glucagon-like-peptide-2 has been researched along with Liver-Failure* in 2 studies
2 other study(ies) available for glucagon-like-peptide-2 and Liver-Failure
Article | Year |
---|---|
Glucagon-like peptide-1 and glucagon-like peptide-2 regulation during human liver regeneration.
Accumulating evidence suggests that metabolic demands of the regenerating liver are met via lipid metabolism and critical regulators of this process. As such, glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) critically affect hepatic regeneration in rodent models. The present study aimed to evaluate potential alterations and dynamics of circulating GLP-1 and GLP-2 in patients undergoing liver resections, focusing on post-hepatectomy liver failure (PHLF). GLP-1, GLP-2, Interleukin-6 (IL-6) and parameters of lipid metabolism were determined perioperatively in fasting plasma of 46 patients, who underwent liver resection. GLP-1 and GLP-2 demonstrated a rapid and consistently inverse time course during hepatic regeneration with a significant decrease of GLP-1 and increase of GLP-2 on POD1. Importantly, these postoperative dynamics were significantly more pronounced when PHLF occurred. Of note, the extent of resection or development of complications were not associated with these alterations. IL-6 mirrored the time course of GLP-2. Assessing the main degradation protein dipeptidyl peptidase 4 (DPP4) no significant association with either GLP-1 or -2 could be found. Additionally, in PHLF distinct postoperative declines in plasma lipid parameters were present and correlated with GLP-2 dynamics. Our data suggest dynamic inverse regulation of GLP-1 and GLP-2 during liver regeneration, rather caused by an increase in expression/release than by changes in degradation capacity and might be associated with inflammatory responses. Their close association with circulating markers of lipid metabolism and insufficient hepatic regeneration after liver surgery suggest a critical involvement during these processes in humans. Topics: Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Hepatectomy; Hepatic Insufficiency; Humans; Interleukin-6; Liver Failure; Liver Regeneration | 2023 |
Decreased liver damage in rat models of short bowel syndrome through DPP4 inhibition.
Total parenteral nutrition causes liver damage in patients with short bowel syndrome (SBS), in whom intestinal failure-associated liver disease (IFALD) is the strongest risk factor for mortality. We previously demonstrated the efficacy of dipeptidyl peptidase-4 inhibitors (DPP4-Is) for nutritional absorption and intestinal barrier function enhancement. Herein, we investigated the efficacy of DPP4-Is in preventing liver damage in SBS rat models.. Rats were allocated to one of five groups: normal saline (NS) + sham, DPP4-I + sham, NS + SBS, DPP4-I + SBS, and GLP-2 + SBS. DPP4-I or NS was administered orally once daily. Serum aspartate aminotransferase, alanine aminotransferase (ALT), alkaline phosphatase, and total bile acid levels were measured to assess liver function. Moreover, we evaluated liver damage using the SAF (steatosis activity fibrosis) score, which is also used to assess nonalcoholic steatohepatitis.. ALT levels and SAF scores were significantly lower in the DPP4-I + SBS group than in the NS + SBS group. Jejunal and ileal villus heights were significantly higher in the DPP4-I + SBS group than in the GLP-2 + SBS group.. The downregulation of ALT levels and SAF scores triggered by DPP4-I use may be correlated with DPP4-I-induced adiposis inhibition in SBS and NASH models. Therefore, DPP4-I may be used to reduce IFALD in patients with SBS. Topics: Animals; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 2; Liver Failure; Non-alcoholic Fatty Liver Disease; Rats; Short Bowel Syndrome | 2022 |