glucagon-like-peptide-1 has been researched along with Sarcopenia* in 4 studies
1 review(s) available for glucagon-like-peptide-1 and Sarcopenia
Article | Year |
---|---|
Obesity and weight management in the elderly: a focus on men.
The rising rate of overweight/obesity among the ever-growing ageing population is imposing massive and rapidly changing burdens of ill health. The observation that the BMI value associated with the lowest relative mortality is slightly higher in older than in younger adults, mainly through its reduced impact on coronary heart disease, has often been misinterpreted that obesity is not as harmful in the elderly, who suffer a large range of disabling consequences of obesity. All medical consequences of obesity are multi-factorial and most alleviated by modest, achievable weight loss (5-10 kg) with an evidence-based maintenance strategy. But severe obesity, e.g. BMI >40 may demand greater weight loss e.g. >15 kg to reverse type 2 diabetes. Since relatively reduced physical activity and reduced muscle mass (sarcopenic obesity) are common in the elderly, combining exercise and modest calorie restriction optimally reduces fat mass and preserves muscle mass - age presents no obstacle and reducing polypharmacy is a valuable outcome. The currently licensed drug orlistat has no age-related hazards and is effective in a low fat diet, but the risks from bariatric surgery begin to outweigh benefits above age 60. For the growing numbers of obese elderly with diabetes, the glucagon-like peptide-1 (GLP-1) receptor analogue liraglutide appears a safe way to promote and maintain substantial weight loss. Obesity and sarcopenia should be prevented from younger age and during life-transitions including retiral to improve future health outcomes and quality of life, with a focus on those in "obese families". Topics: Adult; Aged; Bariatric Surgery; Body Composition; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Europe; Glucagon-Like Peptide 1; Humans; Life Style; Liraglutide; Male; Metabolic Syndrome; Middle Aged; Morbidity; Obesity; Prevalence; Quality of Life; Sarcopenia; Waist Circumference; Weight Loss | 2013 |
3 other study(ies) available for glucagon-like-peptide-1 and Sarcopenia
Article | Year |
---|---|
Gastric Mobility and Gastrointestinal Hormones in Older Patients with Sarcopenia.
Sarcopenia has serious clinical consequences and poses a major threat to older people. Gastrointestinal environmental factors are believed to be the main cause. The aim of this study was to describe the relationship between sarcopenia and gastric mobility and to investigate the relationship between sarcopenia and the concentration of gastrointestinal hormones in older patients. Patients aged ≥ 75 years were recruited for this prospective study from August 2018 to February 2019 at the emergency department. The enrolled patients were tested for sarcopenia. Gastric emptying scintigraphy was conducted, and laboratory tests for cholecystokinin(CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), nesfatin, and ghrelin were performed during the fasting period. We enrolled 52 patients with mean age of 86.9 years, including 17 (32.7%) patients in the non-sarcopenia group, 17 (32.7%) patients in the pre-sarcopenia group, and 18 (34.6%) in the sarcopenia group. The mean gastric emptying half-time had no significant difference among three groups. The sarcopenia group had significantly higher fasting plasma concentrations of CCK, GLP-1, and PYY. We concluded that the older people with sarcopenia had significantly higher plasma concentrations of CCK, GLP-1, and PYY. In the elderly population, anorexigenic gastrointestinal hormones might have more important relationships with sarcopenia than orexigenic gastrointestinal hormones. Topics: Aged; Aged, 80 and over; Cholecystokinin; Gastric Emptying; Gastrointestinal Hormones; Ghrelin; Glucagon-Like Peptide 1; Humans; Peptide YY; Prospective Studies; Sarcopenia | 2022 |
Does hypoxia play a role in the development of sarcopenia in humans? Mechanistic insights from the Caudwell Xtreme Everest Expedition.
Sarcopenia refers to the involuntary loss of skeletal muscle and is a predictor of physical disability/mortality. Its pathogenesis is poorly understood, although roles for altered hypoxic signaling, oxidative stress, adipokines and inflammatory mediators have been suggested. Sarcopenia also occurs upon exposure to the hypoxia of high altitude. Using data from the Caudwell Xtreme Everest expedition we therefore sought to analyze the extent of hypoxia-induced body composition changes and identify putative pathways associated with fat-free mass (FFM) and fat mass (FM) loss.. After baseline testing in London (75m), 24 investigators ascended from Kathmandu (1300m) to Everest base camp (EBC 5300m) over 13 days. Fourteen investigators climbed above EBC, eight of whom reached the summit (8848m). Assessments were conducted at baseline, during ascent and after one, six and eight week(s) of arrival at EBC. Changes in body composition (FM, FFM, total body water, intra- and extra-cellular water) were measured by bioelectrical impedance. Biomarkers of nitric oxide and oxidative stress were measured together with adipokines, inflammatory, metabolic and vascular markers.. Participants lost a substantial, but variable, amount of body weight (7.3±4.9kg by expedition end; p<0.001). A progressive loss of both FM and FFM was observed, and after eight weeks, the proportion of FFM loss was 48% greater than FM loss (p<0.008). Changes in protein carbonyls (p<0.001) were associated with a decline in FM whereas 4-hydroxynonenal (p<0.001) and IL-6 (p<0.001) correlated with FFM loss. GLP-1 (r=-0.45, p<0.001) and nitrite (r=-0.29, p<0.001) concentration changes were associated with FFM loss. In a multivariate model, GLP-1, insulin and nitrite were significant predictors of FFM loss while protein carbonyls were predicted FM loss.. The putative role of GLP-1 and nitrite as mediators of the effects of hypoxia on FFM is an intriguing finding. If confirmed, nutritional and pharmacological interventions targeting these pathways may offer new avenues for prevention and treatment of sarcopenia. Topics: Adult; Altitude; Biomarkers; Body Composition; Female; Glucagon-Like Peptide 1; Humans; Hypoxia; Male; Middle Aged; Nitrites; Oxidative Stress; Sarcopenia | 2017 |
Resting energy expenditure and the effects of muscle wasting in patients with chronic heart failure: results from the Studies Investigating Comorbidities Aggravating Heart Failure (SICA-HF).
Muscle wasting is common in patients with chronic heart failure (HF) and worsens functional status. Protein catabolism is characteristic of muscle wasting and contributes to resting energy expenditure (REE). Glucagonlike peptide 1 (GLP-1) is linked to REE in healthy individuals. We aimed to evaluate (1) whether REE is elevated in patients with HF with muscle wasting, and (2) whether basal GLP-1 levels are linked to REE in HF.. Cross-sectional study.. Ambulatory patients with HF were recruited at the Charité Medical School, Campus Virchow-Klinikum, Berlin, Germany.. A total of 166 patients with HF and 27 healthy controls participating in the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF) were enrolled. GLP-1 was measured in 55 of these patients.. Body composition was measured by dual-energy X-ray absorptiometry (DEXA). Muscle wasting was defined as appendicular lean mass of at least 2 SDs below values of a healthy young reference group. REE was measured by indirect calorimetry. GLP-1 was assessed by ELISA.. Thirty-four of 166 patients (mean age 67.4 ± 10.2 years, 77.7% male, New York Heart Association class 2.3 ± 0.6) presented with muscle wasting. REE in controls and patients with muscle wasting was significantly lower than in patients without muscle wasting (1579 ± 289 and 1532 ± 265 vs 1748 ± 359 kcal/d, P = .018 and P = .001, respectively). REE normalized for fat-free mass (FFM) using the ratio method (REE/FFM) and analysis of covariance was not different (P = .23 and .71, respectively). GLP-1 did not significantly correlate with REE (P = .49), even not after controlling for FFM using multivariable regression (P = .15).. Differences in REE are attributable to lower FFM. GLP-1 does not relate to REE in patients with HF, possibly because of HF-related effects on REE. Topics: Absorptiometry, Photon; Aged; Body Composition; Chronic Disease; Comorbidity; Cross-Sectional Studies; Energy Metabolism; Female; Germany; Glucagon-Like Peptide 1; Heart Failure; Humans; Male; Middle Aged; Prospective Studies; Rest; Sarcopenia | 2013 |