Page last updated: 2024-08-24

glucose, (beta-d)-isomer and Hypertrophy, Right Ventricular

glucose, (beta-d)-isomer has been researched along with Hypertrophy, Right Ventricular in 2 studies

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's1 (50.00)24.3611
2020's1 (50.00)2.80

Authors

AuthorsStudies
Al-Omran, M; Bhatt, DL; Chowdhury, B; Connelly, KA; Hess, DA; Kabir, MG; Luu, AZ; Luu, VZ; Mazer, CD; Pan, Y; Quan, A; Sabongui, S; Teoh, H; Verma, S1
Cai, H; Cai, X; Chen, M; Chen, Y; Ding, C; Guo, R; Huang, X; Wang, L; Xu, X; Yao, D; Yu, X; Zou, L1

Other Studies

2 other study(ies) available for glucose, (beta-d)-isomer and Hypertrophy, Right Ventricular

ArticleYear
The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension.
    Biochemical and biophysical research communications, 2020, 03-26, Volume: 524, Issue:1

    Topics: Animals; Benzhydryl Compounds; Blood Pressure; Diabetes Mellitus, Type 2; Fibrosis; Glucosides; Heart Ventricles; Hemodynamics; Humans; Hypertrophy, Right Ventricular; Lung; Male; Models, Animal; Monocrotaline; Mortality; Pulmonary Arterial Hypertension; Pulmonary Artery; Rats, Sprague-Dawley; Risk Assessment; Sodium-Glucose Transporter 2 Inhibitors; Vascular Remodeling

2020
Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway.
    Journal of molecular and cellular cardiology, 2015, Volume: 82

    Topics: Animals; Apoptosis; Disease Models, Animal; Gene Expression; Glucosides; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Lung; Male; Mice; Mitochondria; Myocytes, Smooth Muscle; Phenols; Pulmonary Artery; Receptor, Adenosine A2A; RNA, Messenger; Signal Transduction; Vascular Remodeling

2015