glucagon-like-peptide-1 has been researched along with Nephritis* in 2 studies
2 other study(ies) available for glucagon-like-peptide-1 and Nephritis
Article | Year |
---|---|
Protective Effects of Glucagon-Like Peptide-1 Analog on Renal Tubular Injury in Mice on High-Fat Diet.
The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD).. Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting.. Increase of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice.. The study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro. Topics: Activating Transcription Factor 4; Angiotensin II; Animals; Blood Pressure; Body Weight; Diet, High-Fat; Eating; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Eukaryotic Initiation Factor-2; Gene Expression; Glucagon-Like Peptide 1; Heat-Shock Proteins; Kidney Tubules, Proximal; Male; Mice; Nephritis; Organ Size; Palmitic Acid; Protective Agents; Receptor, Angiotensin, Type 1; Transcription Factor CHOP | 2017 |
Renoprotective effect of sitagliptin against hypertensive nephropathy induced by chronic administration of L-NAME in rats: role of GLP-1 and GLP-1 receptor.
The present study was undertaken to assess the possible protective effects of sitagliptin, a dipeptidyl peptidase 4-inhibitor (DPP4), against Nω-nitro-L-arginine methyl ester (L-NAME) induced hypertensive nephropathy in rats. Hypertension was induced in adult rats by administration of L-NAME for 6 weeks. Rats were treated with sitagliptin (10mg/kg/day or 30 mg/kg/day) for six weeks. Chronic L-NAME administration resulted in depletion of serum nitric oxide (NO) associated with elevation in the mean arterial pressure. When compared with the control group; serum urea, serum creatinine, albuminuria, urinary N-acetyl-ß-d-glucosaminidase (NAG) level and renal tissue malondialdhyde (MDA) content were significantly elevated, while creatinine clearance, serum level of glucagon like peptide-1 (GLP-1) as well as renal tissue superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were signifcantly decreased in L-NAME treated group. Renal expression of mRNA for eNOS and GLP-1 receptors were reduced in the L-NAME treated group as compared with the control group. Treatment with sitagliptin (10mg/kg or 30 mg/kg) successfully ameliorated the deleterious effects of L-NAME on the all tested parameters. Our study indicates a novel protective effect of sitagliptin against L-NAME induced hypertensive nephropathy. An effect which is mediated through, increasing serum level of GLP-1, upregulation of GLP-1 receptors, which in turn, lead to induction of expression eNOS, increased serum NO level, tandem with decreased lipid perodixation and restore the antioxidant defense mechanisms. It is worth mentioning that the effects produced by sitaglipin (30 mg/kg) were superior to the effects obtained by the lower dose. Topics: Animals; Blood Glucose; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glutathione Peroxidase; Hypertension; Hypertension, Renal; Hypoglycemic Agents; Kidney; Lipid Peroxidation; Male; Nephritis; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type III; Pyrazines; Rats; Rats, Wistar; Receptors, Glucagon; Sitagliptin Phosphate; Superoxide Dismutase; Triazoles | 2013 |