glucoraphanin has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 3 studies
2 review(s) available for glucoraphanin and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Impact of Glucoraphanin-Mediated Activation of Nrf2 on Non-Alcoholic Fatty Liver Disease with a Focus on Mitochondrial Dysfunction.
Non-alcoholic fatty liver disease (NAFLD) is a common disease in Western nations and ranges in severity from steatosis to steatohepatitis (NASH). NAFLD is a genetic-environmental-metabolic stress-related disease of unclear pathogenesis. NAFLD is triggered by caloric overconsumption and physical inactivity, which lead to insulin resistance and oxidative stress. A growing body of evidence indicates that mitochondrial dysfunction plays a critical role in the pathogenesis of NAFLD. Mitochondrial dysfunction not only promotes fat accumulation, but also leads to generation of reactive oxygen species (ROS) and lipid peroxidation, resulting in oxidative stress in hepatocytes. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important modulator of antioxidant signaling that serves as a primary cellular defense against the cytotoxic effects of oxidative stress. The pharmacological induction of Nrf2 ameliorates obesity-associated insulin resistance and NAFLD in a mouse model. Sulforaphane and its precursor glucoraphanin are derived from broccoli sprouts and are the most potent natural Nrf2 inducers-they may protect mitochondrial function, thus suppressing the development of NASH. In this review, we briefly describe the role of mitochondrial dysfunction in the pathogenesis of NASH and the effects of glucoraphanin on its development. Topics: Animals; Glucosinolates; Humans; Imidoesters; Mitochondria; NF-E2-Related Factor 2; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Oximes; Sulfoxides | 2019 |
Antioxidant dietary approach in treatment of fatty liver: New insights and updates.
Non-alcoholic fatty liver disease (NAFLD) is a common clinicopathological condition, encompassing a range of conditions caused by lipid deposition within liver cells. To date, no approved drugs are available for the treatment of NAFLD, despite the fact that it represents a serious and growing clinical problem in the Western world. Identification of the molecular mechanisms leading to NAFLD-related fat accumulation, mitochondrial dysfunction and oxidative balance impairment facilitates the development of specific interventions aimed at preventing the progression of hepatic steatosis. In this review, we focus our attention on the role of dysfunctions in mitochondrial bioenergetics in the pathogenesis of fatty liver. Major data from the literature about the mitochondrial targeting of some antioxidant molecules as a potential treatment for hepatic steatosis are described and critically analysed. There is ample evidence of the positive effects of several classes of antioxidants, such as polyphenols ( Topics: Animals; Anthocyanins; Antioxidants; Carotenoids; Catechin; Coumestrol; Curcumin; Energy Metabolism; Fatty Liver; Glucosinolates; Humans; Imidoesters; Isothiocyanates; Lipogenesis; Mitochondria; Non-alcoholic Fatty Liver Disease; Nutritional Sciences; Oxidative Stress; Oximes; Polyphenols; Quercetin; Resveratrol; Stilbenes; Sulfoxides; Xanthophylls | 2017 |
1 other study(ies) available for glucoraphanin and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice.
Low-grade sustained inflammation links obesity to insulin resistance and nonalcoholic fatty liver disease (NAFLD). However, therapeutic approaches to improve systemic energy balance and chronic inflammation in obesity are limited. Pharmacological activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) alleviates obesity and insulin resistance in mice; however, Nrf2 inducers are not clinically available owing to safety concerns. Thus, we examined whether dietary glucoraphanin, a stable precursor of the Nrf2 inducer sulforaphane, ameliorates systemic energy balance, chronic inflammation, insulin resistance, and NAFLD in high-fat diet (HFD)-fed mice. Glucoraphanin supplementation attenuated weight gain, decreased hepatic steatosis, and improved glucose tolerance and insulin sensitivity in HFD-fed wild-type mice but not in HFD-fed Nrf2 knockout mice. Compared with vehicle-treated controls, glucoraphanin-treated HFD-fed mice had lower plasma lipopolysaccharide levels and decreased relative abundance of the gram-negative bacteria family Desulfovibrionaceae in their gut microbiomes. In HFD-fed mice, glucoraphanin increased energy expenditure and the protein expression of uncoupling protein 1 (Ucp1) in inguinal and epididymal adipose depots. Additionally, in this group, glucoraphanin attenuated hepatic lipogenic gene expression, lipid peroxidation, classically activated M1-like macrophage accumulation, and inflammatory signaling pathways. By promoting fat browning, limiting metabolic endotoxemia-related chronic inflammation, and modulating redox stress, glucoraphanin may mitigate obesity, insulin resistance, and NAFLD. Topics: Adipose Tissue, Brown; Adipose Tissue, White; Animals; Desulfovibrio; Diet, High-Fat; Endotoxemia; Energy Metabolism; Gastrointestinal Microbiome; Glucosinolates; Imidoesters; Inflammation; Insulin Resistance; Lipid Peroxidation; Lipopolysaccharides; Liver; Macrophages; Mice; Mice, Knockout; NF-E2-Related Factor 2; Non-alcoholic Fatty Liver Disease; Obesity; Oximes; Sulfoxides; Uncoupling Protein 1 | 2017 |