glucagon-like-peptide-1 and Parkinson-Disease

glucagon-like-peptide-1 has been researched along with Parkinson-Disease* in 31 studies

Reviews

16 review(s) available for glucagon-like-peptide-1 and Parkinson-Disease

ArticleYear
Glucose metabolism impairment in Parkinson's disease.
    Brain research bulletin, 2023, Volume: 199

    Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.

    Topics: Dopamine; Dopaminergic Neurons; Glucagon-Like Peptide 1; Glucose; Glycolysis; Humans; Hyperglycemia; Parkinson Disease

2023
DPP-4 inhibitors and type 2 diabetes mellitus in Parkinson's disease: a mutual relationship.
    Pharmacological reports : PR, 2023, Volume: 75, Issue:4

    Parkinson's disease (PD) usually occurs due to the degeneration of dopaminergic neurons in the substantia nigra (SN). Management of PD is restricted to symptomatic improvement. Consequently, a novel treatment for managing motor and non-motor symptoms in PD is necessary. Abundant findings support the protection of dipeptidyl peptidase 4 (DPP-4) inhibitors in PD. Consequently, this study aims to reveal the mechanism of DPP-4 inhibitors in managing PD. DPP-4 inhibitors are oral anti-diabetic agents approved for managing type 2 diabetes mellitus (T2DM). T2DM is linked with an increased chance of the occurrence of PD. Extended usage of DPP-4 inhibitors in T2DM patients may attenuate the development of PD by inhibiting inflammatory and apoptotic pathways. Thus, DPP-4 inhibitors like sitagliptin could be a promising treatment against PD neuropathology via anti-inflammatory, antioxidant, and anti-apoptotic impacts. DPP-4 inhibitors, by increasing endogenous GLP-1, can also reduce memory impairment in PD. In conclusion, the direct effects of DPP-4 inhibitors or indirect effects through increasing circulating GLP-1 levels could be an effective therapeutic strategy in treating PD patients through modulation of neuroinflammation, oxidative stress, mitochondrial dysfunction, and neurogenesis.

    Topics: Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Parkinson Disease; Sitagliptin Phosphate

2023
Do oral antidiabetic medications alter the risk of Parkinson's disease? An updated systematic review and meta-analysis.
    Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2023, Volume: 44, Issue:12

    Diabetes mellitus is a known risk factor for Parkinson's disease (PD), but does this risk vary with antidiabetic medications is still unclear. This meta-analysis aims to compile evidence from the literature to assess the risk of idiopathic PD with various oral antidiabetic medications.. Databases PubMed, CENTRAL, Scopus, Web of Science, and Embase were searched till 5th April 2023. Adjusted outcomes were pooled to generate a hazard ratio (HR) on the risk of PD with different antidiabetic medications.. Fifteen studies with 2,910,405 diabetic patients were eligible. Pooled analysis failed to show any significant difference in the risk of PD among users of metformin (HR: 1.05 95% CI: 0.91, 1.22 I. Limited retrospective evidence indicates that DPP4i may reduce the risk of idiopathic PD in diabetics. Metformin, sulfonylureas, glucagon-like peptide-1 agonists, and glitazones were not associated with any change in the risk of PD. Further studies taking into confounding factors and using a common comparator group are needed to strengthen present evidence.

    Topics: Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Metformin; Parkinson Disease; Retrospective Studies; Sulfonylurea Compounds; Thiazolidinediones

2023
GLP-1 receptor agonists effect on cognitive function in patients with and without type 2 diabetes.
    Diabetes & metabolism, 2023, Volume: 49, Issue:5

    Glucagon-like peptide 1 (GLP-1) is a hormone of the incretin family, secreted in response to nutrient ingestion, and plays a role in metabolic homeostasis. GLP-1 receptor agonist has a peripheral and a central action, including stimulation of glucose-dependent insulin secretion and insulin biosynthesis, inhibition of glucagon secretion and gastric emptying, and inhibition of food intake. Through their mechanism, their use in the treatment of type 2 diabetes has been extended to the management of obesity, and numerous trials are being conducted to assess their cardiovascular effect. Type 2 diabetes appears to share common pathophysiological mechanisms with the development of cognitive disorders, such as Alzheimer's and Parkinson's disease, related to insulin resistance. In this review, we aim to examine the pathological features between type 2 diabetes and dementia, GLP-1 central effects, and analyze the relevant literature about the effect of GLP-1 analogs on cognitive function of patients with type 2 diabetes but also without. Results tends to show an improvement in some brain markers (e.g. hippocampal connections, cerebral glucose metabolism, hippocampal activation on functional magnetic resonance imaging), but without being able to demonstrate a strong correlation to cognitive scores. Some epidemiological studies suggest that GLP-1 receptor agonists may offer a protective effect, by delaying progression to dementia when diabetic patients are treated with GLP-1 receptor agonists. Ongoing trials are in progress and may provide disease-modifying care for Alzheimer's disease and Parkinson's disease patients in the future.

    Topics: Cognition; Dementia; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Insulin; Parkinson Disease

2023
Gut-Brain Communication in Parkinson's Disease: Enteroendocrine Regulation by GLP-1.
    Current neurology and neuroscience reports, 2022, Volume: 22, Issue:7

    Defective gut-brain communication has recently been proposed as a promoter of neurodegeneration, but mechanisms mediating communication remain elusive. In particular, the Parkinson's disease (PD) phenotype has been associated with both dysbiosis of intestinal microbiota and neuroinflammation. Here, we review recent advances in the PD field that connect these two concepts, providing an explanation based on enteroendocrine signaling from the gut to the brain.. There have been several recent accounts highlighting the importance of the microbiota-gut-brain axis in PD. The objective of this review is to discuss the role of the neuroendocrine system in gut-brain communication as it relates to PD pathogenesis, as this system has not been comprehensively considered in prior reviews. The incretin hormone glucagon-like peptide 1 (GLP-1) is secreted by enteroendocrine cells of the intestinal epithelium, and there is evidence that it is neuroprotective in animal models and human subjects with PD. Agonists of GLP-1 receptors used in diabetes appear to be useful for preventing neurodegeneration. New tools and models have enabled us to study regulation of GLP-1 secretion by intestinal microbiota, to understand how this process may be defective in PD, and to develop methods for therapeutically modifying disease development or progression using the enteroendocrine system. GLP-1 secretion by enteroendocrine cells may be a key mediator of neuroprotection in PD, and new findings in this field may offer unique insights into PD pathogenesis and therapeutic strategies.

    Topics: Animals; Brain; Brain-Gut Axis; Dysbiosis; Glucagon-Like Peptide 1; Humans; Neurosecretory Systems; Parkinson Disease

2022
GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight.
    Cells, 2022, 06-25, Volume: 11, Issue:13

    Defects in brain energy metabolism and proteopathic stress are implicated in age-related degenerative neuronopathies, exemplified by Alzheimer's disease (AD) and Parkinson's disease (PD). As the currently available drug regimens largely aim to mitigate cognitive decline and/or motor symptoms, there is a dire need for mechanism-based therapies that can be used to improve neuronal function and potentially slow down the underlying disease processes. In this context, a new class of pharmacological agents that achieve improved glycaemic control via the glucagon-like peptide 1 (GLP-1) receptor has attracted significant attention as putative neuroprotective agents. The experimental evidence supporting their potential therapeutic value, mainly derived from cellular and animal models of AD and PD, has been discussed in several research reports and review opinions recently. In this review article, we discuss the pathological relevance of derangements in the neurovascular unit and the significance of neuron-glia metabolic coupling in AD and PD. With this context, we also discuss some unresolved questions with regard to the potential benefits of GLP-1 agonists on the neurovascular unit (NVU), and provide examples of novel experimental paradigms that could be useful in improving our understanding regarding the neuroprotective mode of action associated with these agents.

    Topics: Alzheimer Disease; Animals; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Neuroprotective Agents; Parkinson Disease

2022
Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment.
    Pharmacological research, 2022, Volume: 186

    Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.

    Topics: Alzheimer Disease; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Neurodegenerative Diseases; Neuroinflammatory Diseases; Parkinson Disease

2022
Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders.
    British journal of pharmacology, 2022, Volume: 179, Issue:4

    Type 2 diabetes mellitus and the associated desensitisation of insulin signalling has been identified as a risk factor for progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and others. Glucagon-like peptide 1 (GLP-1) is a hormone that has growth factor-like and neuroprotective properties. Several clinical trials have been conducted, testing GLP-1 receptor agonists in patients with Alzheimer's disease, Parkinson's disease or diabetes-induced memory impairments. The trials showed clear improvements in Alzheimer's disease, Parkinson's disease and diabetic patients. Glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) is the 'sister' incretin hormone of GLP-1. GIP analogues have shown neuroprotective effects in animal models of disease and can improve on the effects of GLP-1. Novel dual GLP-1/GIP receptor agonists have been developed that can enter the brain at an enhanced rate. The improved neuroprotective effects of these drugs suggest that they are superior to single GLP-1 receptor agonists and could provide disease-modifying care for Alzheimer's disease and Parkinson's disease patients. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.

    Topics: Alzheimer Disease; Animals; Diabetes Mellitus, Type 2; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Insulin; Neuroprotective Agents; Parkinson Disease

2022
Brain insulin resistance: role in neurodegenerative disease and potential for targeting.
    Expert opinion on investigational drugs, 2020, Volume: 29, Issue:4

    Topics: Alzheimer Disease; Animals; Brain; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Insulin; Insulin Resistance; Parkinson Disease; Receptors, Gastrointestinal Hormone

2020
Neuroprotective Actions of Glucagon-Like Peptide-1 (GLP-1) Analogues in Alzheimer's and Parkinson's Diseases.
    CNS drugs, 2019, Volume: 33, Issue:3

    The current absence of effective treatments for Alzheimer's disease (AD) and Parkinson's disease (PD) reflects an incomplete knowledge of the underlying disease processes. Considerable efforts have been made to investigate the central pathological features of these diseases, giving rise to numerous attempts to develop compounds that interfere with such features. However, further characterization of the molecular targets within the interconnected AD and PD pathways is still required. Impaired brain insulin signaling has emerged as a feature that contributes to neuronal dysfunction in both AD and PD, leading to strategies aiming at restoring this pathway in the brain. Long-acting glucagon-like peptide-1 (GLP-1) analogues marketed for treatment of type 2 diabetes mellitus have been tested and have shown encouraging protective actions in experimental models of AD and PD as well as in initial clinical trials. We review studies revealing the neuroprotective actions of GLP-1 analogues in pre-clinical models of AD and PD and promising results from recent clinical trials.

    Topics: Alzheimer Disease; Animals; Brain; Clinical Trials as Topic; Disease Models, Animal; Glucagon-Like Peptide 1; Humans; Insulin Resistance; Neuroprotective Agents; Parkinson Disease

2019
Neuroprotective Effects of Brain-Gut Peptides: A Potential Therapy for Parkinson's Disease.
    Neuroscience bulletin, 2019, Volume: 35, Issue:6

    Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor and non-motor dysfunctions. Currently, dopamine replacement therapy is mainly used to relieve the motor symptoms, while its long-term application can lead to various complications and does not cure the disease. Numerous studies have demonstrated that many brain-gut peptides have neuroprotective effects in vivo and in vitro, and may be a promising treatment for PD. In recent years, some progress has been made in studies on the neuroprotective effects of some newly-discovered brain-gut peptides, such as glucagon-like peptide 1, pituitary adenylate cyclase activating polypeptide, nesfatin-1, and ghrelin. However, there is still no systematic review on the neuroprotective effects common to these peptides. Thus, here we review the neuroprotective effects and the associated mechanisms of these four peptides, as well as other brain-gut peptides related to PD, in the hope of providing new ideas for the treatment of PD and related clinical research.

    Topics: Animals; Brain; Gastrointestinal Hormones; Ghrelin; Glucagon-Like Peptide 1; Humans; Neuroprotective Agents; Nucleobindins; Parkinson Disease; Pituitary Adenylate Cyclase-Activating Polypeptide

2019
Protective effects of the GLP-1 mimetic exendin-4 in Parkinson's disease.
    Neuropharmacology, 2018, 07-01, Volume: 136, Issue:Pt B

    There is increasing interest in the potential role of glucagon-like peptide-1 (GLP-1) receptor agonists as neuroprotective treatments in neurodegenerative diseases including Parkinson's disease following the publication of the results of the Exenatide-PD trial. Of the current GLP-1 receptor agonists already licensed to treat Type 2 diabetes several including exenatide, liraglutide and lixisenatide are the subject of ongoing clinical trials in PD. The underlying rationale for using drugs licensed and effective for T2DM in PD patients therefore needs to be scrutinized, and the results obtained to date critically reviewed. We review the relationship between insulin resistance and Parkinson's disease, the implications on pathogenesis and the efforts to reposition GLP-1 agonists as potential treatments for Parkinson's disease and give an overview of the pre-clinical and clinical data supporting the use of exenatide in Parkinson's disease with a discussion regarding possible mechanisms of action. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'

    Topics: Animals; Exenatide; Glucagon-Like Peptide 1; Humans; Neuroprotective Agents; Parkinson Disease

2018
Therapeutic potential of spinal GLP-1 receptor signaling.
    Peptides, 2018, Volume: 101

    GLP-1 signaling pathway has been well studied for its role in regulating glucose homeostasis, as well as its beneficial effects in energy and nutrient metabolism. A number of drugs based on GLP-1 have been used to treat type 2 diabetes mellitus. GLP-1R is expressed in multiple organs and numerous experimental studies have demonstrated that GLP-1 signaling pathway exhibits pro-survival functions in various disorders. In the central nervous system, stimulation of GLP-1R produces neuroprotective effects in specific neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. The preproglucagon neurons located in the brainstem can also produce GLP-1. GLP-1 analogs have a long-acting effect and are able to pass the blood-brain barrier, which probably extends the therapeutic efficacy of GLP-1R activation. Neurodegenerative or traumatic conditions can damage the spinal cord and result in motor and sensory dysfunction. Evidence supports that GLP-1R activation in the spinal cord possesses beneficial effects and significant therapeutic potential. Herein, we review studies that have focused on GLP-1 and the spinal cord, and summarize the expression of GLP-1R and the innervation of PPG neurons in the spinal cord, as well as the potential therapeutic benefits of GLP-1R activation.

    Topics: Alzheimer Disease; Animals; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Neuroprotective Agents; Parkinson Disease; Signal Transduction; Spinal Cord; Spinal Cord Injuries

2018
A New Treatment Strategy for Parkinson's Disease through the Gut-Brain Axis: The Glucagon-Like Peptide-1 Receptor Pathway.
    Cell transplantation, 2017, Volume: 26, Issue:9

    Molecular communications in the gut-brain axis, between the central nervous system and the gastrointestinal tract, are critical for maintaining healthy brain function, particularly in aging. Epidemiological analyses indicate type 2 diabetes mellitus (T2DM) is a risk factor for neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's diseases (PD) for which aging shows a major correlative association. Common pathophysiological features exist between T2DM, AD, and PD, including oxidative stress, inflammation, insulin resistance, abnormal protein processing, and cognitive decline, and suggest that effective drugs for T2DM that positively impact the gut-brain axis could provide an effective treatment option for neurodegenerative diseases. Glucagon-like peptide-1 (GLP-1)-based antidiabetic drugs have drawn particular attention as an effectual new strategy to not only regulate blood glucose but also decrease body weight by reducing appetite, which implies that GLP-1 could affect the gut-brain axis in normal and pathological conditions. The neurotrophic and neuroprotective effects of GLP-1 receptor (R) stimulation have been characterized in numerous in vitro and in vivo preclinical studies using GLP-1R agonists and dipeptidyl peptidase-4 inhibitors. Recently, the first open label clinical study of exenatide, a long-acting GLP-1 agonist, in the treatment of PD showed long-lasting improvements in motor and cognitive function. Several double-blind clinical trials of GLP-1R agonists including exenatide in PD and other neurodegenerative diseases are already underway or are about to be initiated. Herein, we review the physiological role of the GLP-1R pathway in the gut-brain axis and the therapeutic strategy of GLP-1R stimulation for the treatment of neurodegenerative diseases focused on PD, for which age is the major risk factor.

    Topics: Animals; Blood Glucose; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Neuroprotective Agents; Parkinson Disease; Peptides; Venoms

2017
The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action.
    Drug discovery today, 2016, Volume: 21, Issue:5

    Growing evidence suggests that agonists of the glucagon-like peptide 1 (GLP-1) receptor provide neuroprotection across a range of experimental models of Parkinson's disease (PD) and, recently, a small proof-of-concept, open-label human trial of exenatide in the treatment moderate severity PD appeared to show persistent improvements in motor and cognitive function. The underlying mechanisms of action remain unclear, but as evidence for the potential use of GLP-1 agonists in treating several neurodegenerative disease mounts, and with several clinical trials of GLP-1 analogues in PD and Alzheimer's disease (AD) currently underway, here we review the molecular mechanisms underlying the neuroprotective effects of GLP-1 analogues in the laboratory and their potential therapeutic utility with particular relevance to PD and PD dementia (PDD).

    Topics: Alzheimer Disease; Animals; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Insulin Resistance; Learning; Mitochondria; Neurogenesis; Parkinson Disease; Proto-Oncogene Proteins c-akt; Signal Transduction

2016
Drugs developed for treatment of diabetes show protective effects in Alzheimer's and Parkinson's diseases.
    Sheng li xue bao : [Acta physiologica Sinica], 2014, Oct-25, Volume: 66, Issue:5

    Type 2 diabetes has been identified as a risk factor for Alzheimer's disease (AD) and Parkinson's disease (PD). In the brains of patients with AD and PD, insulin signaling is impaired. This finding has motivated new research that showed good effects using drugs that initially had been developed to treat diabetes. Preclinical studies showed good neuroprotective effects applying insulin or long lasting analogues of incretin peptides. In transgenic animal models of AD or PD, analogues of the incretin GLP-1 prevented neurodegenerative processes and improved neuronal and synaptic functionality and reduced the symptoms of the diseases. Amyloid plaque load and synaptic loss as well as cognitive impairment had been prevented in transgenic AD mouse models, and dopaminergic loss of transmission and motor function has been reversed in animal models of PD. On the basis of these promising findings, several clinical trials are being conducted with the first encouraging clinical results already published. In several pilot studies in AD patients, the nasal application of insulin showed encouraging effects on cognition and biomarkers. A pilot study in PD patients testing a GLP-1 receptor agonist that is currently on the market as a treatment for type 2 diabetes (exendin-4, Byetta) also showed encouraging effects. Several other clinical trials are currently ongoing in AD patients, testing another GLP-1 analogue that is on the market (liraglutide, Victoza). Recently, a third GLP-1 receptor agonist has been brought to the market in Europe (Lixisenatide, Lyxumia), which also shows very promising neuroprotective effects. This review will summarise the range of these protective effects that those drugs have demonstrated. GLP-1 analogues show promise in providing novel treatments that may be protective or even regenerative in AD and PD, something that no current drug does.

    Topics: Alzheimer Disease; Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Liraglutide; Mice; Mice, Transgenic; Neuroprotective Agents; Parkinson Disease; Peptides; Receptors, Glucagon; Venoms

2014

Other Studies

15 other study(ies) available for glucagon-like-peptide-1 and Parkinson-Disease

ArticleYear
Incretin Mimetics Restore the ER-Mitochondrial Axis and Switch Cell Fate Towards Survival in LUHMES Dopaminergic-Like Neurons: Implications for Novel Therapeutic Strategies in Parkinson's Disease.
    Journal of Parkinson's disease, 2023, Volume: 13, Issue:7

    Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that afflicts more than 10 million people worldwide. Available therapeutic interventions do not stop disease progression. The etiopathogenesis of PD includes unbalanced calcium dynamics and chronic dysfunction of the axis of the endoplasmic reticulum (ER) and mitochondria that all can gradually favor protein aggregation and dopaminergic degeneration.. In Lund Human Mesencephalic (LUHMES) dopaminergic-like neurons, we tested novel incretin mimetics under conditions of persistent, calcium-dependent ER stress.. We assessed the pharmacological effects of Liraglutide-a glucagon-like peptide-1 (GLP-1) analog-and the dual incretin GLP-1/GIP agonist DA3-CH in the unfolded protein response (UPR), cell bioenergetics, mitochondrial biogenesis, macroautophagy, and intracellular signaling for cell fate in terminally differentiated LUHMES cells. Cells were co-stressed with the sarcoplasmic reticulum calcium ATPase (SERCA) inhibitor, thapsigargin.. We report that Liraglutide and DA3-CH analogs rescue the arrested oxidative phosphorylation and glycolysis. They mitigate the suppressed mitochondrial biogenesis and hyper-polarization of the mitochondrial membrane, all to re-establish normalcy of mitochondrial function under conditions of chronic ER stress. These effects correlate with a resolution of the UPR and the deficiency of components for autophagosome formation to ultimately halt the excessive synaptic and neuronal death. Notably, the dual incretin displayed a superior anti-apoptotic effect, when compared to Liraglutide.. The results confirm the protective effects of incretin signaling in ER and mitochondrial stress for neuronal degeneration management and further explain the incretin-derived effects observed in PD patients.

    Topics: Calcium; Dopamine; Glucagon-Like Peptide 1; Humans; Incretins; Liraglutide; Mitochondria; Neurons; Parkinson Disease

2023
Association between different diabetes medication classes and risk of Parkinson's disease in people with diabetes.
    Pharmacoepidemiology and drug safety, 2022, Volume: 31, Issue:8

    Diabetes has been associated with increased risk of Parkinson's disease (PD). Diabetes medications have been suggested as a possible explanation, but findings have been inconsistent. More information on the role of exposure in different time windows is needed because PD has long onset. We assessed the association between use of different diabetes medication categories and risk of PD in different exposure periods.. A case-control study restricted to people with diabetes was performed as part of nationwide register-based Finnish study on PD (FINPARK). We included 2017 cases (diagnosed 1999-2015) with PD and 7934 controls without PD. Diabetes medication use was identified from Prescription Register (1995-2015) and categorized to insulins, biguanides, sulfonylureas, thiazolidinediones (TZDs), dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) analogues and glinide. Exposure for each medication class was determined as none, at least 3 years before outcome and only within the three-year lag time before PD outcome.. The use of insulins, biguanides, sulfonylureas, DPP-4 inhibitors, GLP-1 analogues or glinides was not associated with PD. Use of TZDs before lag time compared to non-use of TZDs (adjusted odds ratio (OR) 0.78; 95% Confidence interval (CI) 0.64-0.95) was associated with decreased risk of PD.. Our nationwide case-control study of people with diabetes found no robust evidence on the association between specific diabetes medication classes and risk of PD. Consistent with earlier studies, TZD use was associated with slightly decreased risk of PD. The mechanism for this should be verified in further studies.

    Topics: Biguanides; Case-Control Studies; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Insulin; Parkinson Disease; Sulfonylurea Compounds; Thiazolidinediones

2022
Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson's disease.
    Expert opinion on therapeutic targets, 2022, Volume: 26, Issue:5

    Diabetes is a risk factor for Parkinson's disease (PD) and shares similar dysregulated insulin pathways. Glucagon-like peptide-1 (GLP-1) analogs originally designed to treat diabetes have shown potent neuroprotective activity in preclinical studies of PD. They are neuroprotective by inhibiting inflammation, improving neuronal survival, maintenance of synapses, and dopaminergic transmission in the brain. Building on this, three clinical studies have reported impressive effects in patients with PD, testing -4 (Exenatide, Bydureon) or liraglutide (Victoza, Saxenda). Glucose-dependent insulinotropic peptide (GIP) is another peptide hormone that has shown good effects in animal models of PD. Novel dual GLP-1/GIP agonists have been developed that can penetrate the blood-brain barrier (BBB) and show superior effects in animal models compared to GLP-1 drugs.. The review summarizes preclinical and clinical studies testing GLP-1R agonists and dual GLP-1/GIPR agonists in PD and discusses possible mechanisms of action.. Current strategies to treat PD by lowering the levels of alpha-synuclein have not shown effects in clinical trials. It is time to move on from the 'misfolding protein' hypothesis. Growth factors such as GLP-1 that can cross the BBB have already shown impressive effects in patients and are the future of drug discovery in PD.

    Topics: Animals; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Liraglutide; Parkinson Disease; Receptors, Gastrointestinal Hormone

2022
Cholecystokinin and glucagon-like peptide-1 analogues regulate intestinal tight junction, inflammation, dopaminergic neurons and α-synuclein accumulation in the colon of two Parkinson's disease mouse models.
    European journal of pharmacology, 2022, Jul-05, Volume: 926

    Parkinson's disease (PD) is the second most common neurodegenerative disease, and no treatment is available to stop its progression. Studies have shown that the colonic pathology of PD precedes that of the brain. The 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and the human A53T α-synuclein (α-syn) transgenic PD mouse model show colonic pathology and intestinal dopaminergic neuronal damage, which is comparable to the intestinal pathology of PD. Cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), which are brain-gut peptides, have neurotrophic and anti-inflammatory properties. Two GLP-1R agonists have already shown robust effects in phase II trials in PD patients. However, whether they have beneficial effects on colonic pathology in PD remains unclear. In this study, MPTP-treated mice and human A53T α-syn transgenic mice were intraperitoneally injected with a CCK analogue or Liraglutide, a GLP-1 analogue, once a day for 5 weeks. Levels of colonic epithelial tight junction proteins including occludin and zonula occludens-1 (ZO-1), inflammatory biomarkers including inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α), brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH) and α-syn were analyzed. The results show that the CCK analogue and Liraglutide both restored the disruption of intestinal tight junction, reduced colonic inflammation, inhibited colonic dopaminergic neurons reduction and the accumulation of α-syn oligomers in the colon of both PD mice models. This study suggested that CCK or GLP-1 analogues could be beneficial to the improvement of leaky gut barrier, inflammation, dopaminergic neuron impairment and accumulation of α-syn in the colon of PD patients.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; alpha-Synuclein; Animals; Cholecystokinin; Colon; Disease Models, Animal; Dopaminergic Neurons; Glucagon-Like Peptide 1; Humans; Inflammation; Liraglutide; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neurodegenerative Diseases; Parkinson Disease; Tight Junctions

2022
Chlorogenic Acid: a Polyphenol from Coffee Rendered Neuroprotection Against Rotenone-Induced Parkinson's Disease by GLP-1 Secretion.
    Molecular neurobiology, 2022, Volume: 59, Issue:11

    Parkinson's disease (PD) is a chronic motor disorder, characterized by progressive loss of dopaminergic neurons. Numerous studies suggest that glucagon-like peptide-1 (GLP-1) secretagogue has a neuroprotective role in PD models. The present study evaluated potential of coffee bioactive compounds in terms of their ability to bind GPR-40/43 and tested the neuroprotective effect of best candidate on rotenone-induced PD mice acting via GLP-1 release. In silico molecular docking followed by binding free energy calculation revealed that chlorogenic acid (CGA) has a strong binding affinity for GPR-40/43 in comparison to other bioactive polyphenols. Molecular dynamics simulation studies revealed stable nature of GPR40-CGA and GPR43-CGA interaction and also provided information about the amino acid residues involved in binding. Subsequently, in vitro studies demonstrated that CGA-induced secretion of GLP-1 via enhancing cAMP levels in GLUTag cells. Furthermore, in vivo experiments utilizing rotenone-induced mouse model of PD revealed a significant rise in plasma GLP-1 after CGA administration (50 mg/kg, orally for 13 weeks) with concomitant increase in colonic GPR-40 and GPR-43 mRNA expression. CGA treatment also prevented rotenone-induced motor and cognitive impairments and significantly restored the rotenone-induced oxidative stress. Meanwhile, western blot results confirmed that CGA treatment downregulated rotenone-induced phosphorylated alpha-synuclein levels by upregulating PI3K/AKT signaling and inactivating GSK-3β through the release of GLP-1. CGA treatment ameliorated rotenone-induced dopaminergic nerve degeneration and alpha-synuclein accumulation in substantia nigra and augmented mean density of dopaminergic nerve fibers in striatum. These findings demonstrated novel biological function of CGA as a GLP-1 secretagogue. An increase in endogenous GLP-1 may render neuroprotection against a rotenone mouse model of PD and has the potential to be used as a neuroprotective agent in management of PD.

    Topics: alpha-Synuclein; Amino Acids; Animals; Chlorogenic Acid; Coffee; Dopaminergic Neurons; Glucagon-Like Peptide 1; Glycogen Synthase Kinase 3 beta; Mice; Molecular Docking Simulation; Neuroprotective Agents; Parkinson Disease; Phosphatidylinositol 3-Kinases; Polyphenols; Proto-Oncogene Proteins c-akt; RNA, Messenger; Rotenone; Secretagogues

2022
A GLP-2 Analogue Protects SH-SY5Y and Neuro-2a Cells Against Mitochondrial Damage, Autophagy Impairments and Apoptosis in a Parkinson Model.
    Drug research, 2021, Volume: 71, Issue:1

    Glucagon-like peptide-2 (GLP-2) is a peptide hormone that belongs to the glucagon-derived peptide family. We have previously shown that analogues of the sister hormone Glucagon-like peptide-1 (GLP-1) showed neuroprotective effects. Here we investigated the effect of a GLP-2 agonist in a cell model of Parkinson's disease (PD) created by treating SH-SY5Y or Neuro-2a cells with 1-Methyl-4-phenyl-pyridine ion (MPP+). Cell viability and cell cytotoxicity was detected by MTT and LDH assays, respectively. The protein expression levels of mitochondrial, autophagy and apoptotic biomarkers including PGC-1α, Mfn2, IRE1, ATG7, LC3B, Beclin1 and Bcl-2 were detected by western blot. Mitochondrial superoxide was detected by MitoSOX Red. In addition, mitochondrial morphology, autophagosome and apoptotic corpuscles were observed by transmission electron microscope (TEM). We found that the GLP-1 and the GLP-2 agonists both protect cells against mitochondrial damage, autophagy impairments and apoptosis induced by MPP+both in SH-SY5Y and Neuro-2a cells. Cell signaling for mitogenesis was enhanced, and oxidative stress levels much reduced by the drugs. This demonstrates for the first time the neuroprotective effects of a GLP-2 analogue in PD cellular models, in which oxidative stress, autophagy and apoptosis play crucial roles. The protective effects were comparable to those seen with the GLP-1 analogue liraglutide. The results suggest that not only GLP-1, but also GLP-2 has neuroprotective properties and may be useful as a novel treatment of PD.

    Topics: Apoptosis; Autophagosomes; Autophagy; Cell Line, Tumor; Drug Evaluation, Preclinical; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Humans; Liraglutide; Microscopy, Electron, Transmission; Mitochondria; Neuroprotective Agents; Oxidative Stress; Parkinson Disease; Signal Transduction

2021
Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson's disease via gut microbiota-GLP-1 pathway.
    Brain, behavior, and immunity, 2021, Volume: 91

    A connection between gut microbiota and Parkinson's disease (PD) indicates that dysbiosis of the gut microbiota might represent a risk factor for PD. Microbiota-targeted interventions, including probiotic Clostridium butyricum (Cb), have been recently shown to have favorable effects in PD by regulating microbiota-gut-brain axis. However, the potential beneficial roles and its mechanisms of Cb on PD were still unknown. Male C57BL/6 mice were subjected to a PD model-induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and were treated intragastrically with Cb for 4 weeks. The motor functions were assessed by a series of behavioral tests including pole test, beam walking teat, forced swimming test and open field test. The dopaminergic neuron loss, synaptic plasticity and microglia activation, as well as the levels of colonic glucagon-like peptide-1 (GLP-1), colonic G protein-coupled receptors GPR41/43 and cerebral GLP-1 receptors were assessed. Gut microbial composition was assessed by 16S rRNA sequencing analysis. Our results showed that oral administration of Cb could improve motor deficits, dopaminergic neuron loss, synaptic dysfunction and microglia activation in the MPTP-induced mice. Meanwhile, Cb treatment could reverse the dysbiosis of gut microbiota and the decreased levels of colonic GLP-1, colonic GPR41/43 and cerebral GLP-1 receptor in the MPTP-induced mice. These findings indicated that the neuroprotective mechanism of Cb on PD might be related to the improvement of abnormal gut microbiota-gut-brain axis.

    Topics: Animals; Clostridium butyricum; Disease Models, Animal; Dopaminergic Neurons; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Parkinson Disease; Probiotics; RNA, Ribosomal, 16S

2021
The GLP-1/GIP dual-receptor agonist DA5-CH inhibits the NF-κB inflammatory pathway in the MPTP mouse model of Parkinson's disease more effectively than the GLP-1 single-receptor agonist NLY01.
    Brain and behavior, 2021, Volume: 11, Issue:8

    The GLP-1 receptor agonist exendin-4 has recently shown good effects in a phase II clinical trial in Parkinson's disease (PD) patients. Here, a comparison of the new GLP-1/GIP dual receptor agonist DA5-CH and NLY01, a 40 kDa pegylated form of exendin-4, on motor impairments and reducing inflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD mouse model is provided. The drug groups received either DA5-CH or NLY01 (25 nmol/kg) i.p. after daily MPTP intraperitoneal injection. Both drugs showed improvements in motor activity, open field experiments, rotarod tests, and gait analysis, but DA5-CH was more potent. Tyrosine hydroxylase expression in dopaminergic neurons was much reduced by MPTP and improved by DA5-CH, while NLY01 showed weak effects. When analyzing levels of α-synuclein (α-Syn), DA5-CH reduced levels effectively while NLY01 had no effect. When measuring the levels of the inflammation markers Toll-like receptor 4 (TLR4), specific markers of microglia activation (Iba-1), the marker of astrocyte activation glial fibrillary acidic protein (GFAP), nuclear factor-κB (NF-κB), tumor necrosis factor (TNF-α), and transforming growth factor β1 (TGF-β1), DA5-CH was very effective in reducing the chronic inflammation response, while NLY01 did not show significant effects. Levels of key growth factors such as Glial cell-derived neurotrophic factor (GDNF) and Brain-derived neurotrophic factor (BDNF) were much reduced by MPTP, and DA5-CH was able to normalize levels in the brain, while NLY01 showed little effect. The levels of pro-inflammatory cytokines (IL-6 and IL-Iβ) were much reduced by DA5-CH, too, while NLY01 showed no effect. In a separate experiment, we tested the ability of the two drugs to cross the blood-brain barrier. After injecting fluorescin-labelled peptides peripherally, the fluorescence in brain tissue was measured. It was found that the pegylated NLY01 peptide did not cross the BBB in meaningful quantities while exendin-4 and the dual agonist DA5-CH did. The results show that DA5-CH shows promise as a therapeutic drug for PD.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Disease Models, Animal; Glucagon-Like Peptide 1; Humans; Mice; Mice, Inbred C57BL; Neuroprotective Agents; NF-kappa B; Parkinson Disease; Pharmaceutical Preparations

2021
GLP-1 and GIP receptor agonists in the treatment of Parkinson's disease: Translational systematic review and meta-analysis protocol of clinical and preclinical studies.
    PloS one, 2021, Volume: 16, Issue:8

    Parkinson's disease (PD) is a progressive multifactorial neurodegenerative condition. Epidemiological studies have shown that patients with type 2 diabetes mellitus (T2DM2) are at increased risk for developing PD, indicating a possible insulin-modulating role in this latter condition. We hypothesized that drugs similar to glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP), used in the treatment of T2DM2, may play a role in PD.. The purpose of this study is to systematically review and meta-analyze data of preclinical and clinical studies evaluating the efficacy and safety of GLP-1 and GIP drugs in the treatment of PD.. Two reviewers will independently evaluate the studies available in the Ovid Medline, Ovid Embase, Web of Science, Cochrane Central Register of Controlled Trials, Cinahl, and Lilacs databases. Preclinical rodent or non-human primate studies and randomized controlled human clinical trials will be included, without language or publication period restrictions. Outcomes of interest in preclinical studies will be primarily locomotor improvements and adverse effects in animal models of PD. For clinical trials, we will evaluate clinical improvements rated by the Movement Disorders Society Unified Parkinson's Disease Rating Scale-parts I, II, III, and IV, and adverse effects. The risk of bias of preclinical studies will be assessed by the SYRCLE tool and CAMARADES checklist and the clinical studies by the Cochrane tool; the certainty of the evidence will be rated by GRADE.. There is an urge for new PD treatments that may slow the progression of the disease rather than just restoring dopamine levels. This study will comprehensively review and update the state of the art of what is known about incretin hormones and PD and highlight the strengths and limitations of translating preclinical data to the clinic whenever possible.. PROSPERO registration number CRD42020223435.

    Topics: Diabetes Mellitus, Type 2; Disease Progression; Dopamine; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Insulin; Meta-Analysis as Topic; Parkinson Disease; Systematic Reviews as Topic

2021
The Novel Dual GLP-1/GIP Receptor Agonist DA-CH5 Is Superior to Single GLP-1 Receptor Agonists in the MPTP Model of Parkinson's Disease.
    Journal of Parkinson's disease, 2020, Volume: 10, Issue:2

    Parkinson's disease (PD) is a progressive neurodegenerative disease for which there is no cure. In a clinical trial, the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has shown good protective effects in PD patients. The hormone glucose-dependent insulinotropic polypeptide (GIP) has also shown protective effects in animal models of PD.. We tested DA-CH5, a novel dual GLP-1/GIP receptor agonist.. DA-CH5 activity was tested on cells expressing GLP-1, GLP-2, GIP or glucagon receptors. The ability to cross the blood-brain barrier (BBB) of DA-CH5, exendin-4, liraglutide or other dual receptor agonists was tested with fluorescein-labelled peptides. DA-CH5, exendin-4 and liraglutide were tested in the MPTP mouse model of PD.. Analysing the receptor activating properties showed a balanced activation of GLP-1 and GIP receptors while not activating GLP-2 or glucagon receptors. DA-CH5 crossed the BBB better than other single or other dual receptor agonists. In a dose-response comparison, DA-CH5 was more effective than the GLP-1 receptor agonist exendin-4. When comparing the neuroprotective effect of DA-CH5 with Liraglutide, a GLP-1 analogue, both DA-CH5 and Liraglutide improved MPTP-induced motor impairments. In addition, the drugs reversed the decrease of the number of neurons expressing tyrosine hydroxylase (TH) in the SN, alleviated chronic inflammation, reduced lipid peroxidation, inhibited the apoptosis pathway (TUNEL assay) and increased autophagy -related proteins expression in the substantia nigra (SN) and striatum. Importantly, we found DA-CH5 was superior to Liraglutide in reducing microglia and astrocyte activation, improving mitochondrial activity by reducing the Bax/Bcl-2 ratio and normalising autophagy as found in abnormal expression of LC3 and p62.. The results demonstrate that the DA-CH5 is superior to liraglutide and could be a therapeutic treatment for PD.

    Topics: Animals; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Liraglutide; Mice; Neuroprotective Agents; Parkinson Disease; Parkinsonian Disorders; Receptors, Gastrointestinal Hormone

2020
Diabetes medications and risk of Parkinson's disease: a cohort study of patients with diabetes.
    Brain : a journal of neurology, 2020, 10-01, Volume: 143, Issue:10

    The elevated risk of Parkinson's disease in patients with diabetes might be mitigated depending on the type of drugs prescribed to treat diabetes. Population data for risk of Parkinson's disease in users of the newer types of drugs used in diabetes are scarce. We compared the risk of Parkinson's disease in patients with diabetes exposed to thiazolidinediones (glitazones), glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP4) inhibitors, with the risk of Parkinson's disease of users of any other oral glucose lowering drugs. A population-based, longitudinal, cohort study was conducted using historic primary care data from The Health Improvement Network. Patients with a diagnosis of diabetes and a minimum of two prescriptions for diabetes medications between January 2006 and January 2019 were included in our study. The primary outcome was the first recording of a diagnosis of Parkinson's disease after the index date, identified from clinical records. We compared the risk of Parkinson's disease in individuals treated with glitazones or DPP4 inhibitors and/or GLP-1 receptor agonists to individuals treated with other antidiabetic agents using a Cox regression with inverse probability of treatment weighting based on propensity scores. Results were analysed separately for insulin users. Among 100 288 patients [mean age 62.8 years (standard deviation 12.6)], 329 (0.3%) were diagnosed with Parkinson's disease during the median follow-up of 3.33 years. The incidence of Parkinson's disease was 8 per 10 000 person-years in 21 175 patients using glitazones, 5 per 10 000 person-years in 36 897 patients using DPP4 inhibitors and 4 per 10 000 person-years in 10 684 using GLP-1 mimetics, 6861 of whom were prescribed GTZ and/or DPP4 inhibitors prior to using GLP-1 mimetics. Compared with the incidence of Parkinson's disease in the comparison group (10 per 10 000 person-years), adjusted results showed no evidence of any association between the use of glitazones and Parkinson's disease [incidence rate ratio (IRR) 1.17; 95% confidence interval (CI) 0.76-1.63; P = 0.467], but there was strong evidence of an inverse association between use of DPP4 inhibitors and GLP-1 mimetics and the onset of Parkinson's disease (IRR 0.64; 95% CI 0.43-0.88; P < 0.01 and IRR 0.38; 95% CI 0.17-0.60; P < 0.01, respectively). Results for insulin users were in the same direction, but the overall size of this group was small. The incidence of Parkinson's disease in patie

    Topics: Aged; Cohort Studies; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Female; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Longitudinal Studies; Male; Middle Aged; Parkinson Disease; Risk Factors; United Kingdom

2020
Lowering the risk of Parkinson's disease with GLP-1 agonists and DPP4 inhibitors in type 2 diabetes.
    Brain : a journal of neurology, 2020, 10-01, Volume: 143, Issue:10

    Topics: Cohort Studies; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Parkinson Disease

2020
Mechanism of the neuroprotective effect of GLP-1 in a rat model of Parkinson's with pre-existing diabetes.
    Neurochemistry international, 2019, Volume: 131

    Several studies have suggested the association between neurodegenerative diseases and diabetes mellitus (DM), DM causes cognitive impairment with age, but its effect is not well known in Parkinson's disease (PD). As a member of the incretin family, Glucagon-like peptide-1 (GLP-1) has glycemic regulation functions. It also exerts many additional effects on different tissues through its receptor's widespread expression.. our aim is to investigate the effect of pre-existing diabetes on the severity of PD in male albino rats, and to find out whether GLP-1 could improve PD symptoms in diabetic animals in addition to its hypoglycemic effect, and how it could do that.. 75 adult male albino rats were equally divided into: Control, Parkinson's, Diabetic Parkinson's, Diabetic Parkinson's + low dose exenatide (GLP-1 receptor agonist), Diabetic Parkinson's + high dose exenatide group. Blood glucose and insulin, striatal dopamine, some striatal oxidative stress and inflammatory markers, and the catalepsy score were measured.. Pre-existing of diabetes before initiation of PD raises the severity of PD shown by the more significant increase in catalepsy score, and the more significant decrease in striatal dopamine level. GLP-1 effects extend beyond their hypoglycemic effects only since it has a direct anti-oxidant, and anti-inflammatory neuronal effect with increasing the striatal dopamine and improving the catalepsy score in a dose dependent manner.. Diabetes increases the severity of impairment in PD, and GLP-1 improve it through its direct neuronal effect in addition to its indirect effect through producing hypoglycemia.

    Topics: Animals; Behavior, Animal; Blood Glucose; Catalepsy; Diabetes Complications; Diabetes Mellitus, Experimental; Dopamine; Exenatide; Glucagon-Like Peptide 1; Insulin; Interleukin-1beta; Male; Neostriatum; Neuroprotective Agents; Oxidative Stress; Parkinson Disease; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha

2019
Long-term liraglutide ameliorates nigrostriatal impairment via regulating AMPK/PGC-1a signaling in diabetic mice.
    Brain research, 2019, 07-01, Volume: 1714

    Growing evidence indicates links between type 2 diabetes and Parkinson's disease. The glucagon-like peptide 1 analogue, liraglutide, a commonly used anti-diabetic drug, has protective effects on neurons. The goal of this study was to determine whether long-term liraglutide treatment could reduce the risk of adult type 2 diabetic mice developing Parkinson's disease. Male diabetic db/db mice (12 weeks old) were injected daily with liraglutide (n = 8), or saline (n = 8), and non-diabetic m/m littermates (n = 6) were included as controls. Motor function was assessed every 4 weeks and all mice were sacrificed after 8 weeks of drug intervention for further analysis. The results revealed that long-term treatment of liraglutide protected the db/db mice against the motor function decay and the dopaminergic neuron loss. Liraglutide also restored the impaired AMP kinase (AMPK)/peroxisome proliferator-activated receptor-γ coactivator 1a (PGC-1a) signaling in the striatum of db/db mice. Further experiments in SH-SY5Y cells supported that AMPK is involved in the neuroprotective effect of liraglutide. In summary, long-term liraglutide ameliorated motor dysfunction and dopaminergic neuron impairment in type 2 diabetic mice, probably via enhancing AMPK/PGC-1a signaling.

    Topics: Adenylate Kinase; AMP-Activated Protein Kinases; Animals; Blood Glucose; Diabetes Mellitus; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon-Like Peptide 1; Hypoglycemic Agents; Liraglutide; Male; Mice; Mice, Inbred C57BL; Motor Disorders; Parkinson Disease; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Signal Transduction

2019
The association of low levels of nesfatin-1 and glucagon-like peptide-1 with oxidative stress in Parkinson's disease.
    Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2019, Volume: 40, Issue:12

    In Parkinson's disease (PD), oxidative stress plays a substantial role in degeneration of dopaminergic neurons at the substantia nigra. Recent reports describe nesfatin-1 and glucagon-like peptide-1 (GLP-1) as molecules with neuroprotective property that relieve oxidative stress. In this study, we aimed to determine the blood levels of nesfatin-1, GLP-1 and oxidative stress status in patients with PD.. Forty patients with PD, followed-up at the Department of Neurology of Mugla Sitki Kocman University Training and Research Hospital, were enrolled, as well as 40 age- and sex-matched participants as a control group. We determined and compared nesfatin-1, GLP-1, total antioxidant status (TAS), and total oxidant status (TOS) levels in patients with PD and control group.. The mean GLP-1 and nesfatin-1 values of patients with PD were lower than those of the control group, whereas their mean TOS value was higher. The mean TAS values, on the other hand, did not reveal any significant difference between the patient and the control groups.. The lower nesfatin-1 and GLP-1 levels, in addition to higher TOS levels, in patients with PD compared to those of control group suggest that the neuroprotective effects of these molecules might be related to the oxidative processes. Further studies are required to search for the impact of abovenamed molecules on the treatment option and the likelihood that they may slow down disease progression.

    Topics: Aged; Aged, 80 and over; Female; Glucagon-Like Peptide 1; Humans; Male; Middle Aged; Nucleobindins; Oxidative Stress; Parkinson Disease

2019