glucosepane and Diabetes-Mellitus--Type-2

glucosepane has been researched along with Diabetes-Mellitus--Type-2* in 3 studies

Reviews

1 review(s) available for glucosepane and Diabetes-Mellitus--Type-2

ArticleYear
Glucosepane: a poorly understood advanced glycation end product of growing importance for diabetes and its complications.
    Clinical chemistry and laboratory medicine, 2014, Jan-01, Volume: 52, Issue:1

    Advanced glycation end products (AGEs) represent a family of protein, peptide, amino acid, nucleic acid and lipid adducts formed by the reaction of carbonyl compounds derived directly or indirectly from glucose, ascorbic acid and other metabolites such as methylglyoxal. AGE formation in diabetes is of growing importance for their role as markers and potential culprits of diabetic complications, in particular retinopathy, nephropathy and neuropathy. Development of sensitive and specific assays utilizing liquid chromatography mass spectrometry with isotope dilution method has made it possible to detect and quantitate non-UV active AGEs such as carboxymethyl-lysine and glucosepane, the most prevalent AGE and protein crosslink of the extracellular matrix. Below we review studies on AGE formation in two skin biopsies obtained near the closeout of the Diabetes Control and Complications Trial (DCCT), one of which was processed in 2011 for assay of novel AGEs. The results of these analyses show that while several AGEs are associated and predict complication progression, the glucose/fructose-lysine/glucosepane AGE axis is one of the most robust markers for microvascular disease, especially retinopathy, in spite of adjustment for past or future average glycemia. Yet overall little biological and clinical information is available on glucosepane, making this review a call for data in a field of growing importance for diabetes and chronic metabolic diseases of aging.

    Topics: Animals; Collagen Type I; Diabetes Complications; Diabetes Mellitus, Type 2; Glycation End Products, Advanced; Humans; Risk Factors; Skin; Vascular Diseases

2014

Other Studies

2 other study(ies) available for glucosepane and Diabetes-Mellitus--Type-2

ArticleYear
Urinary cathepsin L is predictive of changes in albuminuria and correlates with glucosepane in patients with type 2 diabetes in a closed-cohort study.
    Journal of diabetes and its complications, 2020, Volume: 34, Issue:9

    Cathepsin D (CTSD) and L (CTSL) are lysosomal proteases which degrade and detoxify advanced glycation end product (AGE)-modified proteins which are predictive of the development of diabetic nephropathy. We aimed to quantify cathepsin levels in urine from patients with type 2 diabetes and to relate these to the amount of urinary free AGEs at baseline and with kidney function after four years of follow-up in this closed cohort study.. We established and validated a LC MS/MS method for the quantification of CTSD and CTSL in urine. Patients with type 2 diabetes were screened for diabetic kidney disease and 141 patients were seen at baseline and after four years. CTSD and CTSL and free AGEs were quantified in urine by LC MS/MS at baseline in these patients.. The detection limit of CTSD and CTSL in urine was 2.4 ng/l and 19.1 ng/l, respectively. CTSD (p < 0.0001, r = 0.555) and CTSL (p < 0.0001, r = 0.608) correlated positively with albuminuria at time of recruitment. In addition levels of the proteases but not albuminuria correlated with urinary levels of the major cross-linking AGE glucosepane (CTSD: p = 0.012, r = 0.225; CTSL: p < 0.001, r = 0.376). A strong non-linear association between CTSD (r = 0.568), CTSL (r = 0.588) and change in albuminuria over four years was present. High levels of CTSL (p = 0.007, beta = -0.366) were associated with an improvement of albuminuria after four years.. A sensitive LC MS/MS assay for the quantification of CTSD and CTSL in urine was established. High CTSL baseline levels were associated with an improvement in albuminuria at follow-up. An increased excretion and thus detoxification of the free form of the pathogenic cross-linking AGE glucosepane could explain the positive predictive value of high CTSL levels on albuminuria.

    Topics: Albuminuria; Cathepsin D; Cathepsin L; Cohort Studies; Diabetes Mellitus, Type 2; Glycation End Products, Advanced; Humans; Tandem Mass Spectrometry

2020
Studies of advanced glycation end products and oxidation biomarkers for type 2 diabetes.
    BioFactors (Oxford, England), 2018, Volume: 44, Issue:3

    Advanced glycation end products (AGEs) are formed upon nonenzymatic reactions of sugars or their metabolites with proteins and other cellular constituents. Many AGEs are long lived. Recent findings suggest that AGEs may predict diabetes and its complications and thus may warrant further study. The objective of this study was to assess the validity of our experimental procedures for measuring AGEs in stored blood sample and to conduct a pilot study for developing AGE biomarkers for diabetes and/or age-related changes of glucose metabolism. We conducted a reliability study of the samples and methods using liquid chromatography-tandem mass spectrometry (LC-MS)/MS assays for 10 AGEs (including methylglyoxal-derived hydroimidazolone (MG-H1), glucosepane (GSP) and two oxidation measures, in stored repository blood samples from the Nurses' Health Study and the Health Professionals Follow-up Study. We also analyzed data relating blood GSP levels to type 2 diabetes status in a case-control study (25 cases and 15 controls). Among the AGEs, GSP, and MG-H1 showed the highest reliability across the various measures: reliability in duplicate samples and stability with delayed processing and storage over 1-2 year period. Furthermore, plasma GSP was associated with older age (P = 0.04) and type 2 diabetes status (age-adjusted P = 0.0475). Our findings suggest that analysis of these AGEs may be developed as biomarkers for diabetes and/or age-related changes of glucose metabolism. © 2018 BioFactors, 44(3):281-288, 2018.

    Topics: Age Factors; Aging; Biomarkers; Blood Banks; Blood Glucose; Case-Control Studies; Diabetes Mellitus, Type 2; Female; Follow-Up Studies; Glycation End Products, Advanced; Humans; Imidazoles; Middle Aged; Ornithine; Oxidation-Reduction; Pilot Projects

2018