glucosepane has been researched along with Diabetic-Retinopathy* in 2 studies
2 other study(ies) available for glucosepane and Diabetic-Retinopathy
Article | Year |
---|---|
Advanced glycation end products in human diabetic lens capsules.
Advanced glycation end products (AGEs) accumulate with age in human lens capsules. AGEs in lens capsules potentiate the transforming growth factor beta-2-mediated mesenchymal transition of lens epithelial cells, which suggests that they play a role in posterior capsule opacification after cataract surgery. We measured AGEs by liquid chromatography-mass spectrometry in capsulorhexis specimens obtained during cataract surgery from nondiabetic and diabetic patients with and without established retinopathy. Our data showed that the levels of most AGEs (12 out of 13 measured) were unaltered in diabetic patients and diabetic patients with retinopathy compared to nondiabetic patients. There was one exception: glucosepane, which was significantly higher in diabetic patients, both with (6.85 pmol/μmol OH-proline) and without retinopathy (8.32 pmol/μmol OH-proline), than in nondiabetic patients (4.01 pmol/μmol OH-proline). Our study provides an explanation for the similar incidence of posterior capsule opacification between nondiabetic and diabetic cataract patients observed in several studies. Topics: Aged; Blood Glucose; Capsulorhexis; Cataract; Chromatography, Liquid; Diabetes Mellitus; Diabetic Retinopathy; Female; Glycated Hemoglobin; Glycation End Products, Advanced; Humans; Lens Capsule, Crystalline; Male; Middle Aged; Tandem Mass Spectrometry | 2021 |
Skin advanced glycation end products glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type 1 diabetes.
Six skin collagen advanced glycation end products (AGEs) originally measured near to the time of the Diabetes Control and Complications Trial (DCCT) closeout in 1993 may contribute to the "metabolic memory" phenomenon reported in the follow-up Epidemiology of Diabetes Interventions and Complications (EDIC) study. We have now investigated whether the addition of four originally unavailable AGEs (i.e., glucosepane [GSPNE], hydroimidazolones of methylglyoxal [MG-H1] and glyoxal, and carboxyethyl-lysine) improves associations with incident retinopathy, nephropathy, and neuropathy events during 13-17 years after DCCT. The complete 10-AGE panel is associated with three-step Early Treatment of Diabetic Retinopathy Study scale worsening of retinopathy (P ≤ 0.002), independent of either mean DCCT or EDIC study A1C level. GSPNE and fructose-lysine (furosine [FUR]) correlate with retinopathy progression, independently of A1C level. The complete panel also correlates with microalbuminuria (P = 0.008) and FUR with nephropathy independently of A1C level (P ≤ 0.02). Neuropathy correlates with the complete panel despite adjustment for A1C level (P ≤ 0.005). MG-H1 and FUR are dominant, independent of A1C level (P < 0.0001), whereas A1C loses significance after adjustment for the AGEs. Overall, the added set of four AGEs enhances the association of the original panel with progression risk of retinopathy and neuropathy (P < 0.04) but not nephropathy, while GSPNE and MG-H1 emerge as the principal new risk factors. Skin AGEs are robust long-term markers of microvascular disease progression, emphasizing the importance of early and sustained implementation of intensive therapy. Topics: Adult; Diabetes Mellitus, Type 1; Diabetic Angiopathies; Diabetic Nephropathies; Diabetic Retinopathy; Disease Progression; Female; Glycation End Products, Advanced; Humans; Imidazoles; Logistic Models; Male; Microvessels; Multivariate Analysis; Pyruvaldehyde; Skin; Young Adult | 2015 |