivos de neuro-psiquiatria, 2011, Volume: 69, Issue:1

    Topics: Adult; Amygdala; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Hippocampus; Humans; Inflammation Mediators; Interleukin-1; Interleukin-1beta; Leukocyte Common Antigens; Magnetic Resonance Imaging; Male; Middle Aged; Nitric Oxide; Sclerosis; Temporal Lobe; Tumor Necrosis Factor-alpha; Young Adult

2011
Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy.
    Nature neuroscience, 2011, Volume: 14, Issue:5

    Topics: Action Potentials; Adolescent; Adult; Analysis of Variance; Biophysics; Brain Mapping; Confidence Intervals; Electric Stimulation; Electroencephalography; Epilepsy, Temporal Lobe; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Hippocampus; Humans; In Vitro Techniques; Magnesium; Male; Middle Aged; Nerve Net; Potassium Chloride; Quinoxalines; Valine; Young Adult

2011
Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2011, Volume: 31, Issue:8

    Topics: Amino Acids; Animals; Astrocytes; Carbon Isotopes; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamic Acid; Glutamine; Hippocampus; Isotope Labeling; Kainic Acid; Magnetic Resonance Spectroscopy; Rats; Transaminases

2011
Glutamate transporters control metabotropic glutamate receptors activation to prevent the genesis of paroxysmal burst in the developing hippocampus.
    Neuroscience, 2012, Apr-05, Volume: 207

    Topics: Animals; Animals, Newborn; Epilepsy; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Hippocampus; Male; Organ Culture Techniques; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Synaptic Transmission; Vesicular Glutamate Transport Proteins

2012
Evidence for astrocytes as a potential source of the glutamate excess in temporal lobe epilepsy.
    Neurobiology of disease, 2012, Volume: 47, Issue:3

    Topics: Animals; Astrocytes; Brain Waves; Disease Models, Animal; Electric Stimulation; Electroencephalography; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Male; Methionine Sulfoximine; Microscopy, Immunoelectron; Rats; Rats, Sprague-Dawley

2012
Increased expression of TRPV1 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy.
    Journal of molecular neuroscience : MN, 2013, Volume: 49, Issue:1

    Topics: Adolescent; Adult; Astrocytes; Case-Control Studies; Cerebral Cortex; Dendrites; Epilepsy, Temporal Lobe; Female; GABAergic Neurons; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; Male; Microglia; Nerve Growth Factor; RNA, Messenger; TRPV Cation Channels; Up-Regulation

2013
Anxiogenic-like profile of Wistar adult rats based on the pilocarpine model: an animal model for trait anxiety?
    Psychopharmacology, 2013, Volume: 227, Issue:2

    Topics: Animals; Anxiety; Avoidance Learning; Behavior, Animal; Cell Death; Disease Models, Animal; Dose-Response Relationship, Drug; Electroencephalography; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Injections, Intraperitoneal; Male; Maze Learning; Neurons; Pilocarpine; Rats; Rats, Wistar; Time Factors

2013
Gene expression of glutamate metabolizing enzymes in the hippocampal formation in human temporal lobe epilepsy.
    Epilepsia, 2013, Volume: 54, Issue:2

    Topics: Adolescent; Adult; Autopsy; Child; Electroencephalography; Epilepsy, Temporal Lobe; Female; Gene Expression Regulation, Enzymologic; Glutamate-Ammonia Ligase; Glutamic Acid; Glutaminase; Hippocampus; Humans; In Situ Hybridization; Magnetic Resonance Imaging; Male; Middle Aged; RNA, Messenger; Young Adult

2013
Neuronal and glial metabolite content of the epileptogenic human hippocampus.
    Annals of neurology, 2002, Volume: 52, Issue:5

    Topics: Adult; Amino Acids; Aspartic Acid; Epilepsy, Temporal Lobe; Female; gamma-Aminobutyric Acid; Glutamic Acid; Glutamine; Hippocampus; Humans; Magnetic Resonance Imaging; Male; Middle Aged; Neuroglia; Neurons

2002
On the origin of interictal activity in human temporal lobe epilepsy in vitro.
    Science (New York, N.Y.), 2002, Nov-15, Volume: 298, Issue:5597

    Topics: Action Potentials; Adult; Electroencephalography; Epilepsy, Temporal Lobe; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; In Vitro Techniques; Interneurons; Membrane Potentials; Microelectrodes; Middle Aged; Nerve Fibers; Neurons, Afferent; Pyramidal Cells; Signal Transduction; Synaptic Transmission; Temporal Lobe

2002
Kindling-induced overexpression of Homer 1A and its functional implications for epileptogenesis.
    The European journal of neuroscience, 2002, Volume: 16, Issue:11

    Topics: Animals; Carrier Proteins; Disease Models, Animal; Electric Stimulation; Epilepsy, Temporal Lobe; Female; Gene Expression Regulation; Glutamic Acid; Hippocampus; Homer Scaffolding Proteins; Kindling, Neurologic; Male; Mice; Mice, Transgenic; Neurons; Neuropeptides; Rats; Rats, Wistar; RNA, Messenger; Synaptic Transmission

2002
1H MR spectroscopy of mesial temporal lobe epilepsies treated with Gamma knife.
    European radiology, 2003, Volume: 13, Issue:5

    Topics: Adult; Aspartic Acid; Brain; Brain Neoplasms; Choline; Creatine; Epilepsy, Temporal Lobe; Female; Follow-Up Studies; Glutamic Acid; Glutamine; Humans; Lipid Metabolism; Lipids; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Male; Postoperative Complications; Radiation Injuries; Radiation Tolerance; Radiosurgery; Seizures; Time Factors; Treatment Failure

2003
Opioid peptide release in the rat hippocampus after kainic acid-induced status epilepticus.
    Hippocampus, 2003, Volume: 13, Issue:4

    Topics: Animals; Disease Models, Animal; Disease Progression; Down-Regulation; Dynorphins; Enkephalins; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; Glutamic Acid; Hippocampus; Immunohistochemistry; Kainic Acid; Male; Opioid Peptides; Rats; Rats, Wistar; Reaction Time; Status Epilepticus

2003
Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy.
    Lancet (London, England), 2004, Jan-03, Volume: 363, Issue:9402

    Topics: Adolescent; Adult; Astrocytes; Blotting, Western; Child; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 2; Extracellular Space; Female; Glutamate-Ammonia Ligase; Glutamic Acid; Hippocampus; Humans; Immunohistochemistry; Male; Middle Aged; Temporal Lobe

2004
Hippocampal microdialysis during spontaneous intraoperative epileptiform activity.
    Acta neurochirurgica, 2004, Volume: 146, Issue:2

    Topics: Adult; Aspartic Acid; Dominance, Cerebral; Electroencephalography; Epilepsy, Temporal Lobe; Female; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; Intraoperative Period; Magnetic Resonance Imaging; Male; Microdialysis; Sclerosis; Surgery, Computer-Assisted

2004
Synaptosomal glutamate and GABA transport in patients with temporal lobe epilepsy.
    Journal of neuroscience research, 2004, Jun-15, Volume: 76, Issue:6

    Topics: Amino Acid Transport System X-AG; Animals; Biological Transport; Calcium; Carrier Proteins; Epilepsy, Temporal Lobe; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; Glutamic Acid; Humans; In Vitro Techniques; Membrane Proteins; Membrane Transport Proteins; Potassium; Rats; Synaptosomes

2004
Contributions of mossy fiber and CA1 pyramidal cell sprouting to dentate granule cell hyperexcitability in kainic acid-treated hippocampal slice cultures.
    Journal of neurophysiology, 2004, Volume: 92, Issue:6

    Topics: Animals; Axons; Buffers; Cell Shape; Electrophysiology; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Kainic Acid; Mossy Fibers, Hippocampal; Organ Culture Techniques; Pyramidal Cells; Rats; Rats, Sprague-Dawley; Synaptic Transmission

2004
Microdialysis of the lateral and medial temporal lobe during temporal lobe epilepsy surgery.
    Surgical neurology, 2005, Volume: 63, Issue:1

    Topics: Action Potentials; Adult; Aspartic Acid; Electroencephalography; Epilepsy, Temporal Lobe; Extracellular Fluid; Female; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; Male; Microdialysis; Neocortex; Neurosurgical Procedures; Neurotransmitter Agents; Temporal Lobe

2005
Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy.
    Neurology, 2005, Jan-25, Volume: 64, Issue:2

    Topics: Adult; Aged; Anterior Temporal Lobectomy; Anticonvulsants; Biomarkers; Brain Neoplasms; Cell Death; Combined Modality Therapy; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 2; Female; Glial Fibrillary Acidic Protein; Glutamate-Ammonia Ligase; Glutamic Acid; Hippocampus; Humans; Male; Middle Aged; Neuroglia; Neurons; Sclerosis

2005
Extracellular metabolites in the cortex and hippocampus of epileptic patients.
    Annals of neurology, 2005, Volume: 57, Issue:2

    Topics: Adolescent; Adult; Cerebral Cortex; Chromatography, High Pressure Liquid; Electroencephalography; Epilepsy, Temporal Lobe; Extracellular Fluid; Female; Glucose; Glutamic Acid; Glutamine; Hippocampus; Humans; Lactic Acid; Male; Microdialysis; Middle Aged

2005
In vitro 1H NMR spectroscopy shows an increase in N-acetylaspartylglutamate and glutamine content in the hippocampus of amygdaloid-kindled rats.
    Journal of neurochemistry, 2005, Volume: 92, Issue:6

    Topics: Amino Acids; Amygdala; Animals; Creatine; Dipeptides; Disease Models, Animal; Energy Metabolism; Epilepsy; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glucose; Glutamic Acid; Glutamine; Glycine; Hippocampus; In Vitro Techniques; Kindling, Neurologic; Magnetic Resonance Spectroscopy; Male; Neural Pathways; Rats; Rats, Wistar; Up-Regulation

2005
Metabolism is normal in astrocytes in chronically epileptic rats: a (13)C NMR study of neuronal-glial interactions in a model of temporal lobe epilepsy.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2005, Volume: 25, Issue:10

    Topics: Acetates; Animals; Astrocytes; Brain Chemistry; Carbon Isotopes; Cell Communication; Chronic Disease; Disease Models, Animal; Epilepsy, Temporal Lobe; Glucose; Glutamic Acid; Magnetic Resonance Imaging; Male; Neuroglia; Neurons; Rats; Rats, Sprague-Dawley

2005
Unchanged glutamine synthetase activity and increased NMDA receptor density in epileptic human neocortex: implications for the pathophysiology of epilepsy.
    Neurochemistry international, 2005, Volume: 47, Issue:6

    Topics: Adolescent; Adult; Aged; Amygdala; Binding, Competitive; Child; Child, Preschool; Epilepsy; Epilepsy, Temporal Lobe; Female; Glutamate-Ammonia Ligase; Glutamic Acid; Humans; Infant; Male; Middle Aged; Neocortex; Radioligand Assay; Receptor Aggregation; Receptors, N-Methyl-D-Aspartate; Synaptic Membranes; Synaptic Transmission; Synaptosomes; Up-Regulation

2005
Epileptogenesis is associated with enhanced glutamatergic transmission in the perforant path.
    Journal of neurophysiology, 2006, Volume: 95, Issue:2

    Topics: Animals; Disease Models, Animal; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Long-Term Potentiation; Male; Neuronal Plasticity; Neurons; Neurotransmitter Agents; Perforant Pathway; Pilocarpine; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission

2006
1H magnetic resonance spectroscopy at 3 T in cryptogenic and mesial temporal lobe epilepsy.
    NMR in biomedicine, 2006, Volume: 19, Issue:5

    Topics: Adult; Aspartic Acid; Choline; Creatine; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Glutamine; Humans; Inositol; Magnetic Resonance Spectroscopy; Male; Middle Aged

2006
Differential glutamate dehydrogenase (GDH) activity profile in patients with temporal lobe epilepsy.
    Epilepsia, 2006, Volume: 47, Issue:8

    Topics: Adolescent; Adult; Aspartate Aminotransferases; Child; Diagnosis, Differential; Energy Metabolism; Epilepsy, Temporal Lobe; Female; Glutamate Dehydrogenase; Glutamic Acid; Hippocampus; Humans; L-Lactate Dehydrogenase; Male; Middle Aged; Neocortex; Temporal Lobe

2006
Neuropeptide Y regulates recurrent mossy fiber synaptic transmission less effectively in mice than in rats: Correlation with Y2 receptor plasticity.
    Neuroscience, 2006, Dec-28, Volume: 143, Issue:4

    Topics: Animals; Arginine; Benzazepines; Convulsants; Dentate Gyrus; Epilepsy, Temporal Lobe; Glutamic Acid; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Mossy Fibers, Hippocampal; Neuronal Plasticity; Neuropeptide Y; Organ Culture Techniques; Patch-Clamp Techniques; Presynaptic Terminals; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Species Specificity; Status Epilepticus; Synaptic Transmission

2006
Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures.
    Neurobiology of disease, 2007, Volume: 25, Issue:2

    Topics: Adolescent; Adult; Amino Acid Transport System X-AG; Astrocytes; Child; Child, Preschool; Down-Regulation; Epilepsy; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 1; Excitatory Amino Acid Transporter 2; Extracellular Fluid; Female; Glutamic Acid; Hippocampus; Humans; Immunohistochemistry; Male; Microscopy, Electron, Transmission; Middle Aged; Up-Regulation

2007
Hippocampal sclerosis: MR prediction of seizure intractability.
    Epilepsia, 2007, Volume: 48, Issue:2

    Topics: Adult; Aspartic Acid; Choline; Creatine; Epilepsy, Temporal Lobe; Female; Functional Laterality; Glutamic Acid; Glutamine; Hippocampus; Humans; Magnetic Resonance Spectroscopy; Male; Prognosis; Sclerosis; Severity of Illness Index; Temporal Lobe

2007
Functional role of mGluR1 and mGluR4 in pilocarpine-induced temporal lobe epilepsy.
    Neurobiology of disease, 2007, Volume: 26, Issue:3

    Topics: Animals; Convulsants; Disease Models, Animal; Down-Regulation; Epilepsy; Epilepsy, Temporal Lobe; Gene Expression Regulation; Genetic Predisposition to Disease; Glutamic Acid; Green Fluorescent Proteins; Hippocampus; Mice; Mice, Knockout; Mice, Transgenic; Nerve Degeneration; Neurons; Pilocarpine; Receptors, Metabotropic Glutamate; Recombinant Fusion Proteins; Up-Regulation

2007
Epileptiform synchronization in the rat insular and perirhinal cortices in vitro.
    The European journal of neuroscience, 2007, Volume: 26, Issue:12

    Topics: 4-Aminopyridine; Action Potentials; Animals; Cerebral Cortex; Cortical Synchronization; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; In Vitro Techniques; Male; Nerve Net; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid, mu; Signal Transduction

2007
(1)H-MRS profile in MRI positive- versus MRI negative patients with temporal lobe epilepsy.
    Seizure, 2008, Volume: 17, Issue:6

    Topics: Adult; Analysis of Variance; Aspartic Acid; Creatine; Electroencephalography; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Glutamine; Hippocampus; Humans; Inositol; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Male; Middle Aged; Protons; Sclerosis

2008
Glutamate is critically involved in seizure-induced overexpression of P-glycoprotein in the brain.
    Neuropharmacology, 2008, Volume: 54, Issue:6

    Topics: Animals; Apoptosis; ATP Binding Cassette Transporter, Subfamily B, Member 1; Brain Chemistry; Capillaries; Dizocilpine Maleate; Epilepsy, Temporal Lobe; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Image Processing, Computer-Assisted; Immunohistochemistry; Muscarinic Agonists; Nerve Degeneration; Pilocarpine; Quinolines; Rats; Rats, Wistar; Seizures; Status Epilepticus

2008
Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients.
    Epilepsia, 2008, Volume: 49, Issue:8

    Topics: Adolescent; Adult; Atrophy; Chromatography, High Pressure Liquid; Electroencephalography; Epilepsy, Temporal Lobe; Extracellular Space; Female; Functional Laterality; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; Magnetic Resonance Imaging; Male; Microdialysis; Middle Aged; Severity of Illness Index

2008
Hippocampal GABA transporter function in temporal-lobe epilepsy.
    Nature, 1995, Jul-13, Volume: 376, Issue:6536

    Topics: Amygdala; Animals; Carrier Proteins; Disease Models, Animal; Epilepsy, Temporal Lobe; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; Male; Membrane Proteins; Membrane Transport Proteins; Microdialysis; Neuroglia; Neurons; Organic Anion Transporters; Potassium; Rats; Rats, Sprague-Dawley

1995
Analysis of macromolecule resonances in 1H NMR spectra of human brain.
    Magnetic resonance in medicine, 1994, Volume: 32, Issue:3

    Topics: Adult; Creatine; Cytosol; Epilepsy, Temporal Lobe; Female; gamma-Aminobutyric Acid; Glutamic Acid; Glutamine; Humans; Hydrogen; Image Enhancement; Lactates; Lactic Acid; Macromolecular Substances; Magnetic Resonance Spectroscopy; Male; Molecular Weight; Peptides; Temporal Lobe

1994
1H magnetic resonance spectroscopy of extracts of human epileptic neocortex and hippocampus.
    Neurology, 1993, Volume: 43, Issue:3 Pt 1

    Topics: Adolescent; Adult; Amino Acids; Aspartic Acid; Cerebral Cortex; Child; Epilepsy, Temporal Lobe; Female; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Hippocampus; Humans; Magnetic Resonance Imaging; Male; Middle Aged

1993
Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain.
    Magnetic resonance imaging, 1995, Volume: 13, Issue:8

    Topics: Aspartic Acid; Astrocytes; Biopsy; Creatine; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamic Acid; Humans; Image Processing, Computer-Assisted; Magnetic Resonance Spectroscopy; Neurons; Synaptic Transmission; Temporal Lobe

1995
Kindling-induced epileptiform potentials in piriform cortex slices originate in the underlying endopiriform nucleus.
    Journal of neurophysiology, 1996, Volume: 76, Issue:3

    Topics: Amygdala; Animals; Basal Ganglia; Cobalt; Electric Stimulation; Epilepsy, Temporal Lobe; Evoked Potentials; Excitatory Amino Acid Antagonists; Excitatory Amino Acids; Glutamic Acid; In Vitro Techniques; Kindling, Neurologic; Male; Nerve Fibers; Olfactory Pathways; Pyramidal Cells; Quinoxalines; Rats; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate

1996
Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy.
    Journal of neurophysiology, 1997, Volume: 77, Issue:6

    Topics: Animals; Cells, Cultured; Dendrites; Dentate Gyrus; Epilepsy, Temporal Lobe; Glutamic Acid; Humans; Microscopy, Fluorescence; Neurons; Patch-Clamp Techniques; Psychosurgery; Rats; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Temporal Lobe

1997
Quantitative autoradiographic analysis of ionotropic glutamate receptor subtypes in human temporal lobe epilepsy: up-regulation in reorganized epileptogenic hippocampus.
    The European journal of neuroscience, 1997, Volume: 9, Issue:10

    Topics: Adult; Aged; Autopsy; Autoradiography; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Hippocampus; Humans; Male; Middle Aged; Neurons; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Reference Values; Tritium; Up-Regulation

1997
Up-regulation of neuropeptide Y-Y2 receptors in an animal model of temporal lobe epilepsy.
    Molecular pharmacology, 1998, Volume: 53, Issue:1

    Topics: Animals; Autoradiography; Behavior, Animal; Binding, Competitive; Disease Models, Animal; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; Glutamic Acid; In Situ Hybridization; Iodine Radioisotopes; Kainic Acid; Kinetics; Male; Mossy Fibers, Hippocampal; Peptide Fragments; Peptide YY; Pyramidal Cells; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; RNA, Messenger; Up-Regulation

1998
Altered hippocampal kainate-receptor mRNA levels in temporal lobe epilepsy patients.
    Neurobiology of disease, 1998, Volume: 5, Issue:3

    Topics: Adult; Animals; Autopsy; Epilepsy, Complex Partial; Epilepsy, Temporal Lobe; GluK2 Kainate Receptor; GluK3 Kainate Receptor; Glutamic Acid; Hippocampus; Humans; In Situ Hybridization; Interneurons; Male; Middle Aged; Rats; Rats, Sprague-Dawley; Receptors, Kainic Acid; RNA, Messenger; Synapses; Synaptic Transmission

1998
Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy.
    The Journal of comparative neurology, 1999, Jun-14, Volume: 408, Issue:4

    Topics: Animals; Axons; Dendrites; Electrophysiology; Epilepsy, Temporal Lobe; Glutamic Acid; Hippocampus; Image Processing, Computer-Assisted; Lysine; Male; Nerve Net; Neural Pathways; Neuronal Plasticity; Neurons; Pyramidal Cells; Rats; Rats, Wistar; Seizures; Synapses

1999
Characterization of neocortical and hippocampal synaptosomes from temporal lobe epilepsy patients.
    Brain research, 1999, Aug-07, Volume: 837, Issue:1-2

    Topics: Adult; Animals; Brain Neoplasms; Calcium; Epilepsy, Temporal Lobe; Female; gamma-Aminobutyric Acid; GAP-43 Protein; Glial Fibrillary Acidic Protein; Glutamic Acid; Hippocampus; Humans; Male; Membrane Potentials; Neocortex; Nerve Tissue Proteins; Phosphorylation; Potassium; Rats; Synaptosomes

1999
Measured increase in intracellular Ca(2+) during stimulated release of endogenous glutamate from human cerebrocortical synaptosomes.
    Brain research, 1999, Oct-02, Volume: 843, Issue:1-2

    Topics: 4-Aminopyridine; Animals; Calcium; Cerebral Cortex; Cytosol; Epilepsy, Temporal Lobe; Glutamic Acid; Guinea Pigs; Humans; Kinetics; Rats; Synaptosomes; Temporal Lobe

1999
Glutamate and gamma-aminobutyric acid content and release of synaptosomes from temporal lobe epilepsy patients.
    Journal of neuroscience research, 2000, Jun-01, Volume: 60, Issue:5

    Topics: Animals; Calcium; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; Male; Potassium; Rats; Rats, Wistar; Synaptic Vesicles; Synaptosomes; Temporal Lobe; Time Factors

2000
Synaptic connections from multiple subfields contribute to granule cell hyperexcitability in hippocampal slice cultures.
    Journal of neurophysiology, 2000, Volume: 84, Issue:6

    Topics: Action Potentials; Animals; Animals, Newborn; Cells, Cultured; Epilepsy, Temporal Lobe; Excitatory Postsynaptic Potentials; GABA Antagonists; GABA-A Receptor Antagonists; Glutamic Acid; Hippocampus; In Vitro Techniques; Male; Neural Pathways; Neurons; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Seizures; Synapses; Synaptic Transmission; Time

2000
Altered pattern of light transmittance and resistance to AMPA-induced swelling in the dentate gyrus of the epileptic hippocampus.
    Hippocampus, 2000, Volume: 10, Issue:6

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Adult; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain Edema; Dentate Gyrus; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Humans; Light; Male; Membrane Potentials; Neurons; Optics and Photonics; Organ Culture Techniques; Osmotic Pressure; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Tetrodotoxin

2000
Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy.
    Brain research, 2001, Jun-08, Volume: 903, Issue:1-2

    Topics: Animals; Calcium; Cell Survival; Disease Models, Animal; Epilepsy, Temporal Lobe; Fluorescent Dyes; Fura-2; Glutamic Acid; Hippocampus; Homeostasis; Male; Microscopy, Fluorescence; Muscarinic Agonists; Neuronal Plasticity; Pilocarpine; Rats; Status Epilepticus; Time Factors

2001
Reduction of glial glutamate transporters in the parietal cortex and hippocampus of the EL mouse.
    Journal of neurochemistry, 2001, Volume: 79, Issue:3

    Topics: Amino Acid Transport System X-AG; Animals; Antibody Specificity; Blotting, Western; Chromatography, High Pressure Liquid; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 2; Glutamic Acid; Hippocampus; In Situ Hybridization; Male; Mice; Mice, Inbred Strains; Mice, Mutant Strains; Neuroglia; Parietal Lobe; RNA, Messenger

2001
Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats.
    The Journal of comparative neurology, 2002, Jan-21, Volume: 442, Issue:4

    Topics: Amino Acid Transport System X-AG; Animals; Carrier Proteins; Dentate Gyrus; Down-Regulation; Electric Stimulation; Epilepsy; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 2; Excitatory Amino Acid Transporter 3; Glutamate Plasma Membrane Transport Proteins; Glutamic Acid; Immunohistochemistry; Male; Mossy Fibers, Hippocampal; Neuroglia; Neuronal Plasticity; Neurons; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Status Epilepticus; Symporters; Up-Regulation

2002
GABA and L-glutamic acid release in en bloc resection slices of human hippocampus: an in vitro microdialysis study.
    Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2001, Volume: 22, Issue:4

    Topics: Adult; Amygdala; Chromatography, High Pressure Liquid; Epilepsy, Temporal Lobe; Female; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Humans; In Vitro Techniques; Male; Microdialysis; Potassium; Sclerosis; Synaptic Transmission

2001
Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy.
    Brain : a journal of neurology, 2002, Volume: 125, Issue:Pt 1

    Topics: Adult; Amino Acid Transport System X-AG; Analysis of Variance; Animals; Anticonvulsants; Drug Resistance; Epilepsy, Temporal Lobe; Female; Glutamic Acid; Hippocampus; Humans; Immunoblotting; Immunohistochemistry; In Situ Hybridization; Male; Middle Aged; Sclerosis

2002
[4-Tesla 1H MR spectroscopy in patients with temporal lobe epilepsy].
    Der Nervenarzt, 1991, Volume: 62, Issue:12

    Topics: Adolescent; Adult; Aspartic Acid; Choline; Creatine; Energy Metabolism; Epilepsies, Partial; Epilepsy, Temporal Lobe; Epilepsy, Tonic-Clonic; Female; Glutamates; Glutamic Acid; Humans; Lactates; Lactic Acid; Magnetic Resonance Spectroscopy; Male; Middle Aged; Phosphocreatine; Phosphorylcholine; Reference Values; Temporal Lobe

1991
A GABA and glutamate immunocytochemical study of cortical neurons of temporal epilepsy in humans.
    The Japanese journal of psychiatry and neurology, 1990, Volume: 44, Issue:2

    Topics: Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Humans; Immunoenzyme Techniques; Microscopy, Electron; Neurons; Synaptic Vesicles; Temporal Lobe

1990
Aspartic acid aminotransferase activity is increased in actively spiking compared with non-spiking human epileptic cortex.
    Journal of neurology, neurosurgery, and psychiatry, 1988, Volume: 51, Issue:4

    Topics: Adolescent; Adult; Aspartate Aminotransferases; Aspartic Acid; Biopsy; Cerebral Cortex; Epilepsies, Partial; Epilepsy, Temporal Lobe; Evoked Potentials; Female; Glutamates; Glutamic Acid; Humans; Male; Middle Aged

1988