glucagon-like-peptide-1 has been researched along with Inflammation* in 145 studies
31 review(s) available for glucagon-like-peptide-1 and Inflammation
Article | Year |
---|---|
Potential role of tirzepatide towards Covid-19 infection in diabetic patients: a perspective approach.
In Covid-19, variations in fasting blood glucose are considered a distinct risk element for a bad prognosis and outcome in Covid-19 patients. Tirazepatide (TZT), a dual glucagon-like peptide-1 (GLP-1)and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist may be effective in managing Covid-19-induced hyperglycemia in diabetic and non-diabetic patients. The beneficial effect of TZT in T2DM and obesity is related to direct activation of GIP and GLP-1 receptors with subsequent improvement of insulin sensitivity and reduction of body weight. TZT improves endothelial dysfunction (ED) and associated inflammatory changes through modulation of glucose homeostasis, insulin sensitivity, and pro-inflammatory biomarkers release. TZT, through activation of the GLP-1 receptor, may produce beneficial effects against Covid-19 severity since GLP-1 receptor agonists (GLP-1RAs) have anti-inflammatory and pulmoprotective implications in Covid-19. Therefore, GLP-1RAs could effectively treat severely affected Covid-19 diabetic and non-diabetic patients. Notably, using GLP-1RAs in T2DM patients prevents glucose variability, a common finding in Covid-19 patients. Therefore, GLP-1RAs like TZT could be a therapeutic strategy in T2DM patients with Covid-19 to prevent glucose variability-induced complications. In Covid-19, the inflammatory signaling pathways are highly activated, resulting in hyperinflammation. GLP-1RAs reduce inflammatory biomarkers like IL-6, CRP, and ferritin in Covid-19 patients. Therefore, GLP-1RAs like TZ may be effective in Covid-19 patients by reducing the inflammatory burden. The anti-obesogenic effect of TZT may reduce Covid-19 severity by ameliorating body weight and adiposity. Furthermore, Covid-19 may induce substantial alterations in gut microbiota. GLP-1RA preserves gut microbiota and prevents intestinal dysbiosis. Herein, TZT, like other GLP-1RA, may attenuate Covid-19-induced gut microbiota alterations and, by this mechanism, may mitigate intestinal inflammation and systemic complications in Covid-19 patients with either T2DM or obesity. As opposed to that, glucose-dependent insulinotropic polypeptide (GIP) was reduced in obese and T2DM patients. However, activation of GIP-1R by TZT in T2DM patients improves glucose homeostasis. Thus, TZT, through activation of both GIP and GLP-1, may reduce obesity-mediated inflammation. In Covid-19, GIP response to the meal is impaired, leading to postprandial hyperglycemia and abnormal glucose hom Topics: Blood Glucose; Body Weight; COVID-19; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Humans; Hyperglycemia; Inflammation; Insulin; Insulin Resistance; Interleukin-6; Obesity; SARS-CoV-2; Tumor Necrosis Factor-alpha | 2023 |
Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent.
Inflammation contributes to many chronic conditions. It is often associated with circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate with disease severity. They are often elevated and can serve as markers of inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-MSH and ACTH have receptor-mediated anti-inflammatory properties that can rescue cells from damage and death. These peptides have been studied well in the past century. In contrast, GLP-1 and its anti-inflammatory properties have been recognized only recently. GLP-1 has been proven to be a useful adjuvant therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It also lowers HbA1C and protects cells of the cardiovascular and nervous systems by reducing inflammation and apoptosis. In this review we have explored the link between GLP-1, inflammation, and sepsis. Topics: Anti-Inflammatory Agents; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Humans; Inflammation; Peptides | 2023 |
Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases.
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain and displays a critical role in neuroprotection and inflammation by activating the GLP-1 receptor signaling pathways. Several studies in vivo and in vitro using preclinical models of neurodegenerative diseases show that GLP-1R activation has anti-inflammatory properties. This review explores the molecular mechanistic action of GLP-1 RAS in relation to inflammation in the brain. These findings update our knowledge of the potential benefits of GLP-1RAS actions in reducing the inflammatory response. These molecules emerge as a potential therapeutic tool in treating neurodegenerative diseases and neuroinflammatory pathologies. Topics: Brain; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Inflammation; Neurodegenerative Diseases | 2022 |
Anti-Inflammatory Effects of GLP-1R Activation in the Retina.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone, mainly produced by enteroendocrine L cells, which participates in the regulation of glucose homeostasis, and in reduction in body weight by promoting satiety. Actions of GLP-1 are mediated by activation of its receptor GLP-1R, which is widely expressed in several tissues including the retina. The effects of GLP-1R activation are useful in the management of type 2 diabetes mellitus (T2DM). In addition, the activation of GLP-1R has anti-inflammatory effects in several organs, suggesting that it may be also useful in the treatment of inflammatory diseases. Inflammation is a common element in the pathogenesis of several ocular diseases, and the protective effects of treatment with GLP-1 emerged also in retinal diseases. In this review we highlight the anti-inflammatory effects of GLP-1R activation in the retina. Firstly, we summarized the pathogenic role of inflammation in ocular diseases. Then, we described the pleiotropic effects of GLP-1R activation on the cellular components of the retina which are mainly involved in the pathogenesis of inflammatory retinal diseases: the retinal ganglion cells, retinal pigment epithelial cells and endothelial cells. Topics: Anti-Inflammatory Agents; Diabetes Mellitus, Type 2; Endothelial Cells; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Humans; Hypoglycemic Agents; Incretins; Inflammation; Retina; Retinal Diseases | 2022 |
The Effects of Almonds on Gut Microbiota, Glycometabolism, and Inflammatory Markers in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials.
The use of nutritional interventions for managing diabetes is one of the effective strategies aimed at reducing the global prevalence of the condition, which is on the rise. Almonds are the most consumed tree nut and they are known to be rich sources of protein, monounsaturated fatty acids, essential minerals, and dietary fibre. Therefore, the aim of this review was to evaluate the effects of almonds on gut microbiota, glycometabolism, and inflammatory parameters in patients with type 2 diabetes.. This systematic review and meta-analysis was carried out according to the preferred reporting items for systematic review and meta-analysis (PRISMA). EBSCOhost, which encompasses the Health Sciences Research Databases; Google Scholar; EMBASE; and the reference lists of articles were searched based on population, intervention, control, outcome, and study (PICOS) framework. Searches were carried out from database inception until 1 August 2021 based on medical subject headings (MesH) and synonyms. The meta-analysis was carried out with the Review Manager (RevMan) 5.3 software.. Nine randomised studies were included in the systematic review and eight were used for the meta-analysis. The results would suggest that almond-based diets have significant effects in promoting the growth of short-chain fatty acid (SCFA)-producing gut microbiota. Furthermore, the meta-analysis showed that almond-based diets were effective in significantly lowering (. The findings of this systematic review and meta-analysis have shown that almond-based diets may be effective in promoting short-chain fatty acid-producing bacteria and lowering glycated haemoglobin and body mass index in patients with type 2 diabetes compared with control. However, the effects of almonds were not significant ( Topics: Biomarkers; Blood Glucose; Body Mass Index; C-Reactive Protein; Diabetes Mellitus, Type 2; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glycated Hemoglobin; Homeostasis; Humans; Inflammation; Insulin; Insulin Resistance; Prunus dulcis; Publication Bias; Randomized Controlled Trials as Topic; Risk; Tumor Necrosis Factor-alpha | 2021 |
The Role of Dipeptidyl Peptidase 4 as a Therapeutic Target and Serum Biomarker in Inflammatory Bowel Disease: A Systematic Review.
The roles dipeptidyl peptidase 4 (DPP4), aminopeptidase N (APN), and their substrates in autoimmune diseases are being increasingly recognized. However, their significance in inflammatory bowel diseases (IBD) is not entirely understood. This systematic review aims to discuss the pathophysiological processes related to these ectopeptidases while comparing findings from preclinical and clinical settings.. This review was conducted according to the PRISMA guidelines. We performed a literature search in PubMed, SCOPUS, and Web of Science to identify all reports from inception until February 2020. The search included validated animal models of intestinal inflammation and studies in IBD patients. Quality assessment was performed using SYRCLE's risk of bias tool and CASP qualitative and cohort checklists.. From the 45 included studies, 36 were performed in animal models and 12 in humans (3 reports included both). Overall, the methodological quality of preclinical studies was acceptable. In animal models, DPP4 and APN inhibition significantly improved intestinal inflammation.Glucagon-like peptide (GLP)-1 and GLP-2 analogs and GLP-2-relase-inducing drugs also showed significant benefits in recovery from inflammatory damage. A nonsignificant trend toward disease remission with the GLP-2 analog teduglutide was observed in the sole interventional human study. All human studies reported an inverse correlation between soluble DPP4/CD26 levels and disease severity, in accordance with the proposal of DPP4 as a biomarker for IBD.. The use of DPP4 inhibitors and analogs of its substrates has clear benefits in the treatment of experimentally induced intestinal inflammation. Further research is warranted to validate their potential diagnostic and therapeutic applications in IBD patients. Topics: Animals; Biomarkers; Chronic Disease; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Humans; Inflammation; Inflammatory Bowel Diseases | 2021 |
The Role of Mitochondria in Immune-Cell-Mediated Tissue Regeneration and Ageing.
During tissue injury events, the innate immune system responds immediately to alarms sent from the injured cells, and the adaptive immune system subsequently joins in the inflammatory reaction. The control mechanism of each immune reaction relies on the orchestration of different types of T cells and the activators, antigen-presenting cells, co-stimulatory molecules, and cytokines. Mitochondria are an intracellular signaling organelle and energy plant, which supply the energy requirement of the immune system and maintain the system activation with the production of reactive oxygen species (ROS). Extracellular mitochondria can elicit regenerative effects or serve as an activator of the immune cells to eliminate the damaged cells. Recent clarification of the cytosolic escape of mitochondrial DNA triggering innate immunity underscores the pivotal role of mitochondria in inflammation-related diseases. Human mesenchymal stem cells could transfer mitochondria through nanotubular structures to defective mitochondrial DNA cells. In recent years, mitochondrial therapy has shown promise in treating heart ischemic events, Parkinson's disease, and fulminating hepatitis. Taken together, these results emphasize the emerging role of mitochondria in immune-cell-mediated tissue regeneration and ageing. Topics: Adaptive Immunity; Aging; Animals; Antigen-Presenting Cells; B-Lymphocyte Subsets; Cytokines; DNA; DNA, Mitochondrial; Drug Repositioning; Glucagon-Like Peptide 1; Homeostasis; Humans; Immunity, Innate; Inflammation; Intercellular Signaling Peptides and Proteins; Lupus Erythematosus, Systemic; Metformin; Mitochondria; Mitochondrial Proteins; Reactive Oxygen Species; Regeneration; T-Lymphocyte Subsets; Transplantation Immunology; Wounds and Injuries | 2021 |
Nonalcoholic Fatty Liver Disease and Obesity Treatment.
Nonalcoholic fatty liver disease (NAFLD), the most prevalent cause of chronic liver disease worldwide, is strongly associated with obesity and insulin resistance.. Significant weight loss can improve NAFLD and nonalcoholic steatohepatitis (NASH). Diet and exercise that result in a sustained body weight reduction of 7-10% can improve liver fat content, NASH, and fibrosis. Vitamin E can be considered in patients with biopsy-proven NASH without diabetes, though caution must be used in those with prostate cancer. Pioglitazone improves liver histology, including fibrosis, and can be considered in patients with or without diabetes. Glucagon-like peptide-1 (GLP-1) antagonists may be beneficial in NASH, but more studies are needed before they can be recommended. Bariatric surgery, with resultant weight loss, can result in improvement in liver fat and inflammation. NAFLD treatment includes diet and exercise with a target 7-10% weight reduction. Treatment goals include improvements in liver fat content, liver inflammation, and fibrosis. Topics: Bariatric Surgery; Body Weight; Diet; Exercise; Glucagon-Like Peptide 1; Humans; Inflammation; Insulin Resistance; Liver; Liver Cirrhosis; Male; Non-alcoholic Fatty Liver Disease; Obesity; Pioglitazone; Prostatic Neoplasms; Vitamin E; Weight Loss | 2019 |
High Glycemic Index Metabolic Damage - a Pivotal Role of GIP and GLP-1.
When glucose-fructose dimers are supplied as the slowly digestible, completely absorbable, low glycemic index (GI) sugar isomaltulose, the detrimental effects of high GI sucrose are avoided. This difference requires the presence of intact glucose-induced insulinotropic peptide receptor (GIPR) and is mediated by the rapid uptake of glucose and the stimulation of GIP release from K cells in the upper small intestine. GIP promotes lipogenesis, fatty liver, insulin resistance, and postprandial inflammation, and reduces fat oxidation in skeletal muscle, partly by hypothalamic interference with energy partitioning and epigenetic programming. GIP is similarly required for the detrimental metabolic effects of other high GI carbohydrates. We therefore propose that the release of GIP in the upper small intestine is an important determinant of the metabolic quality of carbohydrates. Topics: Animals; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glycemic Index; Humans; Incretins; Inflammation; Insulin; Muscle, Skeletal; Postprandial Period | 2018 |
Neuroprotective Activity of Sitagliptin via Reduction of Neuroinflammation beyond the Incretin Effect: Focus on Alzheimer's Disease.
Sitagliptin is a member of a class of drugs that inhibit dipeptidyl peptidase (DPP-4). It increases the levels of the active form of incretins such as GLP-1 (glucagon-like peptide-1) or GIP (gastric inhibitory polypeptide) and by their means positively affects glucose metabolism. It is successfully applied in the treatment of diabetes mellitus type 2. The most recent scientific reports suggest beneficial effect of sitagliptin on diseases in which neuron damage occurs. Result of experimental studies may indicate a reducing influence of sitagliptin on inflammatory response within encephalon area. Sitagliptin decreased the levels of proinflammatory factors: TNF- Topics: Alzheimer Disease; Animals; Blood Glucose; Cytokines; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Hypoglycemic Agents; Incretins; Inflammation; Mice; Sitagliptin Phosphate | 2018 |
Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma.
Alterations in arginine metabolism and accelerated formation of advanced glycation end-products (AGEs), crucial mechanisms in obesity-related asthma, can be modulated by glucagon-like peptide 1 (GLP-1). l-arginine dysregulation in obesity promotes inflammation and bronchoconstriction. Prolonged hyperglycemia, dyslipidemia, and oxidative stress leads to production of AGEs, that bind to their receptor (RAGE) further potentiating inflammation. By binding to its widely distributed receptor, GLP-1 blunts the effects of RAGE activation and arginine dysregulation. The GLP-1 pathway, while comprehensively studied in the endocrine and cardiovascular literature, is under-recognized in pulmonary research. Insights into GLP-1 and the lung may lead to novel treatments for obesity-related asthma. Topics: Animals; Arginine; Asthma; Glucagon-Like Peptide 1; Glycation End Products, Advanced; Humans; Inflammation; Lung; Obesity; Receptor for Advanced Glycation End Products | 2017 |
Glucagon and glucagon-like peptide-1 as novel anti-inflammatory and immunomodulatory compounds.
Glucagon and glucagon-like peptide-1 (GLP-1) are polypeptide hormones that are produced by pancreatic α-cells and the intestine, respectively, whose main function is to control glucose homeostasis. The glucagon and GLP-1 levels are imbalanced in diabetes. Furthermore, type 1 diabetic patients and animals present with a diminished inflammatory response, which is related to some morbidities of diabetes, such as a higher incidence of infectious diseases, including sepsis. The focus of this review is to briefly summarize the state of the art concerning the effects of glucagon and GLP-1 on the inflammatory response. Here, we propose that glucagon and GLP-1 have anti-inflammatory properties, making them possible prototypes for the design and synthesis of new compounds to treat inflammatory diseases. In addition, glucagon, GLP-1 or their analogues or new derivatives may not only be important for managing inflammatory diseases but may also have the therapeutic potential to prevent, cure or ameliorate diabetes in patients by counteracting the deleterious effects of pro-inflammatory cytokines on the function and viability of pancreatic β-cells. In addition, GLP-1, its analogues or drugs that inhibit GLP-1 metabolism may have a doubly beneficial effect in diabetic patients by inhibiting the inflammatory response and reducing glycaemia. Topics: Animals; Anti-Inflammatory Agents; Glucagon; Glucagon-Like Peptide 1; Humans; Immunologic Factors; Inflammation | 2017 |
Beta-glucans and cancer: The influence of inflammation and gut peptide.
Dietary β-glucans are soluble fibers with potentially health-promoting effects. Gut peptides are important signals in the regulation of energy and glucose homeostasis. This article reviews the effects of different enriched β-glucan food consumption on immune responses, inflammation, gut hormone and cancer. Gut hormones are influenced by enriched β-glucan food consumption and levels of such peptide as YY, ghrelin, glucagon-like peptide 1 and 2 in humans influence serum glucose concentration as well as innate and adaptive immunity. Cancer cell development is also regulated by obesity and glucose dishomeostasy that are influenced by β-glucan food consumption that in turn regulated gut hormones. Topics: Animals; beta-Glucans; Functional Food; Ghrelin; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Humans; Inflammation; Neoplasms; Peptide YY | 2017 |
Clinical relevance of the bile acid receptor TGR5 in metabolism.
The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex enterohepatic bile acid cycling limits the exposure of some of these tissues to the receptor ligand. Profound interspecies differences in the biology of bile acids and their receptors in different cells and tissues exist. Data from preclinical studies show promising effects of targeting TGR5 on outcomes such as weight loss, glucose metabolism, energy expenditure, and suppression of inflammation. However, clinical studies are scarce. We give a summary of key concepts in bile acid metabolism; outline different downstream effects of TGR5 activation; and review available data on TGR5 activation, with a focus on the translation of preclinical studies into clinically applicable findings. Studies in rodents suggest an important role for Tgr5 in Glp-1 secretion, insulin sensitivity, and energy expenditure. However, evidence of effects on these processes from human studies is less convincing. Ultimately, safe and selective human TGR5 agonists are needed to test the therapeutic potential of TGR5. Topics: Animals; Bile Acids and Salts; Diabetes Mellitus, Type 2; Energy Metabolism; Glucagon-Like Peptide 1; Glucose; Humans; Inflammation; Receptors, G-Protein-Coupled | 2017 |
Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion. GLP-1 has beneficial effects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. Therefore, GLP-1-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is a GLP-1 inactivating enzyme, have been developed for treatment of type 2 diabetes. In addition to glucose-lowering effects, emerging data suggests that GLP-1-based therapies also show anti-inflammatory effects in chronic inflammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammation in vivo and in vitro, and their molecular mechanisms of anti-inflammatory action. Topics: Animals; Anti-Inflammatory Agents; Blood Glucose; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Humans; Inflammation | 2016 |
Anti-atherogenic and anti-inflammatory properties of glucagon-like peptide-1, glucose-dependent insulinotropic polypepide, and dipeptidyl peptidase-4 inhibitors in experimental animals.
We reported that native incretins, liraglutide and dipeptidyl peptidase-4 inhibitors (DPP-4i) all confer an anti-atherosclerotic effect in apolipoprotein E-null (Apoe (-/-)) mice. We confirmed the anti-atherogenic property of incretin-related agents in the mouse wire injury model, in which the neointimal formation in the femoral artery is remarkably suppressed. Furthermore, we showed that DPP-4i substantially suppresses plaque formation in coronary arteries with a marked reduction in the accumulation of macrophages in cholesterol-fed rabbits. DPP-4i showed an anti-atherosclerotic effect in Apoe (-/-) mice mainly through the actions of glucagon-like peptide-1 and glucose-dependent insulinotropic polypepide. However, the dual incretin receptor antagonists partially attenuated the suppressive effect of DPP-4i on atherosclerosis in diabetic Apoe (-/-) mice, suggesting an incretin-independent mechanism. Exendin-4 and glucose-dependent insulinotropic polypepide elicited cyclic adenosine monophosphate generation, and suppressed the lipopolysaccharide-induced gene expression of inflammatory molecules, such as interleukin-1β, interleukin-6 and tumor necrosis factor-α, in U937 human monocytes. This suppressive effect, however, was attenuated by an inhibitor of adenylate cyclase and mimicked by 8-bromo-cyclic adenosine monophosphate or forskolin. DPP-4i substantially suppressed the lipopolysaccharide-induced expression of inflammatory cytokines without affecting cyclic adenosine monophosphate generation or cell proliferation. DPP-4i more strongly suppressed the lipopolysaccharide-induced gene expression of inflammatory molecules than incretins, most likely through inactivation of CD26. Glucagon-like peptide-1 and glucose-dependent insulinotropic polypepide suppressed oxidized low-density lipoprotein-induced macrophage foam cell formation in a receptor-dependent manner, which was associated with the downregulation of acyl-coenzyme A cholesterol acyltransferase-1 and CD36, as well as the up-regulation of adenosine triphosphate-binding cassette transporter A1. Our studies strongly suggest that incretin-related agents have favorable effects on macrophage-driven atherosclerosis in experimental animals. Topics: Animals; Anti-Inflammatory Agents; Apolipoproteins E; Atherosclerosis; Coronary Restenosis; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Foam Cells; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Humans; Hyperplasia; Incretins; Inflammation; Inflammation Mediators; Liraglutide; Macrophages; Mice; Mice, Knockout; Monocytes | 2016 |
The Cardiovascular Biology of Glucagon-like Peptide-1.
Glucagon-like peptide-1, produced predominantly in enteroendocrine cells, controls glucose metabolism and energy homeostasis through regulation of islet hormone secretion, gastrointestinal motility, and food intake, enabling development of GLP-1 receptor (GLP-1R) agonists for the treatment of diabetes and obesity. GLP-1 also acts on the immune system to suppress inflammation, and GLP-1R signaling in multiple tissues impacts cardiovascular function in health and disease. Here we review how GLP-1 and clinically approved GLP-1R agonists engage mechanisms that influence the risk of developing cardiovascular disease. We discuss how GLP-1R agonists modify inflammation, cardiovascular physiology, and pathophysiology in normal and diabetic animals through direct and indirect mechanisms and review human studies illustrating mechanisms linking GLP-1R signaling to modification of the cardiovascular complications of diabetes. The risks and benefits of GLP-1R agonists are updated in light of recent data suggesting that GLP-1R agonists favorably modify outcomes in diabetic subjects at high risk for cardiovascular events. Topics: Animals; Cardiovascular System; Clinical Trials as Topic; Glucagon-Like Peptide 1; Humans; Inflammation; Models, Biological; Signal Transduction | 2016 |
Obesity and polycystic ovary syndrome.
Obesity is now a major international health concern. It is increasingly common in young women with reproductive, metabolic and psychological health impacts. Reproductive health impacts are often poorly appreciated and include polycystic ovary syndrome (PCOS), infertility and pregnancy complications. PCOS is the most common endocrine condition in women and is underpinned by hormonal disturbances including insulin resistance and hyperandrogenism. Obesity exacerbates hormonal and clinical features of PCOS and women with PCOS appear at higher risk of obesity, with multiple underlying mechanisms linking the conditions. Lifestyle intervention is first line in management of PCOS to both prevent weight gain and induce weight loss; however improved engagement and sustainability remain challenges with the need for more research. Medications like metformin, orlistat, GLP1 agonists and bariatric surgery have been used with the need for large scale randomised clinical trials to define their roles. Topics: Adipokines; Bariatric Surgery; Combined Modality Therapy; Comorbidity; Diet, Reducing; Exercise Therapy; Female; Glucagon-Like Peptide 1; Gonadal Steroid Hormones; Humans; Hyperandrogenism; Inflammation; Insulin Resistance; Lactones; Life Style; Metformin; Models, Biological; Motivation; Obesity; Obesity, Abdominal; Orlistat; Polycystic Ovary Syndrome; Prevalence; Sympathetic Nervous System; Weight Loss | 2015 |
From endocrine to rheumatism: do gut hormones play roles in rheumatoid arthritis?
RA is characterized by chronic inflammation in the musculoskeletal system, in which TNF-α is the key cytokine trigger. TNF-α, previously known as cachectin, is implicated in the modulation of body composition and energy expenditure. Gut hormones, including acyl ghrelin, des-acyl ghrelin, GIP, GLP-1 and PYY, have been known to be the major regulators of appetite, nutrition, energy expenditure and body mass formation. Emerging evidence indicates that blockade of TNF-α by biologics not only ameliorates rheumatoid inflammation, but can affect the secretion and action of gut hormones on appetite, body composition, energy expenditure, muscle catabolism and bone remodelling. A link between the gastrointestinal endocrine axis and the immune system may be established through the interaction of proinflammatory cytokines, including TNF-α and these gut hormones. With the ever-increasing understanding of rheumatoid inflammation and the invention of more biologics to modulate the cytokine network, more attention should be given to the possible immunomodulatory roles of gut hormones in autoimmune inflammatory reactions. Topics: Appetite; Arthritis, Rheumatoid; Biological Products; Energy Metabolism; Gastric Inhibitory Polypeptide; Ghrelin; Glucagon-Like Peptide 1; Humans; Inflammation; Peptide YY; Tumor Necrosis Factor-alpha | 2014 |
TGR5 in inflammation and cardiovascular disease.
TGR5 (Takeda G-protein-coupled receptor 5) [also known as GPBAR1 (G-protein-coupled bile acid receptor 1), M-BAR (membrane-type receptor for bile acids) or GPR131 (G-protein-coupled receptor 131)] is a G-protein-coupled receptor that was discovered as a bile acid receptor. TGR5 has specific roles in several tissues, among which are the regulation of energy expenditure, GLP-1 (glucagon-like peptide 1) secretion and gall bladder filling. An accumulating body of evidence now demonstrates that TGR5 also acts in a number of processes important in inflammation. Most striking in this context are several observations that TGR5 signalling curbs the inflammatory response of macrophages via interfering with NF-κB (nuclear factor κB) activity. In line with this, recent animal studies also suggest that TGR5 could be exploited as a potential target for intervention in a number of inflammation-driven diseases, including atherosclerosis. In the present paper, I review our current understanding of TGR5 with a strong focus on its potential as target for intervention in inflammation-driven diseases. Topics: Atherosclerosis; Bile Acids and Salts; Cardiovascular Diseases; Glucagon-Like Peptide 1; Humans; Inflammation; Receptors, G-Protein-Coupled | 2014 |
Cardiovascular actions of GLP-1 and incretin-based pharmacotherapy.
Incretin-based therapy became recently available as antihyperglycemic treatment for patients with type 2 diabetes (T2DM). Incretin therapy comprises glucagon-like peptide receptor agonists (GLP-1RA) and dipeptidyl-peptidase 4 inhibitors (DPP4-I): these classes of drugs not only have the ability to reduce blood glucose, but also can exert several cardioprotective effects. They have been shown to positively influence some risk factors for cardiovascular disease (CVD), to improve endothelial function, and to directly affect cardiac function. For these reasons incretins are considered not only antidiabetic drugs, but also cardiovascular effective. The first clinical trials aimed to demonstrate the safety of DPP4 inhibitors have been recently published: their clinical significance will be discussed in light of the prior experimental findings. Topics: Blood Glucose; Blood Pressure; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Endothelium, Vascular; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Incretins; Inflammation; Lipid Metabolism; Male; Myocytes, Cardiac; Receptors, Glucagon | 2014 |
Adipose tissue dysfunction and inflammation in cardiovascular disease.
Adipose tissue (AT) was long perceived as a passive lipid storage depot but it is now considered as an endocrine organ that produces a large number of mediators that affect metabolism, inflammation and coagulation. In obesity, the increased size of adipocytes and chronic low-grade inflammation within AT alter its normal physiological function. AT dysfunction results in altered production and secretion of adipokines, which in turn affect several tissues, e.g. the liver, skeletal muscles and vasculature, in a para- or endocrine manner. Numerous circulating proinflammatory mediators involved in the development of cardiovascular disease (CVD) are directly released from adipocytes, thereby linking obesity to an increased cardiovascular risk. In the current chapter, we focus, on the one hand, on a small selection of novel adipokines with a potentially strong link to CVD: soluble dipeptidyl peptidase-4, visfatin and lipocalin-2. On the other hand, we summarize the most recent findings on the novel cardioprotective adipokines omentin and apelin. Topics: Acute-Phase Proteins; Adipocytes; Adipokines; Adipose Tissue; Apelin; Cardiovascular Diseases; Cytokines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; GPI-Linked Proteins; Humans; Inflammation; Intercellular Signaling Peptides and Proteins; Lectins; Lipocalin-2; Lipocalins; Nicotinamide Phosphoribosyltransferase; Obesity; Proto-Oncogene Proteins; Risk Factors | 2014 |
Glucagon-like peptide 1 and the cardiovascular system.
Glucagon-like peptide 1 (GLP1) is a major incretin hormone. This means that it is secreted by the gut in response to food and helps in reducing post-prandial glucose exertion. It achieves this through a number of mechanisms, including stimulating insulin release by pancreatic β-cells in a glucose-dependent manner; inhibition of glucagon release by pancreatic α-cells (also in a glucose-dependent manner); induction of central appetite suppression and by delaying gastric empting thereby inducing satiety and also reducing the rate of absorption of nutrients. However, GLP1 receptors have been described in a number of extra-pancreatic tissues, including the endothelium and the myocardium. This suggests that the physiological effects of GLP1 extend beyond post-prandial glucose control and raises the possibility that GLP1 might have cardiovascular effects. This is of importance in our understanding of incretin hormone physiology and especially because of the possible implications that it might have with regard to cardiovascular effects of incretin-based therapies, namely DPP-IV inhibitors (gliptins) and GLP1 analogues. This review analyzes the animal and human data on the effects of GLP1 on the cardiovascular system in health and in disease and the currently available data on cardiovascular effects of incretin-based therapies. It is the author's view that the physiological role of GLP1 is not only to minimize postprandial hypoglycaemia, but also protect against it. Topics: Animals; Blood Glucose; Cardiovascular System; Diabetes Mellitus; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Incretins; Inflammation; Insulin-Secreting Cells; Oxidative Stress; Triglycerides | 2014 |
Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that control the secretion of insulin, glucagon, and somatostatin to facilitate glucose disposal. The actions of incretin hormones are terminated via enzymatic cleavage by dipeptidyl peptidase-4 (DPP-4) and through renal clearance. GLP-1 and GIP promote β-cell proliferation and survival in rodents. DPP-4 inhibitors expand β-cell mass, reduce α-cell mass, and inhibit glucagon secretion in preclinical studies; however, whether incretin-based therapies sustain functional β-cell mass in human diabetic subjects remains unclear. GLP-1 and GIP exert their actions predominantly through unique G protein-coupled receptors expressed on β-cells and other pancreatic cell types. Accurate localization of incretin receptor expression in pancreatic ductal or acinar cells in normal or diabetic human pancreas is challenging because antisera used for detection of the GLP-1 receptor often are neither sufficiently sensitive nor specific to yield reliable data. This article reviews recent advances and controversies in incretin hormone action in the pancreas and contrasts established mechanisms with areas of uncertainty. Furthermore, methodological challenges and pitfalls are highlighted and key areas requiring additional scientific investigation are outlined. Topics: Acinar Cells; Animals; Atherosclerosis; Blotting, Western; Cell Proliferation; Cricetinae; Diabetes Mellitus; Dipeptidyl-Peptidase IV Inhibitors; Female; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Inflammation; Insulin-Secreting Cells; Male; Mice; Pancreas; Rats; Real-Time Polymerase Chain Reaction; Receptors, Gastrointestinal Hormone; Receptors, Glucagon | 2013 |
An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease.
The introduction of dipeptidyl peptidase 4 (DPP4) inhibitors for the treatment of Type 2 diabetes acknowledges the fundamental importance of incretin hormones in the regulation of glycemia. Small molecule inhibitors of DPP4 exert their effects via inhibition of enzymatic degradation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The widespread expression of DPP4 in tissues such as the vasculature and immune cells suggests that this protein may play a role in cardiovascular function. DPP4 is known to exert its effects via both enzymatic and non-enzymatic mechanisms. A soluble form of DPP4 lacking the cytoplasmic and transmembrane domain has also been recently recognized. Besides enzymatic inactivation of incretins, DPP4 also mediates degradation of many chemokines and neuropeptides. The non-enzymatic function of DPP4 plays a critical role in providing co-stimulatory signals to T cells via adenosine deaminase (ADA). DPP4 may also regulate inflammatory responses in innate immune cells such as monocytes and dendritic cells. The multiplicity of functions and targets suggests that DPP4 may play a distinct role aside from its effects on the incretin axis. Indeed recent studies in experimental models of atherosclerosis provide evidence for a robust effect for these drugs in attenuating inflammation and plaque development. Several prospective randomized controlled clinical trials in humans with established atherosclerosis are testing the effects of DPP4 inhibition on hard cardiovascular events. Topics: Animals; Blood Pressure; Cardiovascular Diseases; Cardiovascular System; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Humans; Incretins; Inflammation; Mice | 2013 |
Frailty and safety: the example of diabetes.
Frailty is considered a syndrome of decreased reserve and resistance to stressors and is clinically expressed as muscle weakness, poor exercise tolerance, factors related to body composition, sarcopenia and disability. In addition, there is a close relationship between age-related metabolic changes and the occurrence of comorbidities that may in turn lead to frailty.Even though the downward spiral of frailty is activated more quickly in older persons with type 2 diabetes, it is reversible with appropriate interventions before reaching a high level of severity. The hazard for geriatric patients with type 2 diabetes is that frailty encompasses diverse complications already associated with or caused by diabetes. Frailty is also associated with cognitive impairment, reduced ability to perform activities of daily living and increased expression of inflammatory and coagulation markers that may contribute to the adverse microvascular effects of diabetes. Although glycaemic control remains the main targeting achievement in type 2 diabetes, especially in well-functioning older persons, this is not appropriate for those with frailty. Frail elderly people with type 2 diabetes are a specific group in need of treatment parameters for both initial and maintenance therapy with oral antidiabetic agents. Therefore, the prescription of an antidiabetic agent in such individuals must take into consideration not only the standard goal of lowering hyperglycaemic levels, but also improving the quality of life and life expectancy. The clinical management of this population is currently particularly demanding, requiring special considerations with good medical decision making. Clinical aspects complicating diabetes care in older people include cognitive decline, physical functional decline and frailty. Available oral antidiabetic drugs include insulin secretagogues (meglitinides and sulfonylureas), biguanides (metformin), α-glucosidase inhibitors, thiazolidinediones and inhibitors of glucagon-like peptide 1 (GLP-1) degrading enzyme dipeptidyl peptidase 4. In addition, we will discuss injection treatment with GLP-1 analogues. This review will underline the association between diabetes and some frailty components in old patients and how specific antidiabetic agents may play a specific role in improving outcomes. Topics: Aged; Aging; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Frail Elderly; Glucagon-Like Peptide 1; Glycoside Hydrolase Inhibitors; Humans; Hypoglycemic Agents; Inflammation; Insulin; Insulin Secretion; Muscle, Skeletal | 2012 |
Rationale for the use of radiolabelled peptides in diagnosis and therapy.
Nuclear medicine techniques are becoming more important in imaging oncological and infectious diseases. For metabolic imaging of these diseases, antibody and peptide imaging are currently used. In recent years peptide imaging has become important, therefore the rationale for the use of peptide imaging is described in this article. Criteria for a successful peptide tracer are a high target specificity, a high binding affinity, a long metabolic stability and a high target-to-background ratio. Tracer internalization is also beneficial. For oncological imaging, many tracers are available, most originating from regulatory peptides, but penetrating peptides are also being developed. Peptides for imaging inflammatory and infectious diseases include regulatory peptides, antimicrobial peptides and others. In conclusion, for the imaging of oncological, imflammatory and infectious diseases, many promising peptides are being developed. The ideal peptide probe is characterized by rapid and specific target localization and binding with a high tumour-to-background ratio. Topics: Antimicrobial Cationic Peptides; Bombesin; Cholecystokinin; Gastrin-Releasing Peptide; Glucagon-Like Peptide 1; Humans; Infections; Inflammation; Isotope Labeling; Neoplasms; Peptides; Radionuclide Imaging; Radiopharmaceuticals; Somatostatin; Vasoactive Intestinal Peptide | 2012 |
Targeting type 2 diabetes.
The evolving concept of how nutrient excess and inflammation modulate metabolism provides new opportunities for strategies to correct the detrimental health consequences of obesity. In this review, we focus on the complex interplay among lipid overload, immune response, proinflammatory pathways and organelle dysfunction through which excess adiposity might lead to type 2 diabetes. We then consider evidence linking dysregulated CNS circuits to insulin resistance and results on nutrient-sensing pathways emerging from studies with calorie restriction. Subsequently, recent recommendations for the management of type 2 diabetes are discussed with emphasis on prevailing current therapeutic classes of biguanides, thiazolidinediones and incretin-based approaches. Topics: Adipose Tissue; Caloric Restriction; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Glucose; Homeostasis; Humans; Hypoglycemic Agents; Inflammation; Insulin Resistance; Insulin-Secreting Cells; Metformin; Signal Transduction; Thiazolidines | 2011 |
The emerging role of the intestine in metabolic diseases.
The intestine is an important metabolic organ that has gained attention in recent years for the newly identified role that it plays in the pathophysiology of various metabolic diseases including obesity, insulin resistance and diabetes. Recent insights regarding the role of enteroendocrine hormones, such as GIP, GLP-1, and PYY in metabolic diseases, as well as the emerging role of the gut microbial community and gastric bypass bariatric surgeries in modulating metabolic function and dysfunction have sparked a wave of interest in understanding the mechanisms involved, in an effort to identify new therapeutics and novel regulators of metabolism. This review summarizes the current evidence that the gastrointestinal tract has a key role in the development of obesity, inflammation, insulin resistance and diabetes and discusses the possible players that can be targeted for therapeutic intervention. Topics: Animals; Bariatric Surgery; Diabetes Mellitus, Type 2; Gastric Inhibitory Polypeptide; Gastrointestinal Hormones; Gastrointestinal Tract; Glucagon-Like Peptide 1; Humans; Inflammation; Insulin Resistance; Metabolic Diseases; Metagenome; Obesity; Peptide YY | 2011 |
[Microinflammation in diabetic nephropathy].
Topics: Animals; Diabetic Nephropathies; Drug Design; Glucagon-Like Peptide 1; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Inflammation; Insulin Resistance; Metabolic Syndrome; Mice; Molecular Targeted Therapy; PPAR gamma; Rats; Thiazolidines | 2011 |
Epac: defining a new mechanism for cAMP action.
cAMP is a second messenger that is essential for relaying hormonal responses in many biological processes. The discovery of the cAMP target Epac explained various effects of cAMP that could not be attributed to the established targets PKA and cyclic nucleotide-gated ion channels. Epac1 and Epac2 function as guanine nucleotide exchange factors for the small G protein Rap. cAMP analogs that selectively activate Epac have helped to reveal a role for Epac in processes ranging from insulin secretion to cardiac contraction and vascular permeability. Advances in the understanding of the activation mechanism of Epac and its regulation by diverse anchoring mechanisms have helped to elucidate the means by which cAMP fulfills these functions via Epac. Topics: Animals; Calcium; Capillary Permeability; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Glucagon-Like Peptide 1; Guanine Nucleotide Exchange Factors; Humans; Inflammation; Insulin; Insulin Secretion; Kidney; Neurons; Receptors, Adrenergic, beta | 2010 |
14 trial(s) available for glucagon-like-peptide-1 and Inflammation
Article | Year |
---|---|
Prolonged lipopolysaccharide-induced illness elevates glucagon-like peptide-1 and suppresses peptide YY: A human-randomized cross-over trial.
Topics: Cross-Over Studies; Gastrointestinal Hormones; Gastrointestinal Motility; Glucagon-Like Peptide 1; Humans; Inflammation; Lipopolysaccharides; Male; Nausea; Peptide YY | 2022 |
Subcutaneous adipose tissue composition and function are unaffected by liraglutide-induced weight loss in adults with type 1 diabetes.
Adipose tissue is the primary energy reservoir of the human body, which also possesses endocrine functions. The glucagon-like peptide agonist liraglutide produces weight loss, although the specific effects on adipose tissue are unknown. We aimed to characterize the white adipose tissue composition and pericellular fibrosis of subcutaneous adipose tissue in response to liraglutide treatment. Furthermore, we explored the level of circulating free fatty acids, cluster of differentiation 163 (CD163) macrophage marker, leptin and adiponectin. Thirty-nine adults with type 1 diabetes and polyneuropathy were randomly assigned to 26 weeks of liraglutide or placebo treatment. Biopsies of subcutaneous tissue were formalin-fixed stained with picrosirius red to visualize collagen or immunohistochemically stained for CD163. Serum concentrations of free fatty acids, CD163, leptin and adiponectin were assessed with immunoassays or multiplex panels. In comparison with placebo, liraglutide induced weight loss (3.38 kg, 95% CI -5.29; -1.48, P < 0.001), but did not cause any differences in cell size, distribution of CD163-positive cells, pericellular fibrosis and serum levels of free fatty acids, CD163, leptin or adiponectin (all P < 0.1). Additionally, no associations between weight loss, cell size and serum markers were found (all P > 0.08). In conclusion, despite liraglutide's effect on weight loss, sustained alterations in subcutaneous adipose tissue did not seem to appear. Topics: Adipose Tissue, White; Adult; Aged; Aged, 80 and over; Diabetes Mellitus, Type 1; Double-Blind Method; Female; Fibrosis; Glucagon-Like Peptide 1; Humans; Inflammation; Liraglutide; Male; Middle Aged; Subcutaneous Fat; Weight Loss | 2021 |
Glucagon-like peptide-1, insulin-like growth factor-1, and adiponectin in insulin-dysregulated ponies: effects of feeding a high nonstructural carbohydrate diet and association with prospective laminitis.
Endocrinopathic laminitis, related to equine metabolic syndrome and insulin dysregulation, causes marked pain and suffering in horses and represents a substantial cost to the horse industry. This study investigated the effect of feeding a diet high in nonstructural carbohydrates on concentrations of active glucagon-like peptide-1 (aGLP-1), total insulin-like growth factor-1 (IGF-1), and high-molecular-weight (HMW) adiponectin, in insulin-dysregulated ponies. Thirty-seven ponies were challenged with this diet for up to 18 d to induce hyperinsulinemia. Hormone concentrations were measured in selected samples on day 2 of the diet challenge period, over 4 h after feeding. Fourteen of the ponies developed mild laminitis induced by the diet challenge. Insulin and glucose responses to the diet have been reported previously. Feeding increased the concentrations of aGLP-1 (P < 0.05) and HMW adiponectin (P < 0.001), but there was no difference between the laminitic and nonlaminitic groups for either hormone. Concentrations of IGF-1 and insulin were inversely related, with IGF-1 being 32% lower in hyperinsulinemic/laminitic ponies compared with nonlaminitic ponies (P = < 0.05). These results indicate that unlike insulin and possibly IGF-1, concentrations of aGLP-1 and HMW adiponectin do not have a strong association with, or play a major role in, the pathogenesis of equine laminitis. Topics: Adiponectin; Animals; Dietary Carbohydrates; Foot Diseases; Glucagon-Like Peptide 1; Hoof and Claw; Horse Diseases; Horses; Inflammation; Insulin; Insulin-Like Growth Factor I | 2020 |
Acute Effects of Three Different Meal Patterns on Postprandial Metabolism in Older Individuals with a Risk Phenotype for Cardiometabolic Diseases: A Randomized Controlled Crossover Trial.
The aim of this study is to investigate acute postprandial responses to intake of meals typical for Mediterranean and Western diets.. In a randomized crossover design, overweight and obese participants with a risk phenotype for cardiometabolic diseases consumed three different isoenergetic meals: Western diet-like high-fat (WDHF), Western diet-like high-carbohydrate (WDHC), and Mediterranean diet (MED) meal. Blood samples are collected at fasting and 1, 2, 3, 4, 5 h postprandially and analyzed for parameters of lipid and glucose metabolism, inflammation, oxidation, and antioxidant status.. Compared to MED and WDHF meals, intake of a WDHC meal results in prolonged and elevated increases in glucose and insulin. Elevations for triglycerides are enhanced after the WDHF meal compared to the MED and the WDHC meal. Glucagon-like peptide-1 and interleukin-6 increase postprandially without meal differences. Apart from vitamin C showing an increase after the MED meal and a decrease after WDHF and WDHC meals, antioxidant markers decrease postprandially without meal differences. Plasma interleukin-1β is not affected by meal intake.. Energy-rich meals induce hyperglycemia, hyperlipemia, an inflammatory response, and a decrease in antioxidant markers. A meal typical for the Mediterranean diet results in favorable effects on glycemic, insulinemic, and lipemic responses. Topics: Aged; Antioxidants; Biomarkers; Blood Glucose; Cross-Over Studies; Diet; Diet, Mediterranean; Diet, Western; Energy Intake; Female; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Hyperlipidemias; Inflammation; Insulin; Lipids; Male; Middle Aged; Postprandial Period; Risk Factors | 2020 |
GLP-1 analogue-induced weight loss does not improve obesity-induced AT dysfunction.
Glucagon-like peptide-1 (GLP-1) analogues aid weight loss that improves obesity-associated adipose tissue (AT) dysfunction. GLP-1 treatment may however also directly influence AT that expresses the GLP-1 receptor (GLP-1R). The present study aimed to assess the impact of GLP-1 analogue treatment on subcutaneous AT (SCAT) inflammatory and fibrotic responses, compared with weight loss by calorie reduction (control). Among the 39 participants with Type 2 diabetes recruited, 30 age-matched participants were randomized to 4 months treatment with Liraglutide ( Topics: Adiponectin; Adipose Tissue; Aged; Diabetes Mellitus, Type 2; Extracellular Matrix; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Inflammation; Leptin; Liraglutide; Male; Middle Aged; Obesity | 2017 |
Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals.
Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress.. In total, 19 healthy overweight individuals completed a crossover meal test with two meals of identical ingredients prepared by roasting (H-AGE) or steaming (L-AGE), respectively. Postprandial blood samples were analysed for N(ε)-carboxymethyl-lysine (CML), appetite-regulating gut hormones, glucose, insulin, triacylglycerol, and markers of inflammation and endothelial activation. Subjective appetite ratings and subsequent food intake were also assessed, and urine was analysed for CML, methylglyoxal-derived hydroimidazolone (MG-H1), and F2-isoprostanes.. CML content of the H- and L-AGE meals was 5.0 and 2.8 mg, respectively. Plasma CML and urinary CML and MG-H1 tended to be higher after the H-AGE meal. There was no change in subsequent food intake, appetite sensations, or appetite hormone responses between meals, except for the overall ghrelin response, which was higher after the H-AGE meal compared with the L-AGE meal (p = 0.016). There was an increased glycaemic response to the H-AGE meal (p = 0.027) compared with the L-AGE meal. Inflammatory and endothelial activation markers did not differ between meals, but there was an overall effect on endothelial activation (p = 0.021) and on the oxidative marker, F2-isoprostanes, in urine (p = 0.013).. The present study did not show any pronounced effects of AGEs on appetite and markers of inflammation, but did indicate that AGEs may affect postprandial ghrelin, oxidative stress, and glucose responses. Topics: Adult; Appetite; Blood Glucose; Body Mass Index; Cross-Over Studies; Diet; Endothelium; Energy Intake; F2-Isoprostanes; Female; Ghrelin; Glucagon-Like Peptide 1; Glycation End Products, Advanced; Hot Temperature; Humans; Inflammation; Insulin; Lysine; Male; Middle Aged; Overweight; Oxidative Stress; Peptide YY; Postprandial Period; Steam; Triglycerides | 2014 |
Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: a randomized clinical trial.
To examine whether a pistachio-rich diet reduces the prediabetes stage and improves its metabolic risk profile.. Prediabetic subjects were recruited to participate in this Spanish randomized clinical trial between 20 September 2011 and 4 February 2013. In a crossover manner, 54 subjects consumed two diets, each for 4 months: a pistachio-supplemented diet (PD) and a control diet (CD). A 2-week washout period separated study periods. Diets were isocaloric and matched for protein, fiber, and saturated fatty acids. A total of 55% of the CD calories came from carbohydrates and 30% from fat, whereas for the PD, these percentages were 50 and 35%, respectively (including 57 g/day of pistachios).. Fasting glucose, insulin, and HOMA of insulin resistance decreased significantly after the PD compared with the CD. Other cardiometabolic risk markers such as fibrinogen, oxidized LDL, and platelet factor 4 significantly decreased under the PD compared with the CD (P < 0.05), whereas glucagon-like peptide-1 increased. Interleukin-6 mRNA and resistin gene expression decreased by 9 and 6%, respectively, in lymphocytes after the pistachio intervention (P < 0.05, for PD vs. CD). SLC2A4 expression increased by 69% in CD (P = 0.03, for PD vs. CD). Cellular glucose uptake by lymphocytes decreased by 78.78% during the PD (P = 0.01, PD vs. CD).. Chronic pistachio consumption is emerging as a useful nutritional strategy for the prediabetic state. Data suggest that pistachios have a glucose- and insulin-lowering effect, promote a healthier metabolic profile, and reverse certain metabolic deleterious consequences of prediabetes. Topics: Cross-Over Studies; Diet; Fasting; Female; Glucagon-Like Peptide 1; Glucose; Humans; Inflammation; Insulin; Insulin Resistance; Interleukin-6; Lipoproteins, LDL; Male; Middle Aged; Pistacia; Prediabetic State | 2014 |
The protective effect of the Mediterranean diet on endothelial resistance to GLP-1 in type 2 diabetes: a preliminary report.
In type 2 diabetes, acute hyperglycemia worsens endothelial function and inflammation,while resistance to GLP-1 action occurs. All these phenomena seem to be related to the generation of oxidative stress. A Mediterranean diet, supplemented with olive oil, increases plasma antioxidant capacity, suggesting that its implementation can have a favorable effect on the aforementioned phenomena. In the present study, we test the hypothesis that a Mediterranean diet using olive oil can counteract the effects of acute hyperglycemia and can improve the resistance of the endothelium to GLP-1 action.. Two groups of type 2 diabetic patients, each consisting of twelve subjects, participated in a randomized trial for three months, following a Mediterranean diet using olive oil or a control low-fat diet. Plasma antioxidant capacity, endothelial function, nitrotyrosine, 8-iso-PGF2a, IL-6 and ICAM-1 levels were evaluated at baseline and at the end of the study. The effect of GLP-1 during a hyperglycemic clamp, was also studied at baseline and at the end of the study.. Compared to the control diet, the Mediterranean diet increased plasma antioxidant capacity and improved basal endothelial function, nitrotyrosine, 8-iso-PGF2a, IL-6 and ICAM-1 levels. The Mediterranean diet also reduced the negative effects of acute hyperglycemia, induced by a hyperglycemic clamp, on endothelial function, nitrotyrosine, 8-iso-PGF2a, IL-6 and ICAM-1 levels. Furthermore, the Mediterranean diet improved the protective action of GLP-1 on endothelial function, nitrotyrosine, 8-iso-PGF2a, IL-6 and ICAM-1 levels, also increasing GLP-1-induced insulin secretion.. These data suggest that the Mediterranean diet, using olive oil, prevents the acute hyperglycemia effect on endothelial function, inflammation and oxidative stress, and improves the action of GLP-1, which may have a favorable effect on the management of type 2 diabetes, particularly for the prevention of cardiovascular disease. Topics: Adult; Aged; Blood Glucose; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diet, Mediterranean; Drug Resistance; Endothelium, Vascular; Female; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Inflammation; Male; Middle Aged; Oxidative Stress | 2014 |
Acute peripheral administration of synthetic human GLP-1 (7-36 amide) decreases circulating IL-6 in obese patients with type 2 diabetes mellitus: a potential role for GLP-1 in modulation of the diabetic pro-inflammatory state?
To explore the effects of acute administration of GLP-1 and GIP on circulating levels of key adipocyte-derived hormones and gut-brain peptides with established roles in energy and appetite regulation, modulation of insulin sensitivity and inflammation.. Six obese male patients with diet-treated type 2 diabetes (T2DM) and 6 healthy lean subjects were studied. The protocol included 4 experiments for each participant that were carried out in randomised order and comprised: GLP-1 infusion at a rate of 1 pmol/kg/min for 4h, GIP at a rate of 2 pmol/kg/min, GLP-1+GIP and placebo infusion. Plasma leptin, adiponectin, IL-6, insulin, ghrelin and obestatin were measured at baseline, 15, 60, 120, 180 and 240 min following the start of infusion.. Patients with T2DM had higher baseline IL-6 compared with healthy [day of placebo infusion: T2DM IL-6 mean (SEM) 1.3 (0.3) pg/ml vs 0.3 (0.1)pg/ml, p=0.003]. GLP-1 infusion in T2DM was associated with a significant reduction in circulating IL-6 [baseline IL-6 1.2 pg/ml vs IL-6=0.7 at 120 min, p=0.0001; vs IL-6=0.8 at 180 min, p=0.001]. There was no significant change in leptin, adiponectin, ghrelin or obestatin compared to baseline on all 4 experimental days in both groups.. Short-term infusion of supraphysiological concentrations of GLP-1 in T2DM results in suppression of IL-6, a key inflammatory mediator strongly linked to development of obesity and T2DM-related insulin resistance. It remains to be confirmed whether GLP-1-based diabetes therapies can impact favourably on cardiovascular outcomes. Topics: Adult; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Humans; Inflammation; Interleukin-6; Male; Middle Aged; Obesity; Peptide Fragments | 2013 |
Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes.
Hyperglycemia and hypoglycemia currently are considered risk factors for cardiovascular disease in type 1 diabetes. Both acute hyperglycemia and hypoglycemia induce endothelial dysfunction and inflammation, raising the oxidative stress. Glucagon-like peptide 1 (GLP-1) has antioxidant properties, and evidence suggests that it protects endothelial function.. The effect of both acute hyperglycemia and acute hypoglycemia in type 1 diabetes, with or without the simultaneous infusion of GLP-1, on oxidative stress (plasma nitrotyrosine and plasma 8-iso prostaglandin F2alpha), inflammation (soluble intercellular adhesion molecule-1 and interleukin-6), and endothelial dysfunction has been evaluated.. Both hyperglycemia and hypoglycemia acutely induced oxidative stress, inflammation, and endothelial dysfunction. GLP-1 significantly counterbalanced these effects.. These results suggest a protective effect of GLP-1 during both hypoglycemia and hyperglycemia in type 1 diabetes. Topics: Adult; Blood Glucose; Diabetes Mellitus, Type 1; Endothelium, Vascular; Female; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Hypoglycemia; Inflammation; Intercellular Adhesion Molecule-1; Interleukin-6; Male; Oxidative Stress | 2013 |
Vitamin C further improves the protective effect of GLP-1 on the ischemia-reperfusion-like effect induced by hyperglycemia post-hypoglycemia in type 1 diabetes.
It has been reported that hyperglycemia following hypoglycemia produces an ischemia-reperfusion-like effect in type 1 diabetes. In this study the possibility that GLP-1 has a protective effect on this phenomenon has been tested.. 15 type 1 diabetic patients underwent to five experiments: a period of two hours of hypoglycemia followed by two hours of normo-glycemia or hyperglycemia with the concomitant infusion of GLP-1 or vitamin C or both. At baseline, after 2 and 4 hours, glycemia, plasma nitrotyrosine, plasma 8-iso prostaglandin F2alpha, sCAM-1a, IL-6 and flow mediated vasodilation were measured.. After 2 h of hypoglycemia, flow mediated vasodilation significantly decreased, while sICAM-1, 8-iso-PGF2a, nitrotyrosine and IL-6 significantly increased. While recovering with normoglycemia was accompanied by a significant improvement of endothelial dysfunction, oxidative stress and inflammation, a period of hyperglycemia after hypoglycemia worsens all these parameters. These effects were counterbalanced by GLP-1 and better by vitamin C, while the simultaneous infusion of both almost completely abolished the effect of hyperglycemia post hypoglycemia.. This study shows that GLP-1 infusion, during induced hyperglycemia post hypoglycemia, reduces the generation of oxidative stress and inflammation, improving the endothelial dysfunction, in type 1 diabetes. Furthermore, the data support that vitamin C and GLP-1 may have an additive protective effect in such condition. Topics: Adult; Antioxidants; Ascorbic Acid; Biomarkers; Blood Glucose; Diabetes Mellitus, Type 1; Dinoprost; Female; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Hypoglycemia; Hypoglycemic Agents; Inflammation; Inflammation Mediators; Infusions, Parenteral; Intercellular Adhesion Molecule-1; Interleukin-6; Male; Oxidative Stress; Reperfusion Injury; Time Factors; Treatment Outcome; Tyrosine; Vasodilation; Young Adult | 2013 |
Vitamin C further improves the protective effect of glucagon-like peptide-1 on acute hypoglycemia-induced oxidative stress, inflammation, and endothelial dysfunction in type 1 diabetes.
To test the hypothesis that acute hypoglycemia induces endothelial dysfunction and inflammation through the generation of an oxidative stress. Moreover, to test if the antioxidant vitamin C can further improve the protective effects of glucagon-like peptide 1 (GLP-1) on endothelial dysfunction and inflammation during hypoglycemia in type 1 diabetes.. A total of 20 type 1 diabetic patients underwent four experiments: a period of 2 h of acute hypoglycemia with or without infusion of GLP-1 or vitamin C or both. At baseline, after 1 and 2 h, glycemia, plasma nitrotyrosine, plasma 8-iso prostaglandin F2a (PGF2a), soluble intracellular adhesion molecule-1a (sICAM-1a), interleukin-6 (IL-6), and flow-mediated vasodilation were measured. At 2 h of hypoglycemia, flow-mediated vasodilation significantly decreased, while sICAM-1, 8-iso-PGF2a, nitrotyrosine, and IL-6 significantly increased. The simultaneous infusion of GLP-1 or vitamin C significantly attenuated all of these phenomena. Vitamin C was more effective. When GLP-1 and vitamin C were infused simultaneously, the deleterious effect of hypoglycemia was almost completely counterbalanced.. At 2 h of hypoglycemia, flow-mediated vasodilation significantly decreased, while sICAM-1, 8-iso-PGF2a, nitrotyrosine, and IL-6 significantly increased. The simultaneous infusion of GLP-1 or vitamin C significantly attenuated all of these phenomena. Vitamin C was more effective. When GLP-1 and vitamin C were infused simultaneously, the deleterious effect of hypoglycemia was almost completely counterbalanced.. This study shows that vitamin C infusion, during induced acute hypoglycemia, reduces the generation of oxidative stress and inflammation, improving endothelial dysfunction, in type 1 diabetes. Furthermore, the data support a protective effect of GLP-1 during acute hypoglycemia, but also suggest the presence of an endothelial resistance to the action of GLP-1, reasonably mediated by oxidative stress. Topics: Acute Disease; Antioxidants; Ascorbic Acid; Blood Glucose; Diabetes Mellitus, Type 1; Dose-Response Relationship, Drug; Drug Therapy, Combination; Endothelium, Vascular; Female; Follow-Up Studies; Glucagon-Like Peptide 1; Humans; Hypoglycemia; Hypoglycemic Agents; Incretins; Inflammation; Infusions, Intravenous; Insulin; Male; Oxidative Stress; Vasodilation; Young Adult | 2013 |
A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients.
Glucagon-like peptide-1 (GLP-1) exerts beneficial effects on the cardiovascular system. Here, we examined the effect of sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, on systemic inflammation and pro-inflammatory (M1)/anti-inflammatory (M2)-like phenotypes of peripheral blood monocytes in diabetic patients.. Forty-eight type 2 diabetic patients were divided into the following two groups: sitagliptin-treatment (50mg daily for 3months) (n=24) and untreated control (n=24) groups. Measurements were undertaken to assess changes in glucose-lipid metabolism, serum levels of inflammatory cytokines such as serum amyloid A-LDL (SAA-LDL), C-reactive protein (CRP), interleukin-6 (IL-6), IL-10 and tumor necrosis factor-α (TNF-α). Furthermore, the effects of sitagliptin treatment on M1/M2-like phenotypes in peripheral blood monocytes were examined.. Treatment with sitagliptin significantly decreased fasting plasma glucose, hemoglobin A1c (HbA1c), serum levels of inflammatory markers, such as SAA-LDL, CRP, and TNF-α. In contrast, sitagliptin increased serum IL-10, an anti-inflammatory cytokine, as well as plasma GLP-1. In addition, sitagliptin increased monocyte IL-10 expression and decreased monocyte TNF-α expression. Multivariate regression analysis revealed that the sitagliptin treatment was the only factor independently associated with an increase in monocyte IL-10 (β=0.499; R(2)=0.293, P<0.05). However, other factors including the improvement of glucose metabolism were not associated with the increase.. This study is the first to show that a DPP-4 inhibitor, sitagliptin, reduces inflammatory cytokines and improves the unfavorable M1/M2-like phenotypes of peripheral blood monocytes in Japanese type 2 diabetic patients. Topics: Blood Glucose; C-Reactive Protein; Cholesterol; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Female; Glucagon-Like Peptide 1; Humans; Inflammation; Interleukin-10; Interleukin-6; Leukocytes, Mononuclear; Male; Middle Aged; Multivariate Analysis; Prospective Studies; Pyrazines; Regression Analysis; Serum Amyloid A Protein; Sitagliptin Phosphate; Triazoles; Tumor Necrosis Factor-alpha | 2013 |
Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast.
Low-glycemic index (GI) foods and foods rich in whole grain are associated with reduced risk of type 2 diabetes and cardiovascular disease. We studied the effect of cereal-based bread evening meals (50 g available starch), varying in GI and content of indigestible carbohydrates, on glucose tolerance and related variables after a subsequent standardized breakfast in healthy subjects (n = 15). At breakfast, blood was sampled for 3 h for analysis of blood glucose, serum insulin, serum FFA, serum triacylglycerides, plasma glucagon, plasma gastric-inhibitory peptide, plasma glucagon-like peptide-1 (GLP-1), serum interleukin (IL)-6, serum IL-8, and plasma adiponectin. Satiety was subjectively rated after breakfast and the gastric emptying rate (GER) was determined using paracetamol as a marker. Breath hydrogen was measured as an indicator of colonic fermentation. Evening meals with barley kernel based bread (ordinary, high-amylose- or beta-glucan-rich genotypes) or an evening meal with white wheat flour bread (WWB) enriched with a mixture of barley fiber and resistant starch improved glucose tolerance at the subsequent breakfast compared with unsupplemented WWB (P < 0.05). At breakfast, the glucose response was inversely correlated with colonic fermentation (r = -0.25; P < 0.05) and GLP-1 (r = -0.26; P < 0.05) and positively correlated with FFA (r = 0.37; P < 0.001). IL-6 was lower (P < 0.01) and adiponectin was higher (P < 0.05) at breakfast following an evening meal with barley-kernel bread compared with WWB. Breath hydrogen correlated positively with satiety (r = 0.27; P < 0.01) and inversely with GER (r = -0.23; P < 0.05). In conclusion, the composition of indigestible carbohydrates of the evening meal may affect glycemic excursions and related metabolic risk variables at breakfast through a mechanism involving colonic fermentation. The results provide evidence for a link between gut microbial metabolism and key factors associated with insulin resistance. Topics: Adiponectin; Adult; Biomarkers; Blood Glucose; Carbohydrates; Digestion; Fatty Acids, Nonesterified; Female; Food Analysis; Gastric Emptying; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucose Intolerance; Humans; Hydrogel, Polyethylene Glycol Dimethacrylate; Inflammation; Insulin; Interleukin-6; Interleukin-8; Male; Satiety Response; Triglycerides | 2008 |
100 other study(ies) available for glucagon-like-peptide-1 and Inflammation
Article | Year |
---|---|
Glucagon-like Peptide-1 Receptor-based Therapeutics for Metabolic Liver Disease.
Glucagon-like peptide-1 (GLP-1) controls islet hormone secretion, gut motility, and body weight, supporting development of GLP-1 receptor agonists (GLP-1RA) for the treatment of type 2 diabetes (T2D) and obesity. GLP-1RA exhibit a favorable safety profile and reduce the incidence of major adverse cardiovascular events in people with T2D. Considerable preclinical data, supported by the results of clinical trials, link therapy with GLP-RA to reduction of hepatic inflammation, steatosis, and fibrosis. Mechanistically, the actions of GLP-1 on the liver are primarily indirect, as hepatocytes, Kupffer cells, and stellate cells do not express the canonical GLP-1R. GLP-1RA reduce appetite and body weight, decrease postprandial lipoprotein secretion, and attenuate systemic and tissue inflammation, actions that may contribute to attenuation of metabolic-associated fatty liver disease (MAFLD). Here we discuss evolving concepts of GLP-1 action that improve liver health and highlight evidence that links sustained GLP-1R activation in distinct cell types to control of hepatic glucose and lipid metabolism, and reduction of experimental and clinical nonalcoholic steatohepatitis (NASH). The therapeutic potential of GLP-1RA alone, or in combination with peptide agonists, or new small molecule therapeutics is discussed in the context of potential efficacy and safety. Ongoing trials in people with obesity will further clarify the safety of GLP-1RA, and pivotal studies underway in people with NASH will define whether GLP-1-based medicines represent effective and safe therapies for people with MAFLD. Topics: Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Inflammation; Non-alcoholic Fatty Liver Disease; Obesity | 2023 |
Dulaglutide provides protection against sepsis-induced lung injury in mice by inhibiting inflammation and apoptosis.
Sepsis is a dangerous condition with a high mortality rate. In addition to promoting insulin secretion in a glucose-dependent manner, glucagon-like peptide-1 (GLP-1) also exhibits anti-inflammatory properties. Dulaglutide is a glucagon-like peptide-1 receptor agonist (GLP-1 RA). In this study, we investigated the effects and mechanism of action of dulaglutide (Dul) in lipopolysaccharide (LPS) induced lung injury in mice with sepsis. In mice with LPS (15 mg/kg, ip, qd)-induced acute lung injury, the administration of dulaglutide (0.6 mg/kg, ip, qd) improved weight loss, reduced lung injury, reversed the increase in IL-1β, TNF-α, IL-6, CXCL1, CCL2 and CXCL2 expression in the lung, and reduced the infiltration of neutrophils and macrophages in the lung tissues. The decline in caspase-3, cleaved caspase-3, caspase-8, and Bcl-2/Bax expression and the increase in the number of TUNEL positive cells in the lung were reversed, suggesting that GLP-1RA could play a protective role in the lung by inhibiting inflammation and apoptosis. In addition, GLP-1RA could reduce the expression of P-STAT3 and NLRP3, suggesting that P-STAT3 and NLRP3 may be potential targets against lung injury in sepsis. Collectively, our data demonstrated that GLP-1RA exerts a protective effect against sepsis-induced lung injury through mechanisms related to the inhibition of inflammation, apoptosis, and STAT3 signaling. Topics: Acute Lung Injury; Animals; Apoptosis; Caspase 3; Glucagon-Like Peptide 1; Inflammation; Lipopolysaccharides; Mice; NLR Family, Pyrin Domain-Containing 3 Protein; Sepsis | 2023 |
Effects of GLP-1 receptor agonists on mitochondrial function, inflammatory markers and leukocyte-endothelium interactions in type 2 diabetes.
Type 2 diabetes (T2D) is linked to metabolic, mitochondrial and inflammatory alterations, atherosclerosis development and cardiovascular diseases (CVDs). The aim was to investigate the potential therapeutic benefits of GLP-1 receptor agonists (GLP-1 RA) on oxidative stress, mitochondrial respiration, leukocyte-endothelial interactions, inflammation and carotid intima-media thickness (CIMT) in T2D patients.. Type 2 diabetic patients (255) and control subjects (175) were recruited, paired by age and sex, and separated into two groups: without GLP-1 RA treatment (196) and treated with GLP-1 RA (59). Peripheral blood polymorphonuclear leukocytes (PMNs) were isolated to measure reactive oxygen species (ROS) production by flow cytometry and oxygen consumption with a Clark electrode. PMNs were also used to assess leukocyte-endothelial interactions. Circulating levels of adhesion molecules and inflammatory markers were quantified by Luminex's technology, and CIMT was measured as surrogate marker of atherosclerosis.. Treatment with GLP-1 RA reduced ROS production and recovered mitochondrial membrane potential, oxygen consumption and MPO levels. The velocity of leukocytes rolling over endothelial cells increased in PMNs from GLP-1 RA-treated patients, whereas rolling and adhesion were diminished. ICAM-1, VCAM-1, IL-6, TNFα and IL-12 protein levels also decreased in the GLP-1 RA-treated group, while IL-10 increased. CIMT was lower in GLP-1 RA-treated T2D patients than in T2D patients without GLP-1 RA treatment.. GLP-1 RA treatment improves the redox state and mitochondrial respiration, and reduces leukocyte-endothelial interactions, inflammation and CIMT in T2D patients, thereby potentially diminishing the risk of atherosclerosis and CVDs. Topics: Atherosclerosis; Cardiovascular Diseases; Carotid Intima-Media Thickness; Diabetes Mellitus, Type 2; Endothelial Cells; Endothelium; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Inflammation; Leukocytes; Reactive Oxygen Species | 2023 |
A GLP-1/GLP-2 receptor dual agonist to treat NASH: Targeting the gut-liver axis and microbiome.
Currently there is no Food and Drug Administration-approved drug to treat NAFLD and NASH, the rates of which are increasing worldwide. Although NAFLD/NASH are highly complex and heterogeneous conditions, most pharmacotherapy pipelines focus on a single mechanistic target. Considering the importance of the gut-liver axis in their pathogenesis, we investigated the therapeutic effect of a long-acting dual agonist of glucagon-like peptide (GLP)-1 and GLP-2 receptors in mice with NAFLD/NASH.. C57BL/6J mice were fed a choline-deficient high-fat diet/high fructose and sucrose solution. After 16 weeks, mice were randomly allocated to receive vehicle, GLP1-Fc, GLP2-Fc, or GLP1/2-Fc fusion (GLP1/2-Fc) subcutaneously every 2 days for 4 weeks. Body weight was monitored, insulin/glucose tolerance tests were performed, feces were collected, and microbiome profiles were analyzed. Immobilized cell systems were used to evaluate direct peptide effect. Immunohistochemistry, quantitative PCR, immunoblot analysis, tunnel assay, and biochemical assays were performed to assess drug effects on inflammation, hepatic fibrosis, cell death, and intestinal structures. The mice had well-developed NASH phenotypes. GLP1/2-Fc reduced body weight, glucose levels, hepatic triglyceride levels, and cellular apoptosis. It improved liver fibrosis, insulin sensitivity, and intestinal tight junctions, and increased microvillus height, crypt depth, and goblet cells of intestine compared with a vehicle group. Similar effects of GLP1/2-Fc were found in in vitro cell systems. GLP1/2-Fc also changed microbiome profiles. We applied fecal microbiota transplantation (FMT) gain further insight into the mechanism of GLP1/2-Fc-mediated protection. We confirmed that FMT exerted an additive effect on GLP1-Fc group, including the body weight change, liver weight, hepatic fat accumulation, inflammation, and hepatic fibrosis.. A long-acting dual agonist of GLP-1 and GLP-2 receptors is a promising therapeutic strategy to treat NAFLD/NASH. Topics: Animals; Body Weight; Diet, High-Fat; Glucagon-Like Peptide 1; Glucagon-Like Peptide-2 Receptor; Inflammation; Liver; Liver Cirrhosis; Mice; Mice, Inbred C57BL; Microbiota; Non-alcoholic Fatty Liver Disease | 2022 |
A Potential Synbiotic Strategy for the Prevention of Type 2 Diabetes:
The disturbance of intestinal microorganisms and the exacerbation of type 2 diabetes (T2D) are mutually influenced. In this study, the effect of exopolysaccharides (EPS) from Topics: Animals; Bacterial Adhesion; Blood Glucose; Caco-2 Cells; Diabetes Mellitus, Type 2; Energy Metabolism; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Humans; Inflammation; Interleukin-10; Interleukin-6; Intestines; Lacticaseibacillus paracasei; Lactobacillus plantarum; Liver; Male; Mice; Mice, Inbred C57BL; Pancreas; Peptide YY; Polysaccharides, Bacterial; Random Allocation; Synbiotics; Tumor Necrosis Factor-alpha | 2022 |
Omarigliptin/galangin combination mitigates lipopolysaccharide-induced neuroinflammation in rats: Involvement of glucagon-like peptide-1, toll-like receptor-4, apoptosis and Akt/GSK-3β signaling.
The objectives of this work were to assess the possibility of administration of omarigliptin and/or galangin to combat lipopolysaccharide (LPS)-induced neuroinflammation in rats and to explore the possible mechanisms that might contribute to their actions.. In a rat model of LPS-induced neuroinflammation, the changes in the behavioral tests, biochemical parameters, and the histopathological picture were assessed.. Administration of either omarigliptin or galangin to LPS-injected rats was able to significantly improve the behavioral changes with restoration of the oxidant/antioxidant balance, decrement of toll-like receptor-4 levels, and amelioration of the neuroinflammation associated with inhibition of apoptosis and restoration of glucagon-like peptide-1 levels in the cerebral tissues. In addition, omarigliptin and/or galangin significantly reduced the levels of phospho-Akt and glycogen synthase kinase 3 beta (GSK-3β) and significantly increased the expression of beclin-1 in the cerebral tissues compared versus the group treated with LPS alone. As a result, these changes were positively reflected on the histopathological and the electron microscopic picture of the cerebral tissues. These beneficial effects were maximally evidenced in rats treated with omarigliptin/galangin combination relative to the use of either omarigliptin or galangin alone.. Omarigliptin/galangin combination might be proposed as a promising therapeutic line for mitigation of the pathophysiologic events of LPS-induced neuroinflammation. Topics: Animals; Apoptosis; Drug Therapy, Combination; Flavonoids; Glucagon-Like Peptide 1; Glycogen Synthase Kinase 3 beta; Heterocyclic Compounds, 2-Ring; Inflammation; Lipopolysaccharides; Male; Microglia; Neuroinflammatory Diseases; Proto-Oncogene Proteins c-akt; Pyrans; Rats; Rats, Wistar; Signal Transduction; Toll-Like Receptor 4 | 2022 |
Inflammatory responses have been shown to induce hyperglycemia, yet the underlying mechanism is still largely unclear. GLP-1 is an important intestinal hormone for regulating glucose homeostasis; however, few studies have investigated the influence of digestive tract Topics: Animals; Caspase 1; China; Enteroendocrine Cells; Glucagon-Like Peptide 1; Hyperglycemia; Inflammasomes; Inflammation; L Cells; Mice; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Pyroptosis; Salmonella; Salmonella Infections, Animal; Signal Transduction; Swine | 2022 |
GLP-1 Mediates Regulation of Colonic ACE2 Expression by the Bile Acid Receptor GPBAR1 in Inflammation.
ACE2, a carboxypeptidase that generates Ang-(1-7) from Ang II, is highly expressed in the lung, small intestine and colon. GPBAR1, is a G protein bile acid receptor that promotes the release of the insulinotropic factor glucagon-like peptide (GLP)-1 and attenuates intestinal inflammation.. We investigated the expression of ACE2, GLP-1 and GPBAR1 in two cohorts of Crohn's disease (CD) patients and three mouse models of colitis and Gpbar1. In IBD patients, ACE2 mRNA expression was regulated in a site-specific manner in response to inflammation. While expression of ileal ACE2 mRNA was reduced, the colon expression was induced. Colon expression of ACE2 mRNA in IBD correlated with expression of TNF-α and GPBAR1. A positive correlation occurred between GCG and GPBAR1 in human samples and animal models of colitis. In these models, ACE2 mRNA expression was further upregulated by GPABR1 agonism and reversed by exendin-3, a GLP-1 receptor antagonist. In in vitro studies, liraglutide, a GLP-1 analogue, increased the expression of ACE2 in colon epithelial cells/macrophages co-cultures.. ACE2 mRNA expression in the colon of IBD patients and rodent models of colitis is regulated in a TNF-α- and GLP-1-dependent manner. We have identified a GPBAR1/GLP-1 mechanism as a positive modulator of ACE2. Topics: Angiotensin-Converting Enzyme 2; Animals; Bile Acids and Salts; Colitis; Crohn Disease; Glucagon-Like Peptide 1; Humans; Inflammation; Mice; Receptors, G-Protein-Coupled; RNA, Messenger; Tumor Necrosis Factor-alpha | 2022 |
Effects of ALT-801, a GLP-1 and glucagon receptor dual agonist, in a translational mouse model of non-alcoholic steatohepatitis.
Body weight loss of ≥ 10% improves the metabolic derangements and liver disease in the majority of non-alcoholic steatohepatitis (NASH) patients, suggesting metabolic modulators may be effective in controlling disease. The pharmacodynamics of ALT-801, a GLP-1/glucagon receptor dual agonist optimized for NASH and weight loss, were compared to semaglutide (GLP-1 receptor agonist) and elafibranor (peroxisome proliferator-activated receptor, PPAR-α/δ, agonist) in a biopsy-confirmed, diet-induced obese (DIO) mouse model of NASH (DIO-NASH). Male C57BL/6J mice were fed Amylin Liver NASH (AMLN) diet for 32 weeks. Animals with biopsy-confirmed steatosis and fibrosis received ALT-801, semaglutide, elafibranor, or vehicle daily for 12 weeks while maintained on the AMLN diet. Study endpoints included body and liver weight, liver and plasma total cholesterol and triglycerides, plasma aminotransferases, histological analysis of liver steatosis, inflammation (galectin-3) and fibrosis (collagen type 1 alpha 1), and evaluation of individual animal changes in composite Non-alcoholic Fatty Liver Disease Activity Score (NAS), and fibrosis stage. ALT-801 demonstrated significant reductions in body weight (approx. 25%), plasma aminotransferases, plasma total cholesterol and liver triglycerides/total cholesterol in conjunction with improved liver steatosis, with greater reductions (p < 0.05) compared to semaglutide and elafibranor. ALT-801 significantly reduced the inflammation marker galectin-3 and the fibrosis marker collagen type 1 alpha 1 vs. vehicle (p < 0.05), with ALT-801 producing greater reductions in galectin-3 vs. elafibranor (p < 0.05). Importantly, all animals treated with ALT-801 significantly improved composite NAS compared to the active controls. This study provides evidence for a potential role for ALT-801 in the therapeutic treatment of NASH. Topics: Animals; Cholesterol; Collagen; Disease Models, Animal; Galectin 3; Glucagon; Glucagon-Like Peptide 1; Inflammation; Interleukin-2; Liver; Liver Cirrhosis; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Non-alcoholic Fatty Liver Disease; Obesity; Receptors, Antigen, T-Cell; Receptors, Glucagon; Recombinant Fusion Proteins; Transaminases; Triglycerides | 2022 |
Cholecystokinin and glucagon-like peptide-1 analogues regulate intestinal tight junction, inflammation, dopaminergic neurons and α-synuclein accumulation in the colon of two Parkinson's disease mouse models.
Parkinson's disease (PD) is the second most common neurodegenerative disease, and no treatment is available to stop its progression. Studies have shown that the colonic pathology of PD precedes that of the brain. The 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and the human A53T α-synuclein (α-syn) transgenic PD mouse model show colonic pathology and intestinal dopaminergic neuronal damage, which is comparable to the intestinal pathology of PD. Cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), which are brain-gut peptides, have neurotrophic and anti-inflammatory properties. Two GLP-1R agonists have already shown robust effects in phase II trials in PD patients. However, whether they have beneficial effects on colonic pathology in PD remains unclear. In this study, MPTP-treated mice and human A53T α-syn transgenic mice were intraperitoneally injected with a CCK analogue or Liraglutide, a GLP-1 analogue, once a day for 5 weeks. Levels of colonic epithelial tight junction proteins including occludin and zonula occludens-1 (ZO-1), inflammatory biomarkers including inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α), brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH) and α-syn were analyzed. The results show that the CCK analogue and Liraglutide both restored the disruption of intestinal tight junction, reduced colonic inflammation, inhibited colonic dopaminergic neurons reduction and the accumulation of α-syn oligomers in the colon of both PD mice models. This study suggested that CCK or GLP-1 analogues could be beneficial to the improvement of leaky gut barrier, inflammation, dopaminergic neuron impairment and accumulation of α-syn in the colon of PD patients. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; alpha-Synuclein; Animals; Cholecystokinin; Colon; Disease Models, Animal; Dopaminergic Neurons; Glucagon-Like Peptide 1; Humans; Inflammation; Liraglutide; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neurodegenerative Diseases; Parkinson Disease; Tight Junctions | 2022 |
Wei-Tong-Xin ameliorates functional dyspepsia via inactivating TLR4/MyD88 by regulating gut microbial structure and metabolites.
Wei-Tong-Xin (WTX) is a traditional Chinese medicine (TCM) that has been screened and improved in accordance with the famous ancient Chinese formula "Wan Ying Yuan". It has been shown to be clinically effective in treating gastric dysmotility, but its underlying molecular mechanism remains unclear.. This study primarily dealt with the effects and mechanisms of WTX on functional dyspepsia (FD) induced by chemotherapeutic drug cisplatin (CIS).. Firstly, the UPLC fingerprint and multi-component determination of WTX were established. In vivo, gastrointestinal motility of mice was detected by charcoal propulsion test. Besides, H&E, western blot and qRT-PCR were performed to evaluate the occurrence of gastric antral inflammation. ROS-DHE staining was used to detect ROS levels. Further, the gut microbiota were subjected to sequencing by 16S rRNA, and the levels of bacterial metabolites short-chain fatty acids (SCFAs) and lipopolysaccharide (LPS) were detected by GC-MS and Limulus kits, respectively. The levels of GLP-1 in gastric antrum were assessed by ELISA kits. Finally, siRNA-FFAR2 experiment was performed in Raw 264.7 cells.. 23 common peaks were obtained from the UPLC fingerprint, and the content of 10 target components was determined. WTX increased the relative abundance of Firmicutes and decreased the number of Verrucomicrobia, accompanied by changes in the levels of SCFAs and LPS. By mediating the expression changes of free fatty acid receptor 2 (FFAR2) and toll-like receptor 4 (TLR4), WTX inhibited the phosphorylation of nuclear factor-κB (NF-κB), JNK and P38, decreased the levels of IL-1β, inducible nitric oxide synthase (iNOS) and ROS, increased the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), IL-4 and arginase-1 (Arg-1). Decreased expressions of glucagon-like peptide 1 (GLP-1) induced by WTX promoted gastric motility in FD mice. In vitro, siRNA-FFAR2 of Raw 264.7 cells eliminated the effects of WTX on TLR4 signaling pathway.. In this study, the chemical profile of WTX was first reported. Based on remodeling the gut microbiota structure and adjusting the levels of metabolites (SCFAs and LPS), WTX inactivated the TLR4/MyD88 signaling pathway to inhibit the occurrence of gastric antral inflammation, which reversed the inhibitory effect of GLP-1 on gastric motility, and improved CIS-induced FD symptoms. Topics: Animals; Dyspepsia; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Inflammation; Lipopolysaccharides; Mice; Myeloid Differentiation Factor 88; NF-kappa B; Reactive Oxygen Species; RNA, Ribosomal, 16S; RNA, Small Interfering; Toll-Like Receptor 4 | 2022 |
Amelioration of intracerebroventricular streptozotocin-induced cognitive dysfunction by Ocimum sanctum L. through the modulation of inflammation and GLP-1 levels.
DPP-4 inhibitors have been shown to reverse amyloid deposition in Alzheimer's disease (AD) patients with cognitive impairment. Ocimum sanctum L. leaves reported the presence of important phytoconstituents which are reported to have DPP-4 inhibitory activity. To investigate the effects of petroleum ether extract of Ocimum sanctum L. (PEOS) in Intracerebroventricular streptozotocin (ICV-STZ) induced AD rats. ICV-STZ (3 mg/kg) was injected bilaterally into male Wistar rats, while sham animals received the artificial CSF. The ICV-STZ-induced rats were administered with three doses of PEOS (100, 200, and 400 mg/kg, p.o.) for thirty days. All experimental rats were subjected to behaviour parameters (radial arm maze task and novel object recognition test), neurochemical parameters such as GLP-1, Aβ42, and TNF-α levels, and histopathological examination (Congo red staining) of the left brain hemisphere. PEOS significantly reversed the spatial learning and memory deficit exhibited by ICV-STZ-induced rats. Furthermore, PEOS also shows promising results in retreating Aβ deposition, TNF α, and increasing GLP-1 levels. The histopathological study also showed a significant dose-dependent reduction in amyloid plaque formation and dense granule in PEOS -treated rats as compared to the ICV-STZ induced rats (Negative control). The results show that extract of Ocimum sanctum L. attenuated ICV-STZ-induced learning and memory deficits in rats and has the potential to be employed in the therapy of AD. Topics: Alzheimer Disease; Animals; Cognitive Dysfunction; Congo Red; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Inflammation; Male; Maze Learning; Memory Disorders; Ocimum sanctum; Plant Extracts; Rats; Rats, Wistar; Streptozocin; Tumor Necrosis Factor-alpha | 2022 |
Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota, and T cell-induced inflammation.
Gut intraepithelial lymphocytes (IELs) are thought to calibrate glucagon-like peptide 1 (GLP-1) bioavailability, thereby regulating systemic glucose and lipid metabolism. Here, we show that the gut IEL GLP-1 receptor (GLP-1R) is not required for enteroendocrine L cell GLP-1 secretion and glucose homeostasis nor for the metabolic benefits of GLP-1R agonists (GLP-1RAs). Instead, the gut IEL GLP-1R is essential for the full effects of GLP-1RAs on gut microbiota. Moreover, independent of glucose control or weight loss, the anti-inflammatory actions of GLP-1RAs require the gut IEL GLP-1R to selectively restrain local and systemic T cell-induced, but not lipopolysaccharide-induced, inflammation. Such effects are mediated by the suppression of gut IEL effector functions linked to the dampening of proximal T cell receptor signaling in a protein-kinase-A-dependent manner. These data reposition key roles of the L cell-gut IEL GLP-1R axis, revealing mechanisms linking GLP-1R activation in gut IELs to modulation of microbiota composition and control of intestinal and systemic inflammation. Topics: Blood Glucose; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Humans; Inflammation; Intestines; Intraepithelial Lymphocytes; Receptors, Antigen, T-Cell | 2022 |
Liraglutide Attenuates Glucolipotoxicity-Induced RSC96 Schwann Cells' Inflammation and Dysfunction.
Diabetic neuropathy (DN) is a type of sensory nerve damage that can occur in patients with diabetes. Although the understanding of pathophysiology is incomplete, DN is often associated with structural and functional alterations of the affected neurons. Among all possible causes of nerve damage, Schwann cells (SCs) are thought to play a key role in repairing peripheral nerve injury, suggesting that functional deficits occurring in SCs may potentially exhibit their pathogenic roles in DN. Therefore, elucidating the mechanisms that underlie this pathology can be used to develop novel therapeutic targets. In this regard, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have recently attracted great attention in ameliorating SCs' dysfunction. However, the detailed mechanisms remain uncertain. In the present study, we investigated how GLP-1 RA Liraglutide protects against RSC96 SCs dysfunction through a diabetic condition mimicked by high glucose and high free fatty acid (FFA). Our results showed that high glucose and high FFAs reduced the viability of RSC96 SCs by up to 51%, whereas Liraglutide reduced oxidative stress by upregulating antioxidant enzymes, and thus protected cells from apoptosis. Liraglutide also inhibited NFκB-mediated inflammation, inducing SCs to switch from pro-inflammatory cytokine production to anti-inflammatory cytokine production. Moreover, Liraglutide upregulated the production of neurotrophic factors and myelination-related proteins, and these protective effects appear to be synergistically linked to insulin signaling. Taken together, our findings demonstrate that Liraglutide ameliorates diabetes-related SC dysfunction through the above-mentioned mechanisms, and suggest that modulating GLP-1 signaling in SCs may be a promising strategy against DN. Topics: Antioxidants; Cytokines; Diabetic Neuropathies; Fatty Acids, Nonesterified; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Humans; Inflammation; Insulin; Liraglutide; Nerve Growth Factors; Schwann Cells | 2022 |
Colonic inflammation induces changes in glucose levels through modulation of incretin system.
The role of the incretin hormone, glucagon-like peptide (GLP-1), in Crohn's disease (CD), is still poorly understood. The aim of this study was to investigate whether colitis is associated with changes in blood glucose levels and the possible involvement of the incretin system as an underlaying factor.. We used a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). Macroscopic and microscopic score and expression of inflammatory cytokines were measured. The effect of colitis on glucose level was studied by measurement of fasting glucose and GLP-1, dipeptidyl peptidase IV (DPP IV) levels, prohormone convertase 1/3 (PC 1/3) and GLP-1 receptor (GLP-1R) expression in mice. We also measured the level of GLP-1, DPP IV and expression of glucagon (GCG) and PC 1/3 mRNA in serum and colon samples from healthy controls and CD patients.. Fasting glucose levels were increased in animals with colitis compared to controls. GLP-1 was decreased in both serum and colon of mice with colitis in comparison to the control group. DPP IV levels were significantly increased in serum, but not in the colon of mice with colitis as compared to healthy animals. Furthermore, PC 1/3 and GLP-1R expression levels were increased in mice with colitis as compared to controls. In humans, no differences were observed in fasting glucose level between healthy subjects and CD patients. GLP-1 levels were significantly decreased in the serum. Interestingly, GLP-1 level was significantly increased in colon samples of CD patients compared to healthy subjects. No significant differences in DPP IV levels in serum and colon samples were observed between groups.. Changes in the incretin system during colitis seem to contribute to the impaired glucose levels. Differences in incretin levels seem to be modulated by degrading enzyme DPP-IV and PC 1/3. Obtained results suggest that the incretin system may become a novel therapeutic approach in the treatment of CD. Topics: Adult; Animals; Blood Glucose; Case-Control Studies; Colitis; Crohn Disease; Dipeptidyl Peptidase 4; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Humans; Incretins; Inflammation; Male; Mice; Mice, Inbred C57BL; Middle Aged; Proprotein Convertase 1; Trinitrobenzenesulfonic Acid; Young Adult | 2021 |
Saxagliptin ameliorated the depressive-like behavior induced by chronic unpredictable mild stress in rats: Impact on incretins and AKT/PI3K pathway.
Depression is a widespread, withering illness, resulting in a massive personal suffering and economic loss. The chronic exposure to stress may be involved in the etiology of human psychiatric disorders; such as depression. In the current study, the animals were subjected to chronic unpredictable mild stress (CUMS) for 14 days. Saxagliptin (SAXA) is a member of dipeptidyl peptidase-4 (DPP-4) inhibitors class. The current study was the first one to examine the anti-depressive effect of SAXA in an experimental model of CUMS-induced depression in rats and the possible underlying mechanisms. Animals were orally treated with SAXA (0.5, 1 and 2 mg/kg) for 14 days. SAXA treatment reversed the CUMS-induced alterations in the behavioral, biochemical as well as histopathological parameters. Moreover, it hindered the CUMS-induced increase in the oxidative stress, inflammatory, and apoptotic markers. On the other hand, it increased the monoamines levels and the neurogenic brain derived neurotrophic factor (BDNF). In addition, SAXA treatment increased the incretin hormones, glucagon like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), which are linked to the activation of protein kinase B (AKT)/phosphatidylinositol3-kinase (PI3K) pathway. In conclusion, the current study revealed that the modulation of the interplay between the key events involved in depression, including oxidative stress, inflammation, and GLP-1/PI3K/AKT signaling pathway, can explain the anti-depressant activity of SAXA. Topics: Adamantane; Animals; Antidepressive Agents; Behavior, Animal; Biogenic Monoamines; Brain; Brain-Derived Neurotrophic Factor; Caspase 3; Depression; Dipeptides; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Incretins; Inflammation; Male; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction; Stress, Psychological | 2021 |
Relationship between inflammation and metabolic regulation of energy expenditure by GLP-1 in critically ill children.
Critical illness is associated with derangement in the metabolic and inflammatory response. Previous investigators have highlighted the cross-link between feeding, inflammation and gut homeostasis. Glucagon like peptide-1 (GLP-1) is a gut derived hormone that plays an important role in the modulation of energy metabolism through appetite regulation and promotion of gastric motility. Growing evidence suggests that GLP-1 might influence energy expenditure. The aim of this study was to assess the relationship between inflammatory activation and metabolic regulation of energy expenditure by assessing cytokine release, levels of GLP-1 and energy expenditure in a cohort of critically ill children.. This is a prospective study conducted in critically ill children. A blood sample was collected from each child during the first few days of critical illness, for the analysis of serum inflammatory cytokines (TNF-α, IL-10, IL-6 and IL-1β) and GLP-1 in 42 children. Indirect calorimetry (IC) measurements were performed concurrently in a subset of 21 children. The metabolic index was determined using the ratio of Measured Resting Energy Expenditure (MREE)/Predicted Resting Energy Expenditure (PREE) based on the Schofield equation. Correlation analysis was performed, followed by a stepwise linear regression analysis to assess factors affecting GLP-1 and the metabolic index.. A total of 42 children (0-14 years) were included in this study. The regression analysis indicated that CRP, TNF-α, IL-6 and IL-1β statistically influenced GLP-1 concentrations (p < 0.01). Where IC measurements were performed (N = 21), GLP-1 showed a statistically significant association with the metabolic index (p < 0.01). No evidence of statistical association was recorded between the inflammatory mediators and the metabolic index. Overall the results showed that circulating GLP-1 was increased in response to inflammatory stimuli in critically ill children. GLP-1 contributed to the changes observed in MREE induced by critical illness in our cohort.. Energy expenditure is extremely variable in critically ill children, our study suggests that changes in GLP-1 might contribute to a significant amount of this variation. If confirmed in larger studies, GLP-1 could be used as a correction factor for REE predictive equations in critically ill children. Topics: Basal Metabolism; Calorimetry, Indirect; Child; Child, Preschool; Critical Illness; Cytokines; Energy Metabolism; Female; Glucagon-Like Peptide 1; Health Status Indicators; Humans; Infant; Inflammation; Intensive Care Units, Pediatric; Male; Pilot Projects; Prospective Studies; Regression Analysis; Respiration, Artificial | 2021 |
Abnormal post-prandial glucagon-like peptide release in patients with Crohn's disease.
Glucagon-like peptide GLP-1 and -2 have been shown to regulate immune responses in immune-mediated disorders, including Crohn's disease (CD). Our aim was to investigate post-prandial GLP release and its potential link to chronic inflammation, insulin secretion/sensitivity and body composition changes in CD patients.. Fifteen patients with CD, 15 healthy controls (HC) and 15 patients with metabolic syndrome (MS) were recruited. All patients underwent assessment of body composition by means of bio-impedance followed by a meal tolerance test (MTT). Only one CD patient did not tolerate the MTT and was excluded.. CD is characterized by abnormal fasting and post-prandial GLP levels. Circulating GLP influences subclinical inflammation and glucose metabolism in CD patients, but not their body composition parameters. Topics: Blood Glucose; Crohn Disease; Glucagon-Like Peptide 1; Humans; Inflammation; Insulin; Metabolic Syndrome; Peptide Fragments | 2021 |
A novel GPR120-selective agonist promotes insulin secretion and improves chronic inflammation.
The present study aimed to disclose a potent and selective GPR120 agonist LXT34 and its anti-diabetic effects.. Calcium mobilization assay was used to measure the agonistic potency and selectivity of LXT34 in GPR120 or GPR40-overexpression Chinese hamster ovary (CHO) cells. Glucagon-like peptide-1 (GLP-1) release and glucose-stimulated insulin secretion (GSIS) were evaluated in human colonic epithelial cell line NCI-H716 and mouse insulinoma cell line MIN6 by enzyme-linked immunosorbent assay (ELISA), respectively. The anti-inflammatory effect was determined in lipopolysaccharide (LPS)-induced murine macrophage cell line RAW264.7. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed to assess the anti-diabetic effects of LXT34 in db/db mice, and chronic inflammation in liver and adipose tissues were investigated using histomorphology, immunoblot and gene expression analysis.. LXT34 was a potent GPR120 agonist with negligible activity toward human and mouse GPR40. LXT34 could potentiate GSIS and suppress LPS-induced inflammation in macrophages. LXT34 not only markedly improved glucose tolerance and insulin resistance, but also distinctly reduced macrophages infiltration, pro-inflammatory cytokines expression and JNK phosphorylation of both liver and adipose tissues in db/db mice.. LXT34, a novel and potent GPR120-selective agonist, showed beneficial effects on improving glucose homeostasis in obesity-related type 2 diabetes. Topics: Adipose Tissue; Animals; Chronic Disease; Glucagon-Like Peptide 1; Glucose; Inflammation; Insulin Resistance; Insulin Secretion; Lipopolysaccharides; Liver; Mice; Mice, Inbred C57BL; RAW 264.7 Cells; Receptors, G-Protein-Coupled | 2021 |
Continuous stimulation of dual-function peptide PGLP-1-VP inhibits the morbidity and mortality of NOD mice through anti-inflammation and immunoregulation.
Multiple animal and human studies have shown that administration of GLP-1RA can enhance β-cell recovery, reduce insulin dosage, reduce HbA1c content in the blood, reduce the risk of hypoglycemia and reduce inflammation. In the NOD mouse model, peptide VP treatment can prevent and treat type 1 diabetes through immunomodulation. Therefore, we designed a new dual-functional PGLP-1-VP, which is expected to combine the anti-inflammatory effect of PGLP-1 and the immunomodulatory effect of VP peptide. In streptozotocin-induced hyperglycemic mice model, we demonstrated that PGLP-1-VP can act as a GLP-1R agonist to improve hyperglycemia and increase insulin sensitivity. In the NOD mouse model, PGLP-1-VP treatment reduced morbidity, mortality, and pancreatic inflammation, and showed superior effect to PGLP-1 or VP treatment alone, confirming that PGLP-1-VP may act as a dual-function peptide. PGLP-1-VP provided immunomodulatory effect through increasing Th2 cell percentage and balancing the ratio of Th2/Th1 in spleen and PLN, similar to P277 and VP. Additionally, PGLP-1-VP and PGLP-1 act the anti-inflammation by increasing Treg cells and TGF-β1 content like DPP-IV inhibitor. Taken together, our data shows that the dual-functional PGLP-1-VP reduces morbidity and mortality in the NOD model, suggesting a potential role in preventing and treating type 1 diabetes. Topics: Animals; Anti-Inflammatory Agents; B-Lymphocytes; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Immunomodulation; Inflammation; Mice; Peptide Fragments; Transforming Growth Factor beta1 | 2021 |
Glucagon-like peptide 1 receptor (GLP-1R) agonist relieved asthmatic airway inflammation via suppression of NLRP3 inflammasome activation in obese asthma mice model.
Obesity is a correctable factor for uncontrolled bronchial asthma. However, the effects of glucagon-like peptide-1 receptor (GLP-1R) agonist, a recently approved antiobestic drug, on airway hyperresponsiveness (AHR) and immune responses are not known.. Mice were fed with high-fat diet (HFD, 60% fat) for 8 weeks to induce obesity. Ovalbumin (OVA) sensitization and challenges were performed for 7 weeks. The mice were injected intraperitoneally with GLP-1R agonist 5 times a week for 4 weeks after OVA sensitization. After AHR measurement, expression of Th2, Th17 cytokines, and interleukin (IL)-33 were measured in BALF and lung tissues. Moreover, IL-1β and activity level of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) were analyzed to investigate the mechanism of GLP-1R agonist on asthmatic airway inflammation.. HFD induced significant weight gain, OVA sensitization and challenge in obese mice made eosinophilic airway inflammation, and increased AHR. Treatment with GLP-1R agonist-induced weight loss suppressed eosinophilic airway inflammation and decreased AHR. Expression of IL-4, 5, and 33 was increased in BALF of obese asthma mice followed by a decrease in response to GLP-1R agonist treatment. Moreover, lung tissue H&E stain revealed that peribronchial inflammation induced by obesity and OVA was effectively suppressed by GLP-1R agonist. Expressions of NLRP3, activated caspase-1, and IL-1β were increased in lung tissues of obese asthma mice and demonstrated a decrease in response to GLP-1R agonist treatment.. GLP-1R agonist effectively induced weight loss, suppressed eosinophilic bronchial airway inflammation, and AHR in obese asthma mice. These effects were mediated by suppression of NLRP3 inflammasome activity and IL-1β. GLP-1R agonist is proposed as a novel anti-asthmatic agent targeting the obese asthmatics. Topics: Animals; Asthma; Disease Models, Animal; Glucagon-Like Peptide 1; Inflammasomes; Inflammation; Mice; Mice, Inbred BALB C; Mice, Obese; NLR Family, Pyrin Domain-Containing 3 Protein; Obesity; Ovalbumin; Pharmaceutical Preparations | 2021 |
Role of zonulin and GLP-1/DPP-IV in alleviation of diabetes mellitus by peptide/polypeptide fraction of Aloe vera in streptozotocin- induced diabetic wistar rats.
The genus Aloe has a long history of usage in medicine. Aloe barbadensis Miller, commonly known as Aloe vera, is said to possess anti-diabetic, anti-inflammatory, anti-cancer, anti-microbial, immunomodulation, wound healing properties.. In diabetes mellitus, loss in intestinal permeability is observed with high levels of zonulin and low levels of glucagon-like peptide-1 (GLP-1) leading to hyperglycemia. The aim of the study was to understand the role of peptide/polypeptide fraction (PPF) of Aloe vera in the alleviation of diabetes through maintaining the intestinal permeability by regulating the zonulin and GLP-1 levels.. The PPF of Aloe vera was obtained through trichloroacetic acid precipitation. The anti-diabetic potential of the PPF was tested through DPP-IV inhibition, glucose diffusion assay, and by using Rin-m5F cells. The anti-diabetic potential of the PPF was tested at a dose of 0.450 mg/kg bw in vivo using streptozotocin-induced diabetic Wistar rats. The effect of PPF on fasting plasma glucose, insulin, glucagon, Zonulin, GLP-1, DPP-IV, levels were studied in diabetic rats. The histopathological studies of the pancreas, small intestine, and liver were carried out for organ-specific effects.. PPF has the ability to reduce fasting plasma glucose levels with concomitant increase in insulin levels in streptozotocin-induced diabetic rats. It was also observed that increase in GLP-1 levels with a decrease in DPP-IV and zonulin levels thereby mitigating the loss of intestinal permeability. These findings correlate with the small intestine's histopathological observation where the excessive proliferation of epithelium in the small intestine of diabetic rats was reduced after PPF treatment.. These results suggest that the PPF of Aloe vera alleviates diabetes through islet cell rejuvenation via GLP-1/DPP-IV pathway and thereby suggesting the usage of PPF as an alternate medicine for diabetes mellitus with the possibility to reduce the intestinal permeability and zonulin levels. Topics: Aloe; Animals; Blood Glucose; Cell Survival; Cytokines; Diabetes Mellitus, Experimental; Dipeptidyl Peptidase 4; Glucagon; Glucagon-Like Peptide 1; Glucose-6-Phosphate; Glycogen; Haptoglobins; Hexokinase; Hypoglycemic Agents; Inflammation; Insulin; Intestine, Small; Liver; Nitric Oxide; Pancreas; Plant Extracts; Protein Precursors; Rats, Wistar; Streptozocin | 2021 |
GLP-1 alleviates NLRP3 inflammasome-dependent inflammation in perivascular adipose tissue by inhibiting the NF-κB signalling pathway.
To study the effect of glucagon-like peptide 1 (GLP-1) on NLR family pyrin domain containing 3 (NLRP3) inflammasome-induced inflammation in perivascular adipose tissue (PVAT) of Zucker diabetic fatty (ZDF) rats and the underlying role of nuclear factor (NF)-κB signalling.. Thirty ZDF rats were randomly divided into three study groups: DM (0.9% saline, subcutaneously); DM+GLP-1 (liraglutide, s.c.); and NF-κB+GLP-1 (betulinic acid then liraglutide, s.c.). Ten Zucker lean rats were examined as normal controls. PVAT from ZDF (DM) rats was examined for inflammasome mRNA. Protein levels of NLRP3, cleaved caspase-1, caspase-1, gasdermin D (GSDMD), interleukin (IL)-1β and IL-18 in PVAT were compared between control, DM and DM+GLP-1 groups. Protein levels of NLRP3, IL-1β, IL-18 and NF-κB in PVAT were compared between control, DM, DM+GLP-1 and NF-κB+GLP-1 groups.. The inflammasome most abundantly expressed in ZDF rat PVAT was. GLP-1 may alleviate NLRP3 inflammasome-dependent inflammation in PVAT by inhibiting NF-κB signalling. Topics: Adipose Tissue; Animals; Glucagon-Like Peptide 1; Inflammasomes; Inflammation; Interleukin-1beta; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Rats; Rats, Zucker | 2021 |
Reduction in TNF alpha and oxidative stress by liraglutide: Impact on ketamine-induced cognitive dysfunction and hyperlocomotion in rats.
Diabetes and psychotic disorders are occasionally comorbid. Possible pathophysiologies linking these disorders include inflammation and oxidative stress. Glucagon like peptide-1 (GLP-1) agonists modulate glucose metabolism and may exert neuroprotective effects via central GLP-1 receptors.. To explore the effects of GLP-1 agonist, liraglutide, on ketamine-induced hyper-locomotion and cognitive dysfunction and the associated inflammation and oxidative stress in normoglycemic and diabetic rats.. Rats were divided into: Chow fed (non-diabetic) and high fat diet fed/STZ (diabetic) groups: I. non-diabetic/control, non-diabetic/liraglutide, non-diabetic/ketamine, non-diabetic/ketamine/liraglutide groups. II. diabetic/control, diabetic/liraglutide, diabetic/ketamine and diabetic/ketamine/liraglutide groups. Hyperlocomotion and cognitive dysfunction were assessed using open field and water maze tests. Biochemical parameters were measured in serum and hippocampus.. Ketamine induced hyperlocomotion and cognitive dysfunction, with hippocampal histopathological changes. Increase in tumour necrosis factor (TNF)-alpha and oxidative stress and reduction in brain-derived neurotrophic factor (BDNF) were noted. These changes were augmented in diabetic compared to non-diabetic rats. Liraglutide significantly improved hyperlocomotion, and cognitive dysfunction and hippocampal histopathological changes in non-diabetic and diabetic rats. Improvement in glucose homeostasis, reduction in TNF alpha and malondialdehyde, and increase in glutathione and BDNF were observed in serum and hippocampus.. Beneficial effects of liraglutide on ketamine-induced hyperlocomotion and cognitive dysfunction are associated with reduction in TNF alpha and oxidative stress. Since effects of liraglutide occurred in diabetic and non-diabetic rats, glycemic and non-glycemic effects (via central GLP-1 receptors) might be involved. Targeting oxidative stress and inflammation by GLP-1 agonists, may be a promising approach in psychotic patients with diabetes. Topics: Animals; Behavior, Animal; Blood Glucose; Brain-Derived Neurotrophic Factor; Cognition Disorders; Diabetes Mellitus, Experimental; Diet, High-Fat; Glucagon-Like Peptide 1; Glucose; Hippocampus; Hypoglycemic Agents; Inflammation; Insulin; Ketamine; Learning; Liraglutide; Male; Maze Learning; Movement; Oxidative Stress; Psychotic Disorders; Rats; Rats, Wistar; Tumor Necrosis Factor-alpha | 2021 |
Teneligliptin prevents doxorubicin-induced inflammation and apoptosis in H9c2 cells.
Doxorubicin is a common chemotherapy treatment with numerous negative ramifications of use such as nephropathy and radiation-induced cardiotoxicity. Doxorubicin has been shown to cause overexpression of proinflammatory cytokines including MCP-1 and IL-1β via activation of the NF-κB pathway. Furthermore, apoptosis marked by dysregulation of the Bax/Bcl-2 ratio and oxidative stress and the production of reactive oxygen species (ROS) are also exacerbated by doxorubicin administration. Teneligliptin is part of the wider dipeptidyl peptidase-4 (DPP-4) inhibitor family which has until recently been almost exclusively used to treat type 2 diabetes mellitus. DPP-4 inhibitors such as teneligliptin control the overexpression of glucagon-like peptidase 1 (GLP-1) which has the downstream effects of general insulin resistance and high blood sugar levels. Our findings indicate a significant protective effect of teneligliptin against the aftereffects of doxorubicin as a chemotherapy treatment. This protective effect includes but is not limited to the reduction of inflammation and the mitigation of dysregulated apoptosis, as evidenced by reduced expression of IL-1β and MCP-1, inhibition of NF-κB activation, and improvement of the Bax/Bcl-2 ratio. The aim of the present study was to establish teneligliptin as a potentially useful agent for the treatment of radiation-induced cardiotoxicity, and our findings support this notion. Topics: Animals; Antineoplastic Agents; Apoptosis; Blood Glucose; Cell Line; Cell Survival; Chemokine CCL2; Dipeptidyl Peptidase 4; Doxorubicin; Glucagon-Like Peptide 1; Humans; Inflammation; Insulin Resistance; Interleukin-1beta; Myocytes, Cardiac; Oxidative Stress; Pyrazoles; Rats; Reactive Oxygen Species; Receptors, KIR3DL1; Thiazolidines | 2020 |
Liraglutide Protects Against Brain Amyloid-β
Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Behavior, Animal; Brain; Cyclic AMP-Dependent Protein Kinases; Diabetes Mellitus, Type 2; Estradiol; Female; Glucagon-Like Peptide 1; Glycolysis; Hypoglycemic Agents; Inflammation; Liraglutide; Maze Learning; Memory Disorders; Mice; Neurofibrillary Tangles; Nitrosative Stress; Oxidative Stress; Peptide Fragments; Phenotype; Plaque, Amyloid | 2020 |
Fructo-oligosaccharides alleviate inflammation-associated apoptosis of GLP-1 secreting L cells via inhibition of iNOS and cleaved caspase-3 expression.
Glucagon-like peptide 1 (GLP-1) released from enteroendocrine (L) cells regulates insulin secretion. Intestinal inflammation and impaired GLP-1 release have been found in type 2 diabetes mellitus (T2DM) patients. Fructo-oligosaccharides (FOS), a known prebiotic, improve GLP-1 release and glucose homeostasis in T2DM models. This study aimed to investigate the effect of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine associated with intestinal inflammation in T2DM, on L cell apoptosis and the effect of FOS on inflammation-associated impairment of GLP-1 secretion. Herein, using cell death assays, immunofluorescence staining, real time PCR and Western blot analyses, we found that TNF-α induced L cell apoptosis via nuclear factor kappa B (NF-κB)- inducible nitric oxide synthase (iNOS)-cleaved caspase-3-dependent pathways. Interestingly, FOS did not suppress TNF-α-induced NF-κB nuclear translocation, but inhibited expression of iNOS and cleaved caspase-3. In addition, FOS alleviated apoptosis and rescued impaired GLP-1 release in TNF-α-treated L cells. Altogether, our data indicate that TNF-α induces L cell apoptosis via an NF-κB-iNOS-caspase-3-dependent pathway. FOS may be useful in suppressing inflammation-associated L cell apoptosis and maintaining GLP-1 level in T2DM patients. Topics: Apoptosis; Caspase 3; Diabetes Mellitus, Type 2; Enteroendocrine Cells; Glucagon-Like Peptide 1; Humans; Inflammation; NF-kappa B; Nitric Oxide Synthase Type II; Oligosaccharides; Signal Transduction; Tumor Necrosis Factor-alpha | 2020 |
Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice.
Non-alcoholic steatohepatitis (NASH) is characterized by a robust pro-inflammatory component at both hepatic and systemic levels together with a disease-specific gut microbiome signature. Protein tyrosine phosphatase 1 B (PTP1B) plays distinct roles in non-immune and immune cells, in the latter inhibiting pro-inflammatory signaling cascades. In this study, we have explored the role of PTP1B in the composition of gut microbiota and gut barrier dynamics in methionine and choline-deficient (MCD) diet-induced NASH in mice.. Gut features and barrier permeability were characterized in wild-type (PTP1B WT) and PTP1B-deficient knockout (PTP1B KO) mice fed a chow or methionine/choline-deficient (MCD) diet for 4 weeks. The impact of inflammation was studied in intestinal epithelial and enteroendocrine cells. The secretion of GLP-1 was evaluated in primary colonic cultures and plasma of mice.. We found that a shift in the gut microbiota shape, disruption of gut barrier function, higher levels of serum bile acids, and decreased circulating glucagon-like peptide (GLP)-1 are features during NASH. Surprisingly, despite the pro-inflammatory phenotype of global PTP1B-deficient mice, they were partly protected against the alterations in gut microbiota composition during NASH and presented better gut barrier integrity and less permeability under this pathological condition. These effects concurred with higher colonic mucosal inflammation, decreased serum bile acids, and protection against the decrease in circulating GLP-1 levels during NASH compared with their WT counterparts together with increased expression of GLP-2-sensitive genes in the gut. At the molecular level, stimulation of enteroendocrine STC-1 cells with a pro-inflammatory conditioned medium (CM) from lipopolysaccharide (LPS)-stimulated macrophages triggered pro-inflammatory signaling cascades that were further exacerbated by a PTP1B inhibitor. Likewise, the pro-inflammatory CM induced GLP-1 secretion in primary colonic cultures, an effect augmented by PTP1B inhibition.. Altogether our results have unraveled a potential role of PTP1B in the gut-liver axis during NASH, likely mediated by increased sensitivity to GLPs, with potential therapeutic value. Topics: Animals; Choline Deficiency; Diet; Disease Models, Animal; Gastrointestinal Microbiome; Gene Expression; Gene Knockout Techniques; Glucagon-Like Peptide 1; Inflammation; Intestinal Mucosa; Liver; Male; Methionine; Mice; Mice, Inbred C57BL; Mice, Knockout; Non-alcoholic Fatty Liver Disease; Permeability; Protein Tyrosine Phosphatase, Non-Receptor Type 1; RAW 264.7 Cells | 2020 |
Glucagon-like peptide-1 is associated with poor clinical outcome, lipopolysaccharide translocation and inflammation in patients undergoing cardiac surgery with cardiopulmonary bypass.
Cardiac surgery with cardiopulmonary bypass (CPB) is associated with gut barrier dysfunction. Gut barrier dysfunction might be estimated non-invasively by lipopolysaccharide (LPS) plasma concentration. Glucagon-like peptide-1 (GLP-1) is a gut secreted hormone that is a potential marker of mucosal integrity. Our objective was to evaluate GLP-1 as a peri-operative marker of gut barrier dysfunction in patients undergoing cardiac surgery with CPB.. GLP-1, intestinal fatty acid binding protein (I-FABP) and lipopolysaccharide were assayed: at induction, after CPB and 24 h after admission in the intensive care unit. The primary end-point was peri-operative lipopolysaccharide concentration (LPS concentration at those 3 time points).. Seventy-two patients were included in the present analysis. The highest measured post-operative GLP-1 concentration was in the sample taken 24 h after admission to intensive care, which was associated with peri-operative lipopolysaccharide plasma concentration. Patients who had the highest GLP-1 concentrations at 24 h experienced more severe inflammation and worse clinical outcomes.. Our study supports that GLP-1 is not only a hormone of glucose metabolism but is also secreted when gut barrier is impaired in cardiac surgery with CPB. The GLP-1 levels measured 24 h after admission to the intensive care unit were associated with LPS concentration, inflammation and clinical outcomes. Topics: Aged; Biomarkers; Cardiac Surgical Procedures; Cardiopulmonary Bypass; Female; Glucagon-Like Peptide 1; Humans; Inflammation; Lipopolysaccharides; Male; Middle Aged; Prospective Studies | 2020 |
(E
Obesity has been recognized as a low-grade, chronic inflammatory disease that leads to an increase in obesity-associated disorders, including type 2 diabetes (T2D), fatty liver diseases and cancer. Glucagon-like peptide-1 (GLP-1) is an effective drug for T2D, and it not only has glucose-regulating effects but also has anti-inflammatory effects in obesity. In our previous study, we designed a novel GLP-1 analogue, (E Topics: Adipose Tissue; Animals; Anti-Inflammatory Agents; Cytokines; Diabetes Mellitus, Type 2; Diet, High-Fat; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Inflammation; Leptin; Macrophage Activation; Macrophages; Male; Mice, Inbred C57BL; Mice, Obese; NF-kappa B; Obesity; Signal Transduction | 2020 |
Effects of Exogenous Dietary Advanced Glycation End Products on the Cross-Talk Mechanisms Linking Microbiota to Metabolic Inflammation.
Topics: Animals; Cytokines; Diet; Gastrointestinal Microbiome; Ghrelin; Glucagon-Like Peptide 1; Glucose; Glycation End Products, Advanced; Glycosylation; Inflammation; Inflammation Mediators; Insulin; Metabolic Diseases; Mice, Inbred C57BL; Muscle, Skeletal; Signal Transduction | 2020 |
Amelioration of non-alcoholic fatty liver disease by sodium butyrate is linked to the modulation of intestinal tight junctions in db/db mice.
The intestinal microenvironment, a potential factor that contributes to the development of non-alcoholic fatty liver disease (NALFD) and type 2 diabetes (T2DM), has a close relationship with intestinal tight junctions (TJs). Here, we show that the disruption of intestinal TJs in the intestines of 16-week-old db/db mice and in high glucose (HG)-cultured Caco-2 cells can both be improved by sodium butyrate (NaB) in a dose-dependent manner in vitro and in vivo. Accompanying the improved intestinal TJs, NaB not only relieved intestine inflammation of db/db mice and HG and LPS co-cultured Caco-2 cells but also restored intestinal Takeda G-protein-coupled (TGR5) expression, resulting in up-regulated serum GLP-1 levels. Subsequently, the GLP-1 analogue Exendin-4 was used to examine the improvement of lipid accumulation in HG and free fatty acid (FFA) co-cultured HepG2 cells. Finally, we used 16-week-old db/db mice to examine the hepatoprotective effects of NaB and its producing strain Clostridium butyricum. Our data showed that NaB and Clostridium butyricum treatment significantly reduced the levels of blood glucose and serum transaminase and markedly reduced T2DM-induced histological alterations of the liver, together with improved liver inflammation and lipid accumulation. These findings suggest that NaB and Clostridium butyricum are a potential adjuvant treatment strategy for T2DM-induced NAFLD; their hepatoprotective effect was linked to the modulation of intestinal TJs, causing the restoration of glucose and lipid metabolism and the improvement of inflammation in hepatocytes. Topics: Animals; Blood Glucose; Butyric Acid; Caco-2 Cells; Cholesterol; Clostridium butyricum; Colon; Cytokines; Diabetes Mellitus, Type 2; Exenatide; Glucagon-Like Peptide 1; Hep G2 Cells; Humans; Hypoglycemic Agents; Inflammation; Intestines; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Receptors, G-Protein-Coupled; Tight Junctions; Triglycerides | 2020 |
Explorative Screening of Bioactivities Generated by Plant-Based Proteins after In Vitro Static Gastrointestinal Digestion.
The gastrointestinal digestion of food proteins can generate peptides with a wide range of biological activities. In this study, we screened various potential bioactivities generated by plant-based proteins. Whey protein as an animal protein reference, five grades of pea protein, two grades of wheat protein, and potato, fava bean, and oat proteins were submitted to in vitro SGID. They were then tested in vitro for several bioactivities including measures on: (1) energy homeostasis through their ability to modulate intestinal hormone secretion, to inhibit DPP-IV activity, and to interact with opioid receptors; (2) anti-hypertensive properties through their ability to inhibit ACE activity; (3) anti-inflammatory properties in Caco-2 cells; (4) antioxidant properties through their ability to inhibit production of reactive oxygen species (ROS). Protein intestinal digestions were able to stimulate intestinal hormone secretion by enteroendocrine cells, to inhibit DPP-IV and ACE activities, to bind opioid receptors, and surprisingly, to decrease production of ROS. Neither pro- nor anti-inflammatory effects have been highlighted and some proteins lost their pro-inflammatory potential after digestion. The best candidates were pea, potato, and fava bean proteins. Topics: Animals; Antioxidants; Caco-2 Cells; Cytokines; Diet, Vegetarian; Digestion; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Fabaceae; Glucagon-Like Peptide 1; Humans; Inflammation; Interleukin-8; Intestines; Mass Screening; Peptides; Peptidyl-Dipeptidase A; Plant Proteins; Protein Hydrolysates; Receptors, Opioid; Whey Proteins | 2020 |
Sitagliptin favorably modulates immune-relevant pathways in human beta cells.
Type 2 diabetes (T2D) is a condition characterized by hyperglycemia and chronic complications. Antidiabetic drugs and lifestyle interventions are the current gold standard therapy for T2D; current therapies, however, can only delay long-term diabetic complications and can additionally be associated with beta cell failure. While the mechanism of beta cell failure is well-studied, little is known about the immunological and inflammatory events associated with antidiabetic agents. Here we studied the effects of three antidiabetic drugs (Metformin, Sitagliptin, and Liraglutide) on immune-relevant pathways in a human beta cell line. Costimulatory molecule expression, cytokine secretion, and gene expression profiles were evaluated at different time points following challenge with the aforementioned antidiabetic agents. Our results showed that these three antidiabetic agents, particularly Sitagliptin, downregulate HLA Class I and II expression and upregulate the immune-regulatory molecules PD-L1 and CTLA4. Metformin and Liraglutide were shown to elicit significantly greater release of TNFa, IL-6, and GM-CSF, while Sitagliptin had a lesser effect on pro-inflammatory cytokine production. Gene expression analysis confirmed the aforementioned observations and also demonstrated upregulation of NOS2, SIRT1, SITR3, POLRMT, MRPL43 and NFkB with antidiabetic agents. We conclude that Sitagliptin most effectively modulates beneficial immune-relevant pathways in a human beta cell line. Topics: Cell Line; Diabetes Mellitus, Type 2; Gene Expression; Glucagon-Like Peptide 1; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Immunologic Factors; Inflammation; Insulin-Secreting Cells; Interleukin-6; Liraglutide; Metformin; Signal Transduction; Sitagliptin Phosphate; Tumor Necrosis Factor-alpha; Up-Regulation | 2019 |
The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke.
Stroke is a condition with few medical treatments available. Semaglutide, a novel Glucagon-like peptide-1 (GLP-1) analogue, has been brought to the market as a treatment for diabetes. We tested the protective effects of semaglutide against middle cerebral artery occlusion injury in rats. Animals were treated with 10 nmol/kg bw ip. starting 2 h after surgery and every second day for either 1, 7, 14 or 21 days. Semaglutide-treated animals showed significantly reduced scores of neurological impairments in several motor and grip strength tasks. The cerebral infarction size was also reduced, and the loss of neurons in the hippocampal areas CA1, CA3 and the dentate gyrus was much reduced. Chronic inflammation as seen in levels of activated microglia and in the activity of the p38 MAPK - MKK - c-Jun- NF-κB p65 inflammation signaling pathway was reduced. In addition, improved growth factor signaling as shown in levels of activated ERK1 and IRS-1, and a reduction in the apoptosis signaling pathway C-raf, ERK2, Bcl-2/BAX and Caspase-3 was observed. Neurogenesis had also been normalized by the drug treatment as seen in increased neurogenesis (DCX-positive cells) in the dentate gyrus and a normalization of biomarkers for neurogenesis. In conclusion, semaglutide is a promising candidate for re-purposing as a stroke treatment. Topics: Animals; Apoptosis; Brain; Disease Models, Animal; Doublecortin Protein; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Hippocampus; Hypoglycemic Agents; Infarction, Middle Cerebral Artery; Inflammation; Insulin Receptor Substrate Proteins; Microglia; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Motor Activity; Neurogenesis; Neurons; p38 Mitogen-Activated Protein Kinases; Proto-Oncogene Proteins c-jun; Rats; Stroke; Transcription Factor RelA | 2019 |
Glucagon-like peptide-1 receptor agonist exendin-4 mitigates lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages.
Macrophages play a critical role in the immune response against pathogen invasion and injury. However, under pathological stress, macrophages could have aberrant roles and contribute to the pathogenesis of inflammatory associated diseases. Exenatide is a glucagon-like peptide 1(GLP-1) agonist, which belongs to the family of synthetic exendin-based incretin mimetic. Exendin related compounds reduce glucose levels in type 2 diabetes patients. The purpose of this study was to examine the anti-inflammatory effects of exendin-4 in LPS-induced activation of macrophages. We show that exendin-4 inhibits LPS-induced expression of inflammatory mediators (iNOS, COX-2, PGE2 and NO) and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in RAW264.7 macrophages. Exendin-4 pretreatment mitigates LPS induced cellular ROS production. Mechanistically, Exendin-4 suppresses the LPS-induced activation of the JNK and AP-1 pathway. Furthermore, exendin-4 suppresses both nuclear p65 accumulation and transfected NF-κB promoter activity, indicating it inhibits the activation of the NF-κB pathway. Our study demonstrates that the GLP-1 agonist exendin-4 has a potent anti-inflammatory effect independent on its glucose reducing ability, and exendin-4 has the potential implication to treat inflammatory associated diseases. Topics: Animals; Anti-Inflammatory Agents; Cell Line; Cyclooxygenase 2; Cytokines; Diabetes Mellitus, Type 2; Exenatide; Glucagon-Like Peptide 1; Inflammation; Lipopolysaccharides; Macrophages; Mice; NF-kappa B; Nitric Oxide; RAW 264.7 Cells; Reactive Oxygen Species; Signal Transduction; Tumor Necrosis Factor-alpha | 2019 |
Global transcriptome analysis of rat hypothalamic arcuate nucleus demonstrates reversal of hypothalamic gliosis following surgically and diet induced weight loss.
The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss. Topics: Adiposity; Animals; Arcuate Nucleus of Hypothalamus; Astrocytes; Biomarkers; Diet, High-Fat; Diet, Reducing; Eating; Gastric Bypass; Gene Expression Profiling; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Gliosis; Glucagon-Like Peptide 1; Inflammation; Laser Capture Microdissection; Male; Neuropeptides; Obesity; Peptide YY; Rats; Rats, Sprague-Dawley; Sequence Analysis, RNA; Weight Loss | 2019 |
Glucagon-Like Peptide-1 Is a Marker of Systemic Inflammation in Patients Treated with High-Dose Chemotherapy and Autologous Stem Cell Transplantation.
Autologous stem cell transplantation (ASCT) is challenged by side effects that may be propagated by chemotherapy-induced mucositis, resulting in bacterial translocation and systemic inflammation. Because gastrointestinal damage appears as an early event in this cascade of reactions, we hypothesized that markers reflecting damage to the intestinal barrier could serve as early predictive markers of toxicity. Glucagon-like peptide-1 (GLP-1), a well-known regulator of blood glucose, has been found to promote intestinal growth and repair in animal studies. We investigated fasting GLP-1 plasma levels in 66 adults undergoing ASCT for lymphoma and multiple myeloma. GLP-1 increased significantly after chemotherapy, reaching peak levels at day +7 post-transplant (median, 8 pmol/L [interquartile range, 4 to 12] before conditioning versus 10 pmol/L [interquartile range, 6 to 17] at day +7; P = .007). The magnitude of the GLP-1 increase was related to the intensity of conditioning. GLP-1 at the day of transplantation (day 0) was positively associated with peak C-reactive protein (CRP) levels (46 mg/L per GLP-1 doubling, P < .001) and increase in days with fever (32% per GLP-1 doubling, P = .0058). Patients with GLP-1 above the median at day 0 had higher CRP levels from days +3 to +10 post-transplant than patients with lower GLP-1 (P ≤ .041) with peak values of 238 versus 129 mg/L, respectively. This study, which represents the first clinical investigation of fasting GLP-1 in relation to high-dose chemotherapy, provides evidence that GLP-1 plays a role in regulation of mucosal defenses. Fasting GLP-1 levels may serve as an early predictor of systemic inflammation and fever in patients receiving high-dose chemotherapy. Topics: Adult; Aged; Drug Therapy; Female; Glucagon-Like Peptide 1; Hematopoietic Stem Cell Transplantation; Humans; Inflammation; Male; Middle Aged; Transplantation, Autologous; Young Adult | 2019 |
Dipeptidyl Peptidase 4 Inhibition Ameliorates Chronic Kidney Disease in a Model of Salt-Dependent Hypertension.
Cardiovascular diseases frequently coexist with chronic kidney disease that constitutes a major determinant of outcome in patients with heart failure. Dysfunction of both organs is related to chronic inflammation, endothelial dysfunction, oxidative stress, and fibrosis. Widespread expression of serine protease DPP4 that degrades varieties of substrates suggests its involvement in numerous physiological processes. In this study, we tested the effects of selective DPP4 inhibition on the progression of renal disease in a nondiabetic model of hypertensive heart disease using Dahl salt-sensitive rats. Chronic DPP4 inhibition positively affected renal function with a significant reduction in albuminuria and serum creatinine. DPP4 inhibition attenuated the inflammatory component by reducing the expression of NF- Topics: Animals; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Endothelial Cells; Fibrosis; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hypertension; Inflammation; Kidney; Kidney Function Tests; Models, Biological; Nitrosative Stress; Oxidative Stress; Phenotype; Rats, Inbred Dahl; Renal Insufficiency, Chronic; Signal Transduction; Sodium Chloride, Dietary | 2019 |
Biochemical and histological characterisation of an experimental rodent model of non-alcoholic steatohepatitis - Effects of a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist and a glucagon-like peptide-1 analogue.
Non-alcoholic steatohepatitis (NASH) is a prevalent disease that is highly associated with the metabolic syndrome and type II diabetes. The development of in vivo models that reflect all nuances of the human NASH pathology is essential for drug discovery and development. We aimed to further characterise a dietary induced model of NASH both biochemically and histologically. In addition, we also investigated whether pioglitazone and liraglutide, drugs that have both been investigated as potential NASH treatments, could modulate the pathological changes induced by the NASH diet. Furthermore, to aid the translation of data from pre-clinical in vivo models, we aimed to adapt the NASH Clinical Research Network (CRN) histological score system for use in rodent studies.. Sprague Dawley rats were fed a high-fat diet (HFD) for 9 weeks, after which they were switched to a high fat, high cholesterol and cholate diet (HFCC) for 12 weeks. The rats were divided into treatment groups, receiving either 30 mg/kg pioglitazone p.o. SID or liraglutide s.c. 200 μg/kg BID or the respective vehicles. Serum levels of triglycerides (TG), cholesterol (Chol), LDL, HDL, AST and ALT, as well as body weight were assessed in all subjects. Upon termination, the liver was weighed and evaluated histologically using modified NASH-CRN criteria.. HFCC feeding induced severe hepatic injury and hepatomegaly as indicated by significant increases in AST, ALT and an increased liver weight. Additionally, HFCC feeding induced dyslipidaemia, significant increases in circulating cholesterol and LDL were observed. No obesogenic effect of the HFCC diet was observed, though the diet did induce insulin resistance. Histological analysis showed that the HFCC diet induced several NASH like features, though it did not induce the development of severe fibrosis. However, microgranulomas were often prevalent in addition to lobular inflammatory foci. Pioglitazone showed little efficacy upon both biochemical and histological features. However, liraglutide induced weight loss, improved glycaemic control, reduced ALT and AST and showed some beneficial effects upon steatosis and lobular inflammation.. Similar to previous reports we have shown that the atherogenic diet, HFCC, induces a phenotype akin to that seen in human NASH patients. Despite inducing all histological features of NASH, HFCC feeding does not promote the development of significant fibrosis within rodents. Pioglitazone and liraglutide have been investigated as potential NASH treatments. Within this model of NASH we have shown that pioglitazone has little efficacy, whereas liraglutide reduced the levels of circulating aminotransferases and had some beneficial effects upon NASH histological parameters. Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Blood Glucose; Cholesterol; Diet, High-Fat; Disease Models, Animal; Fatty Liver; Glucagon-Like Peptide 1; Inflammation; Liraglutide; Liver; Male; Non-alcoholic Fatty Liver Disease; Pioglitazone; PPAR gamma; Rats; Rats, Sprague-Dawley; Rodentia; Triglycerides | 2019 |
Impact of exenatide on mitochondrial lipid metabolism in mice with nonalcoholic steatohepatitis.
Exenatide (Exe) is a glucagon-like peptide (GLP)-1 receptor agonist that enhances insulin secretion and is associated with induction of satiety with weight loss. As mitochondrial dysfunction and lipotoxicity are central features of nonalcoholic steatohepatitis (NASH), we tested whether Exe improved mitochondrial function in this setting. We studied C57BL/6J mice fed for 24 weeks either a control- or high-fructose, high-trans-fat (TFD)-diet (i.e., a NASH model previously validated by our laboratory). For the final 8 weeks, mice were treated with Exe (30 µg/kg/day) or vehicle. Mitochondrial metabolism was assessed by infusion of [13C3]propionate, [3,4-13C2]glucose and NMR-based 13C-isotopomer analysis. Exenatide significantly decreased fasting plasma glucose, free fatty acids and triglycerides, as well as adipose tissue insulin resistance. Moreover, Exe reduced 23% hepatic glucose production, 15% tri-carboxylic acid (TCA) cycle flux, 20% anaplerosis and 17% pyruvate cycling resulting in a significant 31% decrease in intrahepatic triglyceride content (P = 0.02). Exenatide improved the lipidomic profile and decreased hepatic lipid byproducts associated with insulin resistance and lipotoxicity, such as diacylglycerols (TFD: 111 ± 13 vs Exe: 64 ± 13 µmol/g protein, P = 0.03) and ceramides (TFD: 1.6 ± 0.1 vs Exe: 1.3 ± 0.1 µmol/g protein, P = 0.03). Exenatide lowered expression of hepatic lipogenic genes (Srebp1C, Cd36) and genes involved in inflammation and fibrosis (Tnfa, Timp1). In conclusion, in a diet-induced mouse model of NASH, Exe ameliorates mitochondrial TCA cycle flux and significantly decreases insulin resistance, steatosis and hepatocyte lipotoxicity. This may have significant clinical implications to the potential mechanism of action of GLP-1 receptor agonists in patients with NASH. Future studies should elucidate the relative contribution of direct vs indirect mechanisms at play. Topics: Adipose Tissue; Animals; Blood Glucose; Citric Acid Cycle; Diet, High-Fat; Exenatide; Fatty Acids, Nonesterified; Fibrosis; Gene Expression Profiling; Glucagon-Like Peptide 1; Hepatocytes; Hypoglycemic Agents; Inflammation; Insulin Resistance; Lipid Metabolism; Lipidomics; Lipids; Liver; Male; Mice; Mice, Inbred C57BL; Mitochondria; Non-alcoholic Fatty Liver Disease; Triglycerides | 2019 |
GI inflammation Increases Sodium-Glucose Cotransporter Sglt1.
A correlation between gastrointestinal (GI) inflammation and gut hormones has reported that inflammatory stimuli including bacterial endotoxins, lipopolysaccharides (LPS), TNFα, IL-1β, and IL-6 induces high levels of incretin hormone leading to glucose dysregulation. Although incretin hormones are immediately secreted in response to environmental stimuli, such as nutrients, cytokines, and LPS, but studies of glucose-induced incretin secretion in an inflamed state are limited. We hypothesized that GI inflammatory conditions induce over-stimulated incretin secretion via an increase of glucose-sensing receptors. To confirm our hypothesis, we observed the alteration of glucose-induced incretin secretion and glucose-sensing receptors in a GI inflammatory mouse model, and we treated a conditioned media (Mϕ 30%) containing inflammatory cytokines in intestinal epithelium cells and enteroendocrine L-like NCI-H716 cells. In GI-inflamed mice, we observed that over-stimulated incretin secretion and insulin release in response to glucose and sodium glucose cotransporter (Sglt1) was increased. Incubation with Mϕ 30% increases Sglt1 and induces glucose-induced GLP-1 secretion with increasing intracellular calcium influx. Phloridzin, an sglt1 inhibitor, inhibits glucose-induced GLP-1 secretion, ERK activation, and calcium influx. These findings suggest that the abnormalities of incretin secretion leading to metabolic disturbances in GI inflammatory disease by an increase of Sglt1. Topics: Animals; Cell Line; Cells, Cultured; Female; Gastric Inhibitory Polypeptide; Gastroenteritis; Glucagon-Like Peptide 1; Glucose; Incretins; Inflammation; Insulin; Intestinal Mucosa; Mice, Inbred C57BL; Sodium-Glucose Transporter 1 | 2019 |
Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity.
Obesity and type 2 diabetes are drivers of non-alcoholic fatty liver disease (NAFLD). Glucagon-like peptide-1 analogues effectively treat obesity and type 2 diabetes and may offer potential for NAFLD treatment.. To evaluate the effect of the glucagon-like peptide-1 analogue, semaglutide, on alanine aminotransferase (ALT) and high-sensitivity C-reactive protein (hsCRP) in subjects at risk of NAFLD.. Data from a 104-week cardiovascular outcomes trial in type 2 diabetes (semaglutide 0.5 or 1.0 mg/week) and a 52-week weight management trial (semaglutide 0.05-0.4 mg/day) were analysed. Treatment ratios vs placebo were estimated for ALT (both trials) and hsCRP (weight management trial only) using a mixed model for repeated measurements, with or without adjustment for change in body weight.. Elevated baseline ALT (men >30 IU/L; women >19 IU/L) was present in 52% (499/957) of weight management trial subjects. In this group with elevated ALT, end-of-treatment ALT reductions were 6%-21% (P<0.05 for doses≥0.2 mg/day) and hsCRP reductions 25%-43% vs placebo (P < 0.05 for 0.2 and 0.4 mg/day). Normalisation of elevated baseline ALT occurred in 25%-46% of weight management trial subjects, vs 18% on placebo. Elevated baseline ALT was present in 41% (1325/3268) of cardiovascular outcomes trial subjects. In this group with elevated ALT, no significant ALT reduction was noted at end-of-treatment for 0.5 mg/week, while a 9% reduction vs placebo was seen for 1.0 mg/week (P = 0.0024). Treatment ratios for changes in ALT and hsCRP were not statistically significant after adjustment for weight change.. Semaglutide significantly reduced ALT and hsCRP in clinical trials in subjects with obesity and/or type 2 diabetes. Topics: Adolescent; Adult; Aged; Aged, 80 and over; Alanine Transaminase; Biomarkers; Body Weight; Cardiovascular Diseases; Clinical Trials, Phase II as Topic; Clinical Trials, Phase III as Topic; Diabetes Mellitus, Type 2; Double-Blind Method; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hypoglycemic Agents; Inflammation; Liver; Male; Middle Aged; Multicenter Studies as Topic; Non-alcoholic Fatty Liver Disease; Obesity; Randomized Controlled Trials as Topic; Retrospective Studies; Weight Reduction Programs; Young Adult | 2019 |
Activation of Glucagon-Like Peptide-1 Receptor Promotes Neuroprotection in Experimental Autoimmune Encephalomyelitis by Reducing Neuroinflammatory Responses.
The signaling axis of glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) has been an important component in overcoming diabetes, and recent reports have uncovered novel beneficial roles of this signaling axis in central nervous system (CNS) disorders, such as Alzheimer's disease, Parkinson's disease, and cerebral ischemia, accelerating processes for exendin-4 repositioning. Here, we studied whether multiple sclerosis (MS) could be a complement to the CNS disorders that are associated with the GLP-1/GLP-1R signaling axis. Both components of the signaling axis, GLP-1 and GLP-1R proteins, are expressed in neurons, astrocytes, and microglia in the spinal cord of normal mice. In particular, they are abundant in Iba1-positive microglia. Upon challenge by experimental autoimmune encephalomyelitis (EAE), an animal model of MS, the mRNA expression of both GLP-1 and GLP-1R was markedly downregulated in EAE-symptomatic spinal cords, indicating attenuated activity of GLP-1/GLP-1R signaling in EAE. Such a downregulation obviously occurred in LPS-stimulated rat primary microglia, a main cell type to express both GLP-1 and GLP-1R, further indicating attenuated activity of GLP-1/GLP-1R signaling in activated microglia. To investigate whether increased activity of GLP-1R has a therapeutic benefit, exendin-4 (5 μg/kg, i.p.), a GLP-1R agonist, was administered daily to EAE-symptomatic mice. Exendin-4 administration to symptomatic EAE mice significantly improved the clinical signs of the disease, along with the reversal of histopathological sequelae such as cell accumulation, demyelination, astrogliosis, microglial activation, and morphological transformation of activated microglia in the injured spinal cord. Such an improvement by exendin-4 was comparable to that by FTY720 (3 mg/kg, i.p.), a drug for MS. The neuroprotective effects of exendin-4 against EAE were also associated with decreased mRNA expression of proinflammatory cytokines, such as interleukin (IL)-17, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, all of which are usually upregulated in injured sites of the EAE spinal cord. Interestingly, exendin-4 exposure similarly reduced mRNA levels of IL-1β and TNF-α in LPS-stimulated microglia. Furthermore, exendin-4 administration significantly attenuated activation of NF-κB signaling in EAE spinal cord and LPS-stimulated microglia. Collectively, the current study demonstrates the therapeutic potential of exendin-4 for MS by reducing immune responses in the CNS, h Topics: Animals; Brain; Cells, Cultured; Cytokines; Down-Regulation; Encephalomyelitis, Autoimmune, Experimental; Exenatide; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Inflammation; Inflammation Mediators; Lipopolysaccharides; Mice, Inbred C57BL; Microglia; Neuroprotection; NF-kappa B; Rats; RNA, Messenger; Signal Transduction; Spinal Cord | 2018 |
Stimulation of the endogenous incretin glucose-dependent insulinotropic peptide by enteral dextrose improves glucose homeostasis and inflammation in murine endotoxemia.
Loss of glucose homeostasis during sepsis is associated with increased organ dysfunction and higher mortality. Novel therapeutic strategies to promote euglycemia in sepsis are needed. We have previously shown that early low-level intravenous (IV) dextrose suppresses pancreatic insulin secretion and induces insulin resistance in septic mice, resulting in profound hyperglycemia and worsened systemic inflammation. In this study, we hypothesized that administration of low-level dextrose via the enteral route would stimulate intestinal incretin hormone production, potentiate insulin secretion in a glucose-dependent manner, and thereby improve glycemic control in the acute phase of sepsis. We administered IV or enteral dextrose to 10-week-old male C57BL/6J mice exposed to bacterial endotoxin and measured incretin hormone release, glucose disposal, and proinflammatory cytokine production. Compared with IV administration, enteral dextrose increased circulating levels of the incretin hormone glucose-dependent insulinotropic peptide (GIP) associated with increased insulin release and insulin sensitivity, improved mean arterial pressure, and decreased proinflammatory cytokines in endotoxemic mice. Exogenous GIP rescued glucose metabolism, improved blood pressure, and increased insulin release in endotoxemic mice receiving IV dextrose, whereas pharmacologic inhibition of GIP signaling abrogated the beneficial effects of enteral dextrose. Thus, stimulation of endogenous GIP secretion by early enteral dextrose maintains glucose homeostasis and attenuates the systemic inflammatory response in endotoxemic mice and may provide a therapeutic target for improving glycemic control and clinical outcomes in patients with sepsis. Topics: Animals; Endotoxemia; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose; Homeostasis; Incretins; Inflammation; Insulin Resistance; Male; Mice; Mice, Inbred C57BL | 2018 |
Coagonist of GLP-1 and glucagon decreases liver inflammation and atherosclerosis in dyslipidemic condition.
Dyslipidemia enhances progression of atherosclerosis. Coagonist of GLP-1 and glucagon are under clinical investigation for the treatment of obesity and diabetes. Earlier, we have observed that coagonist reduced circulating and hepatic lipids, independent of its anorexic effects. Here, we investigated the role of coagonist of GLP-1 and glucagon receptors in complications of diet-induced dyslipidemia in hamsters and humanized double transgenic mice. Hamsters fed on high fat high cholesterol diet were treated for 8 weeks with coagonist of GLP-1 and glucagon receptors (75 and 150 μg/kg). Pair-fed control was maintained. Cholesterol fed transgenic mice overexpressing hApoB100 and hCETP with coagonist (300 μg/kg) for 4 weeks. After the completion of treatment, biochemical estimations were done. Coagonist treatment reduced triglycerides in plasma, liver and aorta, plasma cholesterol and hepatic triglyceride secretion rate. Expressions of HMG-CoA reductase and SBREBP-1C were reduced and expressions of LDLR, CYP7A1, ABCA1 and ABCB11 were increased in liver, due to coagonist treatment. Coagonist treatment increased bile flow rate and biliary cholesterol excretion. IL-6 and TNF-α were reduced in plasma and expression of TNF-α, MCP-1, MMP-9 and TIMP-1 decreased in liver. Treatment with coagonist reduced oxidative stress in liver and aorta. Energy expenditure was increased and respiratory quotient was reduced by coagonist treatment. These changes were correlated with reduced hepatic inflammation and lipids in liver and aorta in coagonist treated hamsters. Coagonist treatment also reduced lipids in cholesterol-fed transgenic mice. These changes were independent of glycaemia and anorexia observed after coagonist treatment. Long term treatment with coagonist of GLP-1 and glucagon receptor ameliorated diet-induced dyslipidemia and atherosclerosis by regulating bile homeostasis, liver inflammation and energy expenditure. Topics: Animals; Atherosclerosis; Cholesterol; Cricetinae; Dyslipidemias; Glucagon; Glucagon-Like Peptide 1; Inflammation; Lipid Metabolism; Liver; Male; Mice; Mice, Transgenic; Receptors, Glucagon | 2018 |
Plasma endocannabinoid levels in lean, overweight, and obese humans: relationships to intestinal permeability markers, inflammation, and incretin secretion.
Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation; however, little is known of these effects in humans. This study aimed to 1) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl- sn-glycerol (2-AG), and OEA in humans; and 2) examine relationships to intestinal permeability, inflammation markers, and incretin hormone secretion. Twenty lean, 18 overweight, and 19 obese participants underwent intraduodenal Intralipid infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumor necrosis factor-α (TNFα), glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and Toll-like receptor 4 (TLR4) (by RT-PCR) were assessed. Fasting plasma AEA was increased in obese compared with lean and overweight patients ( P < 0.05), with no effect of BMI group or ID lipid infusion on plasma 2-AG or OEA. Duodenal expression of IAP and ZO-1 was reduced in obese compared with lean ( P < 0.05), and these levels related negatively to plasma AEA ( P < 0.05). The iAUC for AEA was positively related to iAUC GIP ( r = 0.384, P = 0.005). Obese individuals have increased plasma AEA and decreased duodenal expression of ZO-1 and IAP compared with lean and overweight subjects. The relationships between plasma AEA with duodenal ZO-1, IAP, and GIP suggest that altered endocannabinoid signaling may contribute to changes in intestinal permeability, inflammation, and incretin release in human obesity. Topics: Adult; Alkaline Phosphatase; Arachidonic Acids; Dietary Fats; Duodenum; Endocannabinoids; Female; Gastric Inhibitory Polypeptide; Gene Expression; Glucagon-Like Peptide 1; Glycerides; GPI-Linked Proteins; Humans; Incretins; Inflammation; Male; Obesity; Occludin; Oleic Acids; Overweight; Permeability; Polyunsaturated Alkamides; Thinness; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha; Zonula Occludens-1 Protein | 2018 |
New pharmacological approaches for cardiovascular risk.
Topics: Anti-Inflammatory Agents; Cardiovascular Diseases; Diabetes Mellitus; Fibrinolytic Agents; Glucagon-Like Peptide 1; Humans; Hyperlipidemias; Inflammation; PCSK9 Inhibitors; Risk Factors; Sodium-Glucose Transporter 2 Inhibitors; Thrombosis | 2018 |
Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats.
This study aimed to investigate how Akkermansia muciniphila can implicate type 2 diabetes mellitus and the mechanisms underlying the effects A. muciniphila on type 2 diabetes mellitus. Normal and streptozotocin-induced diabetic Sprague-Dawley rats were orally administered with A. muciniphila and solvent. After 4 weeks of treatment, diabetic rats orally administered with live or pasteurized A. muciniphila exhibited significant increase in the blood concentration of high-density lipoprotein, and decrease in the hepatic glycogen, serum plasminogen activator inhibitor-1, tumor necrosis factor-α, lipopolysaccharide, malondialdehyde and total glucagon-like peptide-1. Moreover, diabetic rats orally administered with A. muciniphila showed significantly increased species alpha diversity and gene function in gut microbes. These results indicated that A. muciniphila can improve liver function, reduce gluco/lipotoxicity, alleviate oxidative stress, suppress inflammation and normalize intestine microbiota of the host animal, thereby ameliorating type 2 diabetes mellitus. Akkermansia muciniphila might be considered as one of the ideal new probiotics used in the management of type 2 diabetes mellitus in future. Topics: Animals; Cholesterol, HDL; Diabetes Mellitus, Experimental; Feces; Gastrointestinal Microbiome; Gene Expression Regulation; Glucagon-Like Peptide 1; Glycogen; Hypoglycemic Agents; Inflammation; Intestinal Mucosa; Intestines; Lipopolysaccharides; Liver; Male; Malondialdehyde; Oxidative Stress; Plasminogen Activator Inhibitor 1; Probiotics; Rats; Rats, Sprague-Dawley; Streptozocin; Tumor Necrosis Factor-alpha; Verrucomicrobia | 2018 |
Identification of therapeutic effect of glucagon-like peptide 1 in the treatment of STZ-induced diabetes mellitus in rats by restoring the balance of intestinal flora.
The objective of this study was to identify the therapeutic effect and the underlying mechanism of glucagon-like peptide 1 (GLP-1) in the treatment of STZ-induced diabetes mellitus (DM).. Mice were treated with STZ to establish an animal model of DM, which was further treated with a GLP-1 receptor agonist. Subsequently, the status of glucose, insulin, nitric oxide, inflammatory and oxidative factors was evaluated and compared among Sham, STZ, and STZ + GLP-1 groups. In addition, the intestinal flora spectrum in each group was also evaluated.. In this study, it was found that the administration of STZ increased the level of glucose and glycosylated hemoglobin but reduced the level of insulin. It was also found that the levels of inflammation and oxidative stress in STZ-induced DM were both enhanced, as evidenced by a decreased level of catalase, superoxide dismutase, glutathione peroxidase, as well as increased levels of malonyldialdehyde, interleukin-1β (IL-1β), and IL-6. Meanwhile, the expression of nitric oxide, a factor associated with both oxidative stress and inflammation, was also suppressed in STZ-induced DM. More importantly, the imbalance of intestinal flora was observed in STZ-induced DM, as shown by a decreased level of both total bacteria and that of some strains including Clostridium, Bacteroides, Lactobacilli, and Bifidobacteria.. In summary, the findings of this study confirmed the antihyperglycemic effect of GLP-1 and demonstrated that the therapeutic effect of GLP-1 in the treatment of STZ-induced DM was mediated, at least partially, by its ability to restore the balance of intestinal flora. Topics: Animals; Antioxidants; Blood Glucose; Catalase; Diabetes Mellitus; Diabetes Mellitus, Experimental; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glucose; Humans; Inflammation; Insulin; Malondialdehyde; Mice; Nitric Oxide; Oxidative Stress; Rats | 2018 |
Sitagliptin attenuates intestinal ischemia/reperfusion injury via cAMP/PKA, PI3K/Akt pathway in a glucagon-like peptide 1 receptor-dependent manner.
This study investigated the effect of sitagliptin prophylactic treatment on intestinal I/R rat model and explored the possible underlying mechanism.. Forty-five male Sprague-Dawley rats were randomly assigned to 3 groups: Sham group (operation without clamping), I/R group (operation with clamping) and sitagliptin pretreated group (300 mg/kg/day; p.o.) for 2 weeks before I/R insult. Intestinal I/R was performed by clamping the superior mesenteric artery for 30 min, followed by 60 min reperfusion after removal of clamping. At the end of the experimental period, all rats were sacrificed for histopathological, biochemical, PCR and western blot assessment.. Pretreatment with sitagliptin remarkably alleviated the pathological changes induced by I/R in the jejunum, suppressed upregulated NF-κB, TNF-α, IL-1βand MPO caused by I/R. Moreover, sitagliptin decreased the Bax/Bcl-2 ratio and accordingly suppressed apoptotic tissue damage as reflected by a caspase-3 level reduction in rat intestine subjected to I/R injury. Interestingly, sitagliptin could obviously increase the active GLP-1 level and GLP-1 receptor mRNA expression in the jejunum of I/R rats. This was associated with the augmentation of the cAMP level and enhancement of PKA activity. Simultaneously, sitagliptin treatment was able to increase the protein expression levels of phosphorylated PI3K and Akt.. Sitagliptin has shown protective effects against intestinal I/R injury in rats through reduction of intestinal inflammation and apoptosis. The molecular mechanisms may be partially correlated with activation of cAMP/PKA and PI3K/Akt signaling pathway by the GLP-1/GLP-1 receptor. Topics: Animals; Apoptosis; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hypoglycemic Agents; Inflammation; Inflammation Mediators; Intestinal Diseases; Intestinal Mucosa; Intestines; Male; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Sitagliptin Phosphate | 2018 |
Contribution of systemic inflammation to permanence of K
Gain-of-function (GOF) mutations in the ATP-sensitive potassium (K Topics: Animals; Blood Glucose; Cytokines; Diabetes Mellitus; Glucagon; Glucagon-Like Peptide 1; Glyburide; Inflammation; Insulin; Insulin Resistance; Leptin; Mice; Mice, Transgenic; Mutation; Potassium Channels, Inwardly Rectifying | 2018 |
Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice.
Diabetes and obesity are characterized by glucose intolerance, fat deposition, inflammation, and dyslipidemia. Recent reports postulated that distinct gut microbiota alterations were observed in obese/diabetic subjects and modulating gut microbiota beneficially through specific probiotics could be a potential therapeutic option for type 2 diabetes/obesity. Therefore, we attempted to study the efficacy of probiotics of Indian gut origin (Lactobacillus plantarum MTCC5690 and Lactobacillus fermentum MTCC5689) along with a positive control, Lactobacillus rhamnosus (LGG) on glucose/lipid homeostasis in high-fat-diet-induced diabetic animal model.. C57BL/6J male mice were divided into seven groups (n = 6 per group) comprising feeding on: (1) Normal Pellet Diet (NPD), (2) High-Fat Diet (HFD), (3) HFD with LGG, (4) HFD with MTCC5690, (5) HFD with MTCC5689, (6) HFD with metformin, and 7) HFD with vildagliptin for a period of 6 months. Biochemical markers, glucose tolerance, insulin resistance, and GLP-1 and LPS levels were assessed by standard protocols. Gut integrity was measured by intestinal permeability test. Transcriptional levels of tight junction proteins (TJPs) were probed in small intestinal tissues while inflammatory signals and other pathway specific genes were profiled in liver, visceral adipose tissue, and skeletal muscle.. Mice fed with HFD became insulin resistant, glucose intolerant, hyperglycemic, and dyslipidemic. Diabetic mice were characterized to exhibit decreased levels of GLP-1, increased gut permeability, increased circulatory levels of LPS, decrease in the gene expression patterns of intestinal tight junction markers (occludin and ZO-1), and increased proinflammatory gene markers (TNFα and IL6) in visceral fat along with decreased mRNA expression of FIAF and adiponectin. Diabetic mice also exhibited increased mRNA expression of ER stress markers in skeletal muscle. In addition, liver from HFD-fed diabetic mice showed increased gene expressions of proinflammation, lipogenesis, and gluconeogenesis. Probiotic interventions (most prominently the MTCC5689) resisted insulin resistance and development of diabetes in mice under HFD feeding and beneficially modulated all the biochemical and molecular alterations in a mechanistic way in several tissues. The metabolic benefits offered by the probiotics were also more or less similar to that of standard drugs such as metformin and vildagliptin.. Native probiotic strains MTCC 5690 and MTCC 5689 appear to have potential against insulin resistance and type 2 diabetes with mechanistic, multiple tissue-specific mode of actions. Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Dyslipidemias; Endoplasmic Reticulum Stress; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Gluconeogenesis; Glucose Intolerance; India; Inflammation; Insulin Resistance; Lactobacillus plantarum; Limosilactobacillus fermentum; Lipids; Lipogenesis; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Probiotics; Transcriptome | 2018 |
The GLP-1 analogue lixisenatide decreases atherosclerosis in insulin-resistant mice by modulating macrophage phenotype.
Recent clinical studies indicate that glucagon-like peptide-1 (GLP-1) analogues prevent acute cardiovascular events in type 2 diabetes mellitus but their mechanisms remain unknown. In the present study, the impact of GLP-1 analogues and their potential underlying molecular mechanisms in insulin resistance and atherosclerosis are investigated.. Atherosclerosis development was evaluated in Apoe. Treatment of Apoe. Lixisenatide decreases atheroma plaque size and instability in Apoe Topics: Animals; Atherosclerosis; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Inflammation; Insulin Resistance; Macrophages; Mice; Peptides; STAT3 Transcription Factor | 2017 |
[The Study of the Effect and Mechanism of Glucagon Like Peptide-1 in Bleomycin-induced Pulmonary Fibrosis in Mice].
To investigate the potential value and mechanisms of glucagon like peptide-1 (GLP-1) on bleomycin (BLM)-induced pulmonary fibrosis in mice.. Mice were treated with a single sublethal dose of BLM (3 mg/kg ) via intratracheal infusion to produce pulmonary fibrosis, and then liraglutide (2 mg/kg) was given to the mice for 28 days by intraperitoneal injection. 28 days after BLM infusion, the number of total cells, macrophages and neutrophils, lymphocytes, and the content of transforming growth factor-beta 1 (TGF-β1) in bronchoalveolar lavage fluid (BALF) were measured. Hematoxylin-eosin (HE) staining and Masson's trichrome (MT) staining were performed. The Ashcroft score and hydroxyproline content were analyzed. Real time(RT)-qPCR and Western blot were used to evaluate the expression of α-smooth muscle actin (α-SMA) and vascular cell adhesion molecule-1 (VCAM-1). The phosphorylation of nuclear factor-kappa B (NF-κB) p65 was also assessed by Western blot. DNA binding of NF-κB p65 was measured through TransAM. BLM-induced lung inflammation and pulmonary fibrosis were significantly alleviated by GLP-1 treatment in mice, possibly through inactivation of NF-κB. Topics: Actins; Animals; Bleomycin; Bronchoalveolar Lavage Fluid; Glucagon-Like Peptide 1; Inflammation; Lung; Mice; Pulmonary Fibrosis; Transcription Factor RelA; Transforming Growth Factor beta1; Vascular Cell Adhesion Molecule-1 | 2017 |
Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity.
Chronic inflammation has been proposed to contribute to the pathogenesis of diet-induced obesity. However, scarce therapeutic options are available to treat obesity and the associated immunometabolic complications. Glucocorticoids are routinely employed for the management of inflammatory diseases, but their pleiotropic nature leads to detrimental metabolic side effects. We developed a glucagon-like peptide-1 (GLP-1)-dexamethasone co-agonist in which GLP-1 selectively delivers dexamethasone to GLP-1 receptor-expressing cells. GLP-1-dexamethasone lowers body weight up to 25% in obese mice by targeting the hypothalamic control of feeding and by increasing energy expenditure. This strategy reverses hypothalamic and systemic inflammation while improving glucose tolerance and insulin sensitivity. The selective preference for GLP-1 receptor bypasses deleterious effects of dexamethasone on glucose handling, bone integrity, and hypothalamus-pituitary-adrenal axis activity. Thus, GLP-1-directed glucocorticoid pharmacology represents a safe and efficacious therapy option for diet-induced immunometabolic derangements and the resulting obesity. Topics: Animals; Body Weight; Dexamethasone; Energy Metabolism; Glucagon-Like Peptide 1; Glucocorticoids; Glucose; HEK293 Cells; Humans; Hypothalamus; Incretins; Inflammation; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity | 2017 |
GLP-1 nanomedicine alleviates gut inflammation.
The gut hormone, glucagon like peptide-1 (GLP-1) exerts anti-inflammatory effects. However, its clinical use is limited by its short half-life. Previously, we have shown that GLP-1 as a nanomedicine (GLP-1 in sterically stabilized phospholipid micelles, GLP-1-SSM) has increased in vivo stability. The current study was aimed at testing the efficacy of this GLP-1 nanomedicine in alleviating colonic inflammation and associated diarrhea in dextran sodium sulfate (DSS) induced mouse colitis model. Our results show that GLP-1-SSM treatment markedly alleviated the colitis phenotype by reducing the expression of pro-inflammatory cytokine IL-1β, increasing goblet cells and preserving intestinal epithelial architecture in colitis model. Further, GLP-1-SSM alleviated diarrhea (as assessed by luminal fluid) by increasing protein expression of intestinal chloride transporter DRA (down regulated in adenoma). Our results indicate that GLP-1 nanomedicine may act as a novel therapeutic tool in alleviating gut inflammation and associated diarrhea in inflammatory bowel disease (IBD). Topics: Animals; Colitis; Dextran Sulfate; Diarrhea; Disease Models, Animal; Glucagon-Like Peptide 1; Inflammation; Mice; Nanomedicine | 2017 |
A Dipeptidyl Peptidase-4 Inhibitor but not Incretins Suppresses Abdominal Aortic Aneurysms in Angiotensin II-Infused Apolipoprotein E-Null Mice.
The main pathophysiology of abdominal aortic aneurysm (AAA) considerably overlaps with that of atherosclerosis. We reported that incretins [glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP)] or a dipeptidyl peptidase-4 inhibitor (DPP-4I) suppressed atherosclerosis in apolipoprotein E-null (Apoe-/-) mice. Here we investigated the effects of incretin-related agents on AAA in a mouse model.. Apoe-/- mice maintained on an atherogenic diet were subcutaneously infused with saline, Ang II (2000 ng/kg/min), Ang II, and native GLP-1 (2.16 nmol/kg/day) or Ang II and native GIP (25 nmol/kg/day) for 4 weeks. DPP-4I (MK0626, 6 mg/kg/day) was provided in the diet to the Ang II-infused mice with or without incretin receptor antagonists [(Pro3) GIP and exendin (9-39)].. AAA occurred in 70% of the animals receiving Ang II. DPP-4I reduced this rate to 40% and significantly suppressed AAA dilatation, fibrosis, and thrombosis. In contrast, incretins failed to attenuate AAA. Incretin receptor blockers did not reverse the suppressive effects of DPP-4I on AAA. In the aorta, DPP-4I significantly reduced the expression of Interleukin-1β and increased that of tissue inhibitor of metalloproteinase (TIMP)-2. In addition, DPP-4I increased the ratio of TIMP-2 to matrix metalloproteinases-9.. DPP-4I, MK0626, but not native incretins has protective effects against AAA in Ang II-infused Apoe-/- mice via suppression of inflammation, proteolysis, and fibrosis in the aortic wall. Topics: Angiotensin II; Animals; Aorta; Aortic Aneurysm, Abdominal; Apolipoproteins E; Blood Pressure; Dipeptidyl-Peptidase IV Inhibitors; Gastric Inhibitory Polypeptide; Gene Expression Regulation; Glucagon-Like Peptide 1; Incretins; Inflammation; Interleukin-1beta; Male; Matrix Metalloproteinase 9; Mice; Mice, Knockout; Plaque, Atherosclerotic; Tissue Inhibitor of Metalloproteinase-2 | 2016 |
β cell membrane remodelling and procoagulant events occur in inflammation-driven insulin impairment: a GLP-1 receptor dependent and independent control.
Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell-derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon-like peptide (GLP)-1 analogue, is known to promote insulin secretion and β-cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin-m5f β-cell function, TF activity mediated by MPs and their modulation by 1 μM liraglutide were examined in a cell cross-talk model. Methyl-β-cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N-éthylmaleimide-sensitive-factor Attachment protein Receptor (SNARE)-dependent exocytosis. Cytokines induced a two-fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two-fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD-treated cells showed similar patterns. Cells pre-treated by saturating concentration of the GLP-1r antagonist exendin (9-39), showed a partial abolishment of the liraglutide-driven insulin secretion and liraglutide-decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP-1r-dependent and -independent pathways. Our results confirm an integrative β-cell response to GLP-1 that targets receptor-mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation-driven procoagulant events. Topics: Animals; Caspase 3; Cell Membrane; Cell-Derived Microparticles; Cells, Cultured; Cyclic AMP-Dependent Protein Kinases; Exocytosis; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hyperglycemia; Inflammation; Insulin; Insulin-Secreting Cells; Liraglutide; MAP Kinase Signaling System; Peptide Fragments; Rats; SNARE Proteins; Thromboplastin | 2016 |
Interleukin-6 predicts inflammation-induced increase of Glucagon-like peptide-1 in humans in response to cardiac surgery with association to parameters of glucose metabolism.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone, which gets secreted in response to nutritional stimuli from the gut mediating glucose-dependent insulin secretion. Interestingly, GLP-1 was recently found to be also increased in response to inflammatory stimuli in an interleukin 6 (IL-6) dependent manner in mice. The relevance of this finding to humans is unknown but has been suggested by the presence of high circulating GLP-1 levels in critically ill patients that correlated with markers of inflammation. This study was performed to elucidate, whether a direct link exists between inflammation and GLP-1 secretion in humans.. We enrolled 22 non-diabetic patients scheduled for cardiac surgery as a reproducible inflammatory stimulus with repeated blood sampling before and after surgery.. Mean total circulating GLP-1 levels significantly increased in response to surgery from 25.5 ± 15.6 pM to 51.9 ± 42.7 pM which was not found in a control population. This was preceded by an early rise of IL6, which was significantly associated with GLP-1 under inflammatory but not basal conditions. Using repeated measure ANCOVA, IL6 best predicted the observed kinetics of GLP-1, followed by blood glucose concentrations and cortisol plasma levels. Furthermore, GLP-1 plasma concentrations significantly predicted endogenous insulin production as assessed by C-peptide concentrations over time, while an inverse association was found for insulin infusion rate.. We found GLP-1 secretion to be increased in response to inflammatory stimuli in humans, which was associated to parameters of glucose metabolism and best predicted by IL6. Topics: Aged; Aged, 80 and over; Analysis of Variance; Biomarkers; Blood Glucose; Cardiac Surgical Procedures; Case-Control Studies; Female; Glucagon-Like Peptide 1; Humans; Hydrocortisone; Inflammation; Insulin; Interleukin-6; Kinetics; Least-Squares Analysis; Male; Middle Aged; Predictive Value of Tests; Prospective Studies; Risk Factors; Up-Regulation | 2016 |
Exenatide (a GLP-1 agonist) expresses anti-inflammatory properties in cultured human monocytes/macrophages in a protein kinase A and B/Akt manner.
Incretin-based therapies in the treatment of type 2 diabetes mellitus are associated with significant improvements in glycemic control, which are accompanied by a beneficial impact on atherosclerosis. Macrophages are essential in the development of atherosclerotic plaques and may develop features that accelerate atherosclerosis (classically activated macrophages) or protect arterial walls against it (alternatively activated macrophages). Therefore, we explored whether beneficial actions of exenatide are connected with the influence on the macrophages' phenotype and synthesis of inflammatory and anti-inflammatory cytokines.. Monocytes/macrophages were harvested from 10 healthy subjects. Cells were cultured in the presence of exenatide, exendin 9-39 (GLP-1 antagonist), LPS, IL-4, PKI (PKA inhibitor) and triciribine (PKB/Akt inhibitor). We measured the effects of the above-mentioned compounds on markers of macrophages' phenotype (inducible nitrous oxide (iNOS), arginase 1 (arg1) and mannose receptors) and concentration of nitrite, IL-1β, TNF-α and IL-10.. Exenatide significantly increased the level of IL-10 and decreased both TNF-α and IL-1β in LPS-treated monocytes/macrophages. Furthermore exenatide increased the expression of arg1-a marker of classical activation and reduced the LPS-induced expression of iNOS-a marker of classical activation. According to experiments with protein kinases inhibitors we found that proinflammatory markers were protein kinase A dependent, whereas the activation of alternative activation was similarly reliant on protein kinase A and B/Akt.. We showed that exenatide skewed the macrophages phenotype toward anti-inflammatory phenotype and this effect is predominantly attributable to protein kinase A and to a less extent to B/Akt activation. Topics: Anti-Inflammatory Agents; Cells, Cultured; Cyclic AMP-Dependent Protein Kinases; Diabetes Mellitus, Type 2; Exenatide; Glucagon-Like Peptide 1; Humans; Inflammation; Interleukin-10; Interleukin-1beta; Lipopolysaccharides; Macrophages; Monocytes; Nitric Oxide Synthase Type II; Peptides; Proto-Oncogene Proteins c-akt; Tumor Necrosis Factor-alpha; Venoms | 2016 |
Relationships of iron metabolism with insulin resistance and glucose levels in young and healthy adults.
Several biomarkers within the iron metabolism pathway have been related to the occurrence of diabetes mellitus, but underlying mechanisms are unknown. The aim of our study was to investigate the differential relationships of iron metabolism with a broad range of diabetes markers in young and healthy adults.. 2160 participants aged 25 to 41years were enrolled in a population-based study. Established cardiovascular disease, diabetes or a body mass index >35kg/m(2) were exclusion criteria. Multivariable linear regression models were built to assess the associations of ferritin and transferrin saturation (TSAT) with blood levels of glucagon-like peptide-1 (GLP-1), insulin, homeostatic model assessment-insulin resistance (HOMA-IR), fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c).. Median (interquartile range) age was 37 (31, 40) years. In multivariable linear regression analyses, β-coefficients (95% confidence intervals) per 1-SD increase in ferritin were 0.04 (0.02; 0.07, p=0.0008) for GLP-1, 0.06 (0.04; 0.08, p<0.0001) for insulin, 0.07 (0.04; 0.09, p<0.0001) for HOMA-IR, 0.004 (-0.00; 0.01, p=0.07) for FPG and -0.003 (-0.01; -0.00, p=0.07) for HbA1c. β-coefficients (95% CI) per 1-SD increase in TSAT were -0.07 (-0.09; -0.05, p<0.0001) for GLP-1, -0.06 (-0.08; -0.04, p<0.0001) for insulin, -0.07(-0.09; -0.05, p<0.0001) for HOMA-IR, -0.01 (-0.01; -0.00, p<0.0001) for FPG and -0.01 (-0.01; -0.00, p=0.0004) for HbA1c.. Markers of insulin resistance are strongly related with markers of iron metabolism in healthy subjects. These relationships were inconsistent and weaker for short-term and long-term glucose levels. These results may provide insights in the relationships between iron metabolism and diabetes occurrence. Topics: Adult; Blood Glucose; C-Reactive Protein; Female; Ferritins; Glucagon-Like Peptide 1; Glycated Hemoglobin; Humans; Inflammation; Insulin; Insulin Resistance; Iron; Linear Models; Male; Multivariate Analysis; Transferrin | 2016 |
Protective Effect of a GLP-1 Analog on Ischemia-Reperfusion Induced Blood-Retinal Barrier Breakdown and Inflammation.
Inflammation associated with blood-retinal barrier (BRB) breakdown is a common feature of several retinal diseases. Therefore, the development of novel nonsteroidal anti-inflammatory approaches may provide important therapeutic options. Previous studies demonstrated that inhibition of dipeptidyl peptidase-IV, the enzyme responsible for the degradation of glucagon-like peptide-1 (GLP-1), led to insulin-independent prevention of diabetes-induced increases in BRB permeability, suggesting that incretin-based drugs may have beneficial pleiotropic effects in the retina. In the current study, the barrier protective and anti-inflammatory properties of exendin-4 (Ex-4), an analog of GLP-1, after ischemia-reperfusion (IR) injury were examined.. Ischemia-reperfusion injury was induced in rat retinas by increasing the intraocular pressure for 45 minutes followed by 48 hours of reperfusion. Rats were treated with Ex-4 prior to and following IR. Blood-retinal barrier permeability was assessed by Evans blue dye leakage. Retinal inflammatory gene expression and leukocytic infiltration were measured by qRT-PCR and immunofluorescence, respectively. A microglial cell line was used to determine the effects of Ex-4 on lipopolysaccharide (LPS)-induced inflammatory response.. Exendin-4 dramatically reduced the BRB permeability induced by IR injury, which was associated with suppression of inflammatory gene expression. Moreover, in vitro studies showed that Ex-4 also reduced the inflammatory response to LPS and inhibited NF-κB activation.. The present work suggests that Ex-4 can prevent IR injury-induced BRB breakdown and inflammation through inhibition of inflammatory cytokine production by activated microglia and may provide a novel option for therapeutic intervention in diseases involving retinal inflammation. Topics: Animals; Blood-Retinal Barrier; Cattle; Cells, Cultured; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Immunoblotting; Immunohistochemistry; Incretins; Inflammation; Ischemia; Male; Peptides; Rats; Rats, Long-Evans; Reperfusion Injury; Retinal Diseases; Venoms | 2016 |
Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages.
Glucagon-like peptide 1 (GLP-1), a kind of gut hormone, is used in the treatment of type 2 diabetes (T2D). Emerging evidence indicates that GLP-1 has anti-inflammatory activity. Chronic inflammation in the adipose tissue of obese individuals is a cause of insulin resistance and T2D. We hypothesized that GLP-1 analogue therapy in patients with T2D could suppress the inflammatory response of macrophages, and therefore inhibit insulin resistance. Our results showed that GLP-1 agonist (exendin-4) not only attenuated macrophage infiltration, but also inhibited the macrophage secretion of inflammatory cytokines including TNF-β, IL-6, and IL-1β. Furthermore, we observed that lipopolysaccharide (LPS)-induced macrophage conditioned media could impair insulin-stimulated glucose uptake. This effect was compensated by treatment with the conditioned media from macrophages treated with the combination of LPS and exendin-4. It was also observed that exendin-4 directly inhibited the activation of NF-κB in macrophages. In conclusion, our results indicated that GLP-1 improved inflammatory macrophage-derived insulin resistance by inhibiting NF-κB pathway and secretion of inflammatory cytokines in macrophages. Furthermore, our observations suggested that the anti-inflammatory effect of GLP-1 on macrophages can contribute to GLP-1 analogue therapy of T2D. Topics: Adipose Tissue; Animals; Cell Migration Assays; Exenatide; Glucagon-Like Peptide 1; Humans; Inflammation; Inflammation Mediators; Insulin Resistance; Macrophages; Mice; Peptides; Venoms | 2016 |
Mosapride citrate improves nonalcoholic steatohepatitis with increased fecal lactic acid bacteria and plasma glucagon-like peptide-1 level in a rodent model.
Several lines of evidence have suggested a role of gut microbiota in the etiology of nonalcoholic steatohepatitis (NASH). NASH subjects reportedly showed a prolonged orocecal transit time coexistent with small intestinal bacterial overgrowth. We considered the possibility that enhanced gastrointestinal motility would influence gut microbiota and thus investigated the effects of the gastroprokinetic agent mosapride citrate (MC) on gut microbiota and the development of NASH using a methionine-choline deficient (MCD) diet-fed rodent model. Mice were divided into three groups, given the normal chow diet (NCD), the MCD diet, or the MCD diet containing 10 mg·kg(-1)·day(-1) of MC (MCD plus MC) for 6 wk. NASH development was evaluated based on hepatic histochemical findings, serum parameters and various mRNA and/or protein expression levels. MC treatment suppressed MCD diet-induced NASH development, with reduced serum lipopolysaccharide and increased plasma glucagon-like peptide-1 (GLP-1) concentrations. Calculation of the relative abundance of each strain based on gut microbiota analyses indicated lactic acid bacteria specifically, such as Bifidobacterium and Lactobacillus, in feces to be decreased in the MCD, compared with the NCD group. Interestingly, the reduction in lactic acid bacteria in the MCD diet group was reversed in the MCD plus MC group. In addition, colon inflammation observed in the MCD diet group was reduced in the MCD plus MC group. Therefore, MC showed a protective effect against MCD diet-induced NASH development in our rodent model, with possible involvements of increased fecal lactic acid bacteria, protection against colon inflammation and elevated plasma GLP-1. Topics: Animals; Benzamides; Choline Deficiency; Feces; Gastrointestinal Tract; Glucagon-Like Peptide 1; Inflammation; Lactic Acid; Liver; Liver Cirrhosis; Mice, Inbred C57BL; Morpholines; Non-alcoholic Fatty Liver Disease | 2015 |
DPP IV inhibitor suppresses STZ-induced islets injury dependent on activation of the IGFR/Akt/mTOR signaling pathways by GLP-1 in monkeys.
To evaluate the protective effect of the DPP IV inhibitor in STZ-induced islet injury and to identify the molecular events that protect islet against apoptosis.. 4 diabetic monkeys were treated with streptozotocin (70 mg/kg) in the presence or absence of the DPP IV inhibitor (Sitagliptin), continuing administered for 4 weeks after STZ. The monkeys were evaluated by plasma DPP IV activity, serum active GLP-1 response, blood glucose, insulin and C-P levels, the insulin resistance index (HOMA-IR), and the expression of insulin, caspase-3, IGF receptor (IGFR), p-Akt and p-mTOR in pancreas islets tissues. To test that DPP IV inhibitors might against islets apoptosis via IGFR/Akt/mTOR signaling pathways, the isolated islets from the normal monkeys were pre-treated with or without 10mM STZ for 1h, followed by GLP-1 (10 μM) in the presence or absence of NVP-AEW541 or Wortmannin for 24h, to determined islets function and islet apoptosis.. DPP IV inhibitors treatment showed depressing the degradation of GLP-1 and significantly increased serum GLP-1 levels in DM monkeys. Moreover, treatment of diabetic monkeys with the DPP IV inhibitor or treatment of isolated islets with GLP-1 can decrease islet apoptosis, and enhanced islet function and survival, and the expression of IGF receptor, p-Akt and p-mTOR in islets. When the IGFR/Akt/mTOR signaling pathways was blocked by NVP-AEW541 or Wortmannin, the protective effects of GLP1 on STZ-induced islets injury were inhibited in vitro.. Our data provides evidence that DPP IV inhibitors confer resistance to STZ-induced islet injury. The protective effects of DPP IV inhibitor on STZ-induced islets injury were dependent on activation of the IGFR/Akt/mTOR signaling pathways by GLP-1 in islets of monkeys. Topics: Animals; Apoptosis; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Glucose; Inflammation; Insulin; Islets of Langerhans; Macaca mulatta; Oxidative Stress; Proto-Oncogene Proteins c-akt; Receptor, IGF Type 1; Signal Transduction; Streptozocin; TOR Serine-Threonine Kinases | 2015 |
Gut microbiota and energy balance: role in obesity.
The microbial community populating the human digestive tract has been linked to the development of obesity, diabetes and liver diseases. Proposed mechanisms on how the gut microbiota could contribute to obesity and metabolic diseases include: (1) improved energy extraction from diet by the conversion of dietary fibre to SCFA; (2) increased intestinal permeability for bacterial lipopolysaccharides (LPS) in response to the consumption of high-fat diets resulting in an elevated systemic LPS level and low-grade inflammation. Animal studies indicate differences in the physiologic effects of fermentable and non-fermentable dietary fibres as well as differences in long- and short-term effects of fermentable dietary fibre. The human intestinal microbiome is enriched in genes involved in the degradation of indigestible polysaccharides. The extent to which dietary fibres are fermented and in which molar ratio SCFA are formed depends on their physicochemical properties and on the individual microbiome. Acetate and propionate play an important role in lipid and glucose metabolism. Acetate serves as a substrate for de novo lipogenesis in liver, whereas propionate can be utilised for gluconeogenesis. The conversion of fermentable dietary fibre to SCFA provides additional energy to the host which could promote obesity. However, epidemiologic studies indicate that diets rich in fibre rather prevent than promote obesity development. This may be due to the fact that SCFA are also ligands of free fatty acid receptors (FFAR). Activation of FFAR leads to an increased expression and secretion of enteroendocrine hormones such as glucagon-like-peptide 1 or peptide YY which cause satiety. In conclusion, the role of SCFA in host energy balance needs to be re-evaluated. Topics: Animals; Dietary Fiber; Energy Metabolism; Fatty Acids, Volatile; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glucose; Humans; Incretins; Inflammation; Intestinal Mucosa; Intestines; Lipid Metabolism; Lipopolysaccharides; Obesity; Peptide YY; Permeability; Satiation | 2015 |
Gliptin and GLP-1 analog treatment improves survival and vascular inflammation/dysfunction in animals with lipopolysaccharide-induced endotoxemia.
Dipeptidyl peptidase (DPP)-4 inhibitors are used to treat hyperglycemia by increasing the incretin glucagon-like peptide-1 (GLP-1). Previous studies showed anti-inflammatory and antiatherosclerotic effects of DPP-4 inhibitors. Here, we compared the effects of linagliptin versus sitagliptin and liraglutide on survival and vascular function in animal models of endotoxic shock by prophylactic therapy and treatment after lipopolysaccharide (LPS) injection. Gliptins were administered either orally or subcutaneously: linagliptin (5 mg/kg/day), sitagliptin (50 mg/kg/day) or liraglutide (200 µg/kg/day). Endotoxic shock was induced by LPS injection (mice 17.5-20 mg/kg i.p., rats 10 mg/kg/day). Linagliptin and liraglutide treatment or DPP-4 knockout improved the survival of endotoxemic mice, while sitagliptin was ineffective. Linagliptin, liraglutide and sitagliptin ameliorated LPS-induced hypotension and vascular dysfunction in endotoxemic rats, suppressed inflammatory parameters such as whole blood nitrosyl-iron hemoglobin (leukocyte-inducible nitric oxide synthase activity) or aortic mRNA expression of markers of inflammation as well as whole blood and aortic reactive oxygen species formation. Hemostasis (tail bleeding time, activated partial thromboplastin time) was impaired in endotoxemic rats and recovered under cotreatment with linagliptin and liraglutide. Finally, the beneficial effects of linagliptin on vascular function and inflammatory parameters in endotoxemic mice were impaired in AMP-activated kinase (alpha1) knockout mice. The improved survival of endotoxemic animals and other data shown here may warrant further clinical evaluation of these drugs in patients with septic shock beyond the potential improvement of inflammatory complications in diabetic individuals with special emphasis on the role of AMP-activated kinase (alpha1) in the DPP-4/GLP-1 cascade. Topics: Animals; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Endotoxemia; Glucagon-Like Peptide 1; Inflammation; Linagliptin; Lipopolysaccharides; Liraglutide; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Purines; Pyrazines; Quinazolines; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Sitagliptin Phosphate; Triazoles | 2015 |
Sitagliptin attenuated brain damage and cognitive impairment in mice with chronic cerebral hypo-perfusion through suppressing oxidative stress and inflammatory reaction.
Sitagliptin, a new antidiabetic drug that inhibits dipeptidyl peptidase (DPP)-4 enzyme activity, has been reported to possess neuroprotective property. We tested the protective effects of sitagliptin against chronic cerebral hypoperfusion (CHP) in mice after bilateral carotid artery stenosis (BCAS).. Thirty C57BL/6 mice were divided into three groups: sham control (n = 10), CHP (n = 10) and CHP-sitagliptin (orally 600 mg/kg/day) (n = 10). Working memory was assessed with novel-object recognition test. MRI was performed at day 0 and day 90 after BCAS procedure prior to sacrifice.. Immunohistochemical (IHC) staining showed significantly enhanced white matter lesions, microglia activation and astrocytosis of white matter in CHP group than in sham control, but the changes were significantly suppressed after sitagliptin treatment (all P < 0.01). The mRNA expressions of inflammatory [tumour necrosis factor-alpha (TNF-α), monocyte chemoattractant protein (MCP-1) and matrix metalloproteinase (MMP)-2] and apoptotic (Bax) biomarkers showed an identical pattern, whereas the anti-inflammatory (interleukin, IL-10) and antiapoptotic (Bcl-2) biomarkers showed an opposite pattern compared with that of IHC among all groups (all P < 0.01). The protein expressions of oxidative stress (NOX-I, NOX-II, nitrotyrosin, oxidized protein), inflammatory [nuclear factor-kappa B (NF-κB), TNF-α and MMP-2], apoptotic [mitochondrial Bax, cleaved poly(ADP-ribose) polymerase (PARP)] and DNA-damage (γ-H2AX) markers showed an identical pattern, while expression pattern of antiapoptotic marker (Bcl-2) was opposite to that of IHC (all P < 0.01). Glycogen-like peptide-1 receptor protein expression progressively increased from sham control to CHP-sitagliptin (P < 0.01). The short-term working-memory loss and MRI/diffusion tensor imaging (DTI) showed a pattern identical to that of IHC in all groups (all P < 0.01).. Sitagliptin protected against cognitive impairment and brain damage in a murine CHP model. Topics: Animals; Apoptosis; Brain; Brain Ischemia; Cognition Disorders; Drug Evaluation, Preclinical; Glucagon-Like Peptide 1; Hypoglycemic Agents; Inflammation; Interleukin-10; Male; Mice; Mice, Inbred C57BL; Oxidative Stress; Random Allocation; Sitagliptin Phosphate; Tumor Necrosis Factor-alpha | 2015 |
The Glucagon-Like Peptide-1 Analogue Liraglutide Inhibits Oxidative Stress and Inflammatory Response in the Liver of Rats with Diet-Induced Non-alcoholic Fatty Liver Disease.
Liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, has been demonstrated to reduce hepatic steatosis. However, the mechanism of the lipid-lowering effect of liraglutide in the liver remains unclear. The aim of the present study was to investigate the beneficial effect of liraglutide on diet-induced non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism in rats. NAFLD was induced in Sprague-Dawley rats by feeding a high fat and high cholesterol (HFHC) diet. Liraglutide (0.6 mg/kg body weight/d) was injected intraperitoneally to the rats subjected to HFHC diet four weeks before sacrificing the animals. Body and liver weight, fasting blood glucose (FBG), fasting insulin, serum aminotransferase (ALT) and lipid accumulation in the liver were determined. Markers of oxidative stress, such as malondialdehyde (MDA), free fatty acid (FFAs), superoxide dismutase (SOD), and pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) were detected by colorimetric detection or enzyme-linked immunosorbent assay (ELISA). Serum and hepatic adiponectin were measured by ELISA. The expression of c-Jun N-terminal kinase-1 (JNK-1) and phosphorylated JNK-1 were examined by Western blotting. Liraglutide improved insulin resistance, decreased hepatic steatosis and reversed liver dysfunction. The hepatic levels of MDA, FFAs, and TNF-α were significantly decreased versus controls. Meanwhile, administration of liraglutide significantly increased SOD and adiponectin levels in the liver and inhibited the expression of JNK-1 and phosphorylated JNK-1 versus control rats. Liraglutide exerted anti-oxidative and anti-inflammatory effects in the liver and consequently reversed hepatic steatosis and insulin resistance. Such effects might be mediated by the elevation of adiponectin levels and the inactivation of JNK-1. Topics: Adiponectin; Alanine Transaminase; Animals; Anti-Inflammatory Agents; Antioxidants; Diet, High-Fat; Fatty Acids, Nonesterified; Glucagon-Like Peptide 1; Hypoglycemic Agents; Inflammation; Insulin; Insulin Resistance; Liraglutide; Liver; Male; Malondialdehyde; Mitogen-Activated Protein Kinase 8; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Rats, Sprague-Dawley; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2015 |
Endogenous GLP-1 as a key self-defense molecule against lipotoxicity in pancreatic islets.
The number of pro-α cells is known to increase in response to β cell injury and these cells then generate glucagon-like peptide-1 (GLP-1), thus attenuating the development of diabetes. The aim of the present study was to further examine the role and the mechanisms responsible for intra-islet GLP-1 production as a self-protective response against lipotoxicity. The levels of the key enzyme, prohormone convertase 1/3 (PC1/3), as well as the synthesis and release of GLP-1 in models of lipotoxicity were measured. Furthermore, islet viability, apoptosis, oxidative stress and inflammation, as well as islet structure were assessed after altering GLP-1 receptor signaling. Both prolonged exposure to palmitate and a high-fat diet facilitated PC1/3 expression, as well as the synthesis and release of GLP-1 induced by β cell injury and the generation of pro-α cells. Prolonged exposure to palmitate increased reactive oxygen species (ROS) production, and the antioxidant, N-acetylcysteine (NAC), partially prevented the detrimental effects induced by palmitate on β cells, resulting in decreased GLP-1 levels. Furthermore, the inhibition of GLP-1 receptor (GLP-1R) signaling by treatment with exendin‑(9-39) further decreased cell viability, increased cell apoptosis and caused a stronger inhibition of the β cell-specific transcription factor, pancreatic duodenal homeobox 1 (PDX1). Moreover, treatment with the GLP-1R agonist, liraglutide, normalized islet structure and function, resulting in a decrease in cell death and in the amelioration of β cell marker expression. Importantly, liraglutide maintained the oxidative balance and decreased inflammatory factor and p65 expression. Overall, our data demonstrate that an increase in the number of pro-α cells and the activation of the intra-islet GLP-1 system comprise a self-defense mechanism for enhancing β cell survival to combat lipid overload, which is in part mediated by oxidative stress and inflammation. Topics: Acetylcysteine; Animals; Apoptosis; Cell Survival; Cells, Cultured; Diet, High-Fat; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Secreting Cells; Homeodomain Proteins; Inflammation; Insulin-Secreting Cells; Liraglutide; Male; Mice; Mice, Inbred C57BL; Oxidative Stress; Palmitates; Peptide Fragments; Proprotein Convertase 1; Reactive Oxygen Species; Signal Transduction; Trans-Activators; Transcription Factor RelA | 2015 |
Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer's disease.
Type 2 diabetes is a risk factor in the development of Alzheimer's disease (AD). It has been shown that insulin signalling is desensitised in the brains of AD patients. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and long-lasting analogues such as liraglutide (Victoza(®)) are on the market as type 2 diabetes treatments. We have previously shown that liraglutide improved cognitive function, reduced amyloid plaque deposition, inflammation, overall APP and oligomer levels and enhanced LTP when injected peripherally for two months in 7 month old APPswe/PS1ΔE9 (APP/PS1) mice. This showed that liraglutide has preventive effects at the early stage of AD development. The current study investigated whether Liraglutide would have restorative effects in late-stage Alzheimer's disease in mice. Accordingly, 14-month-old APP/PS1 and littermate control mice were injected with Liraglutide (25 nmol/kg bw) ip. for 2 months. Spatial memory was improved by Liraglutide-treatment in APP/PS1 mice compared with APP/PS1 saline-treated mice. Overall plaque load was reduced by 33%, and inflammation reduced by 30%, while neuronal progenitor cell count in the dentate gyrus was increased by 50%. LTP was significantly enhanced in APP/PS1 liraglutide-treated mice compared with APP/PS1 saline mice, corroborated with increased synapse numbers in hippocampus and cortex. Total brain APP and beta-amyloid oligomer levels were reduced in Liraglutide-treated APP/PS1 mice while IDE levels were increased. These results demonstrate that Liraglutide not only has preventive properties, but also can reverse some of the key pathological hallmarks of AD. Liraglutide is now being tested in clinical trials in AD patients. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'. Topics: Aging; Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Cell Count; Disease Models, Animal; Glucagon-Like Peptide 1; Inflammation; Liraglutide; Long-Term Potentiation; Male; Memory; Memory Disorders; Mice; Mice, Transgenic; Nerve Degeneration; Neuroprotective Agents; Plaque, Amyloid; Stem Cells; Synapses | 2014 |
Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus.
Glucagon-like peptide 1 (GLP-1) is a gut hormone used in the treatment of type 2 diabetes mellitus. There is emerging evidence that GLP-1 has anti-inflammatory activity in humans, with murine studies suggesting an effect on macrophage polarisation. We hypothesised that GLP-1 analogue therapy in individuals with type 2 diabetes mellitus would affect the inflammatory macrophage molecule soluble CD163 (sCD163) and adipocytokine profile.. We studied ten obese type 2 diabetes mellitus patients starting GLP-1 analogue therapy at a hospital-based diabetes service. We investigated levels of sCD163, TNF-α, IL-1β, IL-6, adiponectin and leptin by ELISA, before and after 8 weeks of GLP-1 analogue therapy.. GLP-1 analogue therapy reduced levels of the inflammatory macrophage activation molecule sCD163 (220 ng/ml vs 171 ng/ml, p < 0.001). This occurred independent of changes in body weight, fructosamine and HbA1c. GLP-1 analogue therapy was associated with a decrease in levels of the inflammatory cytokines TNF-α (264 vs 149 pg/ml, p < 0.05), IL-1β (2,919 vs 748 pg/ml, p < 0.05) and IL-6 (1,379 vs 461 pg/ml p < 0.05) and an increase in levels of the anti-inflammatory adipokine adiponectin (4,480 vs 6,290 pg/ml, p < 0.002).. In individuals with type 2 diabetes mellitus, GLP-1 analogue therapy reduces the frequency of inflammatory macrophages. This effect is not dependent on the glycaemic or body weight effects of GLP-1. Topics: Body Weight; Diabetes Mellitus, Type 2; Female; Glucagon-Like Peptide 1; Humans; Immunity, Innate; Inflammation; Inflammation Mediators; Male; Middle Aged | 2014 |
Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity.
Metabolic syndrome is associated with alterations in the structure of the gut microbiota leading to low-grade inflammatory responses. An increased penetration of the impaired gut membrane by bacterial components is believed to induce this inflammation, possibly involving epigenetic alteration of inflammatory molecules such as Toll-like receptors (TLRs). We evaluated changes of the gut microbiota and epigenetic DNA methylation of TLR2 and TLR4 in three groups of subjects: type 2 diabetics under glucagon-like peptide-1 agonist therapy, obese individuals without established insulin resistance, and a lean control group. Clostridium cluster IV, Clostridium cluster XIVa, lactic acid bacteria, Faecalibacterium prausnitzii and Bacteroidetes abundances were analysed by PCR and 454 high-throughput sequencing. The epigenetic methylation in the regulatory region of TLR4 and TLR2 was analysed using bisulfite conversion and pyrosequencing. We observed a significantly higher ratio of Firmicutes/ Bacteroidetes in type 2 diabetics compared to lean controls and obese. Major differences were shown in lactic acid bacteria, with the highest abundance in type 2 diabetics, followed by obese and lean participants. In comparison, F. prausnitzii was least abundant in type 2 diabetics, and most abundant in lean controls. Methylation analysis of four CpGs in the first exon of TLR4 showed significantly lower methylation in obese individuals, but no significant difference between type 2 diabetics and lean controls. Methylation of seven CpGs in the promoter region of TLR2 was significantly lower in type 2 diabetics compared to obese subjects and lean controls. The methylation levels of both TLRs were significantly correlated with body mass index. Our data suggest that changes in gut microbiota and thus cell wall components are involved in the epigenetic regulation of inflammatory reactions. An improved diet targeted to induce gut microbial balance and in the following even epigenetic changes of pro-inflammatory genes may be effective in the prevention of metabolic syndrome. Topics: Bacteroidetes; Body Mass Index; Clostridium; Diabetes Mellitus, Type 2; DNA Methylation; Epigenomics; Gastrointestinal Tract; Glucagon-Like Peptide 1; Humans; Inflammation; Inflammation Mediators; Metabolic Syndrome; Microbiota; Obesity; Promoter Regions, Genetic; Toll-Like Receptor 2; Toll-Like Receptor 4 | 2014 |
Glucagon-like peptide-1 secreting cell function as well as production of inflammatory reactive oxygen species is differently regulated by glycated serum and high levels of glucose.
Glucagon-like peptide-1 (GLP-1), an intestinal hormone contributing to glucose homeostasis, is synthesized by proglucagon and secreted from intestinal neuroendocrine cells in response to nutrients. GLP-1 secretion is impaired in type 2 diabetes patients. Here, we aimed at investigating whether diabetic toxic products (glycated serum (GS) or high levels of glucose (HG)) may affect viability, function, and insulin sensitivity of the GLP-1 secreting cell line GLUTag. Cells were cultured for 5 days in presence or absence of different dilutions of GS or HG. GS and HG (alone or in combination) increased reactive oxygen species (ROS) production and upregulated proglucagon mRNA expression as compared to control medium. Only HG increased total production and release of active GLP-1, while GS alone abrogated secretion of active GLP-1. HG-mediated effects were associated with the increased cell content of the prohormone convertase 1/3 (PC 1/3), while GS alone downregulated this enzyme. HG upregulated Glucokinase (GK) and downregulated SYNTHAXIN-1. GS abrogated SYNTHAXIN-1 and SNAP-25. Finally, high doses of GS alone or in combination with HG reduced insulin-mediated IRS-1 phosphorylation. In conclusion, we showed that GS and HG might regulate different pathways of GLP-1 production in diabetes, directly altering the function of neuroendocrine cells secreting this hormone. Topics: Blood Glucose; Cell Line; Cell Survival; Down-Regulation; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucokinase; Humans; Inflammation; Insulin; Proglucagon; Reactive Oxygen Species; RNA, Messenger; Synaptosomal-Associated Protein 25; Syntaxin 1 | 2014 |
Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals.
This study aimed to evaluate the efficacy of sitagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor, in preventing the deleterious effects of diabetes on the kidney in an animal model of type 2 diabetes mellitus; the Zucker diabetic fatty (ZDF) rat: 20-week-old rats were treated with sitagliptin (10 mg/kg bw/day) during 6 weeks. Glycaemia and blood HbA1c levels were monitored, as well as kidney function and lesions. Kidney mRNA and/or protein content/distribution of DPP-IV, GLP-1, GLP-1R, TNF-α, IL-1β, BAX, Bcl-2, and Bid were evaluated by RT-PCR and/or western blotting/immunohistochemistry. Sitagliptin treatment improved glycaemic control, as reflected by the significantly reduced levels of glycaemia and HbA1c (by about 22.5% and 1.2%, resp.) and ameliorated tubulointerstitial and glomerular lesions. Sitagliptin prevented the diabetes-induced increase in DPP-IV levels and the decrease in GLP-1 levels in kidney. Sitagliptin increased colocalization of GLP-1 and GLP-1R in the diabetic kidney. Sitagliptin also decreased IL-1β and TNF-α levels, as well as, prevented the increase of BAX/Bcl-2 ratio, Bid protein levels, and TUNEL-positive cells which indicates protective effects against inflammation and proapoptotic state in the kidney of diabetic rats, respectively. In conclusion, sitagliptin might have a major role in preventing diabetic nephropathy evolution due to anti-inflammatory and antiapoptotic properties. Topics: Animals; Apoptosis; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Inflammation; Kidney; Pyrazines; Rats; Rats, Zucker; Sitagliptin Phosphate; Triazoles; Tumor Necrosis Factor-alpha | 2014 |
Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism.
Liraglutide is a glucagon-like peptide-1 (GLP-1) mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascular disease in diabetic patients. The mechanism responsible for this effect has yet to be determined; however, one possibility is that they might do so by a direct effect on vascular endothelium. Since low grade inflammation of the endothelium is an early event in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), we determined the effects of liraglutide on inflammation in cultured human aortic endothelial cells (HAECs). Liraglutide reduced the inflammatory responses to TNFα and LPS stimulation, as evidenced by both reduced protein expression of the adhesion molecules VCAM-1 and E-Selectin, and THP-1 monocyte adhesion. This was found to result from increased cell Ca2+ and several molecules sensitive to Ca2+ with known anti inflammatory actions in endothelial cells, including CaMKKβ, CaMKI, AMPK, eNOS and CREB. Treatment of the cells with STO-609, a CaMKK inhibitor, diminished both the activation of AMPK, CaMKI and the inhibition of TNFα and LPS-induced monocyte adhesion by liraglutide. Likewise, expression of an shRNA against AMPK nullified the anti-inflammatory effects of liraglutide. The results indicate that liraglutide exerts a strong anti-inflammatory effect on HAECs. They also demonstrate that this is due to its ability to increase intracellular Ca2+ and activate CAMKKβ, which in turn activates AMPK. Topics: AMP-Activated Protein Kinases; Analysis of Variance; Benzimidazoles; Blotting, Western; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Kinase; Cells, Cultured; Endothelial Cells; Endothelium, Vascular; Glucagon-Like Peptide 1; Humans; Immunoenzyme Techniques; Incretins; Inflammation; Liraglutide; Naphthalimides; RNA Interference; RNA, Small Interfering | 2014 |
GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering.
Hypoglycemia and hyperglycemia are both predictors for adverse outcome in critically ill patients. Hyperinsulinemia is induced by inflammatory stimuli as a relevant mechanism for glucose lowering in the critically ill. The incretine hormone GLP-1 was currently found to be induced by endotoxin, leading to insulin secretion and glucose lowering under inflammatory conditions in mice. Here, we describe GLP-1 secretion to be increased by a variety of inflammatory stimuli, including endotoxin, interleukin-1β (IL-1β), and IL-6. Although abrogation of IL-1 signaling proved insufficient to prevent endotoxin-dependent GLP-1 induction, this was abolished in the absence of IL-6 in respective knockout animals. Hence, we found endotoxin-dependent GLP-1 secretion to be mediated by an inflammatory cascade, with IL-6 being necessary and sufficient for GLP-1 induction. Functionally, augmentation of the GLP-1 system by pharmacological inhibition of DPP-4 caused hyperinsulinemia, suppression of glucagon release, and glucose lowering under endotoxic conditions, whereas inhibition of the GLP-1 receptor led to the opposite effect. Furthermore, total GLP-1 plasma levels were profoundly increased in 155 critically ill patients presenting to the intensive care unit (ICU) in comparison with 134 healthy control subjects. In the ICU cohort, GLP-1 plasma levels correlated with markers of inflammation and disease severity. Consequently, GLP-1 provides a novel link between the immune system and the gut with strong relevance for metabolic regulation in context of inflammation. Topics: Adolescent; Adult; Aged; Aged, 80 and over; Animals; Blood Glucose; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hyperinsulinism; Inflammation; Interleukin-1beta; Interleukin-6; Lipopolysaccharides; Male; Mice, Knockout; Middle Aged; Peptide Fragments; Receptors, Glucagon; Young Adult | 2014 |
Effect of Sipjeondaebo-tang on cancer-induced anorexia and cachexia in CT-26 tumor-bearing mice.
Cancer-associated anorexia and cachexia are a multifactorial condition described by a loss of body weight and muscle with anorexia, asthenia, and anemia. Moreover, they correlate with a high mortality rate, poor response to chemotherapy, poor performance status, and poor quality of life. Cancer cachexia is regulated by proinflammatory cytokines such as interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor- α (TNF- α). In addition, glucagon like peptide-1 (GIP-1), peptide YY (PYY), ghrelin, and leptin plays a crucial role in food intake. In this study, we investigated the therapeutic effects of one of the traditional herbal medicines, Sipjeondaebo-tang (Juzen-taiho-to in Japanese; SJDBT), on cancer anorexia and cachexia in a fundamental mouse cancer anorexia/cachexia model, CT-26 tumor-bearing mice. SJDBT was more significantly effective in a treatment model where it was treated after anorexia and cachexia than in a prevention model where it was treated before anorexia and cachexia on the basis of parameters such as weights of muscles and whole body and food intakes. Moreover, SJDBT inhibited a production of IL-6, MCP-1, PYY, and GLP-1 and ameliorated cancer-induced anemia. Therefore, our in vivo studies provide evidence on the role of SJDBT in cancer-associated anorexia and cachexia, thereby suggesting that SJDBT may be useful for treating cancer-associated anorexia and cachexia. Topics: Animals; Anorexia; Body Weight; Cachexia; Cell Line, Tumor; Chemokine CCL2; Drugs, Chinese Herbal; Ghrelin; Glucagon-Like Peptide 1; Inflammation; Interleukin-6; Intestinal Mucosa; Leptin; Male; Mice; Mice, Inbred BALB C; Muscles; Neoplasm Transplantation; Neoplasms; Peptide YY; Plant Preparations; Tumor Necrosis Factor-alpha | 2014 |
JNK3 is required for the cytoprotective effect of exendin 4.
Preservation of beta cell against apoptosis is one of the therapeutic benefits of the glucagon-like peptide-1 (GLP1) antidiabetic mimetics for preserving the functional beta cell mass exposed to diabetogenic condition including proinflammatory cytokines. The mitogen activated protein kinase 10 also called c-jun amino-terminal kinase 3 (JNK3) plays a protective role in insulin-secreting cells against death caused by cytokines. In this study, we investigated whether the JNK3 expression is associated with the protective effect elicited by the GLP1 mimetic exendin 4. We found an increase in the abundance of JNK3 in isolated human islets and INS-1E cells cultured with exendin 4. Induction of JNK3 by exendin 4 was associated with an increased survival of INS-1E cells. Silencing of JNK3 prevented the cytoprotective effect of exendin 4 against apoptosis elicited by culture condition and cytokines. These results emphasize the requirement of JNK3 in the antiapoptotic effects of exendin 4. Topics: Animals; Apoptosis; Exenatide; Gene Silencing; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Inflammation; Insulin; Islets of Langerhans; Mitogen-Activated Protein Kinase 10; Peptides; Rats; RNA, Small Interfering; Venoms | 2014 |
Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects.
Increased adipose tissue lipogenesis is associated with enhanced insulin sensitivity. Mice overexpressing the Glut4 glucose transporter in adipocytes have elevated lipogenesis and increased glucose tolerance despite being obese with elevated circulating fatty acids. Lipidomic analysis of adipose tissue revealed the existence of branched fatty acid esters of hydroxy fatty acids (FAHFAs) that were elevated 16- to 18-fold in these mice. FAHFA isomers differ by the branched ester position on the hydroxy fatty acid (e.g., palmitic-acid-9-hydroxy-stearic-acid, 9-PAHSA). PAHSAs are synthesized in vivo and regulated by fasting and high-fat feeding. PAHSA levels correlate highly with insulin sensitivity and are reduced in adipose tissue and serum of insulin-resistant humans. PAHSA administration in mice lowers ambient glycemia and improves glucose tolerance while stimulating GLP-1 and insulin secretion. PAHSAs also reduce adipose tissue inflammation. In adipocytes, PAHSAs signal through GPR120 to enhance insulin-stimulated glucose uptake. Thus, FAHFAs are endogenous lipids with the potential to treat type 2 diabetes. Topics: Adipose Tissue; Adult; Animals; Diabetes Mellitus, Type 2; Diet; Esters; Fatty Acids; Female; Glucagon-Like Peptide 1; Glucose Transporter Type 4; Humans; Inflammation; Insulin; Insulin Resistance; Lipogenesis; Male; Mass Spectrometry; Mice, Inbred C57BL; Middle Aged; Receptors, G-Protein-Coupled | 2014 |
Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice.
The incretin hormone glucagon-like peptide-1 (GLP-1) is an important insulin secretagogue and GLP-1 analogs are used for the treatment of type 2 diabetes. GLP-1 displays antiinflammatory and surfactant-releasing effects. Thus, we hypothesize that treatment with GLP-1 analogs will improve pulmonary function in a mouse model of obstructive lung disease. Female mice were sensitized with injected ovalbumin and treated with GLP-1 receptor (GLP-1R) agonists. Exacerbation was induced with inhalations of ovalbumin and lipopolysaccharide. Lung function was evaluated with a measurement of enhanced pause in a whole-body plethysmograph. mRNA levels of GLP-1R, surfactants (SFTPs), and a number of inflammatory markers were measured. GLP-1R was highly expressed in lung tissue. Mice treated with GLP-1R agonists had a noticeably better clinical appearance than the control group. Enhanced pause increased dramatically at day 17 in all control mice, but the increase was significantly less in the groups of GLP-1R agonist-treated mice (P < .001). Survival proportions were significantly increased in GLP-1R agonist-treated mice (P < .01). SFTPB and SFTPA were down-regulated and the expression of inflammatory cytokines were increased in mice with obstructive lung disease, but levels were largely unaffected by GLP-1R agonist treatment. These results show that GLP-1R agonists have potential therapeutic potential in the treatment of obstructive pulmonary diseases, such as chronic obstructive pulmonary disease, by decreasing the severity of acute exacerbations. The mechanism of action does not seem to be the modulation of inflammation and SFTP expression. Topics: Animals; Biomarkers; Exenatide; Female; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Inflammation; Liraglutide; Lung Diseases, Obstructive; Mice; Mice, Inbred C57BL; Ovalbumin; Peptides; Receptors, Glucagon; RNA, Messenger; Venoms | 2013 |
Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe⁻/⁻ mice.
[corrected] Glucagon-like peptide-1 (GLP-1) based therapies are new treatment options for patients with type 2 diabetes. Recent reports suggest vasoprotective actions of GLP-1. Similar beneficial effects might be reached by GLP-1(9-37) and the c-terminal GLP-1 split product (28-37) although both peptides do not activate the GLP-1 receptor. We therefore investigated the actions of GLP-1(7-37), GLP-1(9-37) as well as GLP-1(28-37) on vascular lesion formation in a mouse model of atherosclerosis.. GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) and LacZ (control) were overexpressed for a period of 12 weeks in apoe(-/-) mice on high-fat diet (n = 10/group) using an adeno-associated viral vector system. Neither of the constructs changed overall lesion size. However, GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) significantly reduced plaque macrophage infiltration (GLP-1(7-37): 40.6%, GLP-1(9-37): 47.0%, GLP-1(28-37): 40.1% decrease, p < 0.05) and plaque MMP-9 expression (GLP-1(7-37): 41.6%, GLP-1(9-37): 50.2%, GLP-1(28-37): 44.0% decrease, p < 0.05) compared to LacZ in the aortic arch. Moreover, all GLP-1 constructs increased plaque collagen content (GLP-1(7-37): 49.3%, GLP-1(9-37): 86.0%, GLP-1(28-37): 81.9% increase, p < 0.05) and increased fibrous cap thickness (GLP-1(7-37): 188.0%, GLP-1(9-37): 179.9% GLP-1(28-37): 111.0% increase, p < 0.05). These effects of GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) on plaque macrophage infiltration, MMP-9 expression and plaque collagen content were confirmed in the aortic root.. GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) reduce plaque inflammation and increase phenotypic characteristics of plaque stability in a murine model of atherosclerosis. Future studies are needed to determine whether these effects translate into improved plaque stability and less cardiovascular events in high-risk patients with type 2 diabetes. Topics: Animals; Apolipoproteins E; Atherosclerosis; Blood Glucose; Collagen; Diet, High-Fat; Disease Models, Animal; Gene Expression Regulation; Glucagon-Like Peptide 1; Incretins; Inflammation; Lipids; Macrophages; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Peptide Fragments; Phenotype; Plaque, Atherosclerotic; Transgenes | 2013 |
The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain.
Chronic inflammation in the brain is found in a range of neurodegenerative diseases such as Parkinson's or Alzheimer's disease. We have recently shown that analogues of the glucagon-like polypeptide 1 (GLP-1) such as liraglutide have potent neuroprotective properties in a mouse model of Alzheimer's disease. We also found a reduction of activated microglia in the brain. This finding suggests that GLP-1 analogues such as liraglutide have anti-inflammatory properties. To further characterise this property, we tested the effects of liraglutide on the chronic inflammation response induced by exposure of the brain to 6 Gy (X-ray). Animals were injected i.p. with 25 nmol/kg once daily for 30 days. Brains were analysed for cytokine levels, activated microglia and astrocyte levels, and nitrite levels as a measure for nitric oxide production and protein expression of iNOS. Exposure of the brain to 6 Gy induced a pronounced chronic inflammation response in the brain. The activated microglia load in the cortex and dentate gyrus region of hippocampus (P<0.001), and the activated astrocyte load in the cortex (P<0.01) was reduced by liraglutide. Furthermore, the pro-inflammatory cytokine levels of IL-6 (P<0.01), IL-12p70 (P<0.01), IL-1β (P<0.05), and total nitrite concentration were reduced in the brains of animals treated with liraglutide. The results demonstrate that liraglutide is effective in reducing a number of parameters linked to the chronic inflammation response. Liraglutide or similar GLP-1 analogues may be a suitable treatment for reducing the chronic inflammatory response in the brain found in several neurodegenerative conditions. Topics: Animals; Anti-Inflammatory Agents; Astrocytes; Body Weight; Brain; Cytokines; Diabetes Mellitus, Type 2; Eating; Glucagon-Like Peptide 1; Inflammation; Liraglutide; Male; Mice; Mice, Inbred C57BL; Microglia; Nitric Oxide Synthase Type II; Nitrites; Radiation Injuries, Experimental | 2013 |
Chitosan reduces plasma adipocytokines and lipid accumulation in liver and adipose tissues and ameliorates insulin resistance in diabetic rats.
Chitosan is a natural product derived from chitin. To investigate the hypoglycemic and anti-obesity effects of chitosan, male Sprague-Dawley rats were divided into four groups: normal control, diabetic, and diabetic fed 5% or 7% chitosan. Diabetes was induced in rats by injecting streptozotocin/nicotinamide. After 10 weeks of feeding, the elevated plasma glucose, tumor necrosis factor-α, and interleukin-6 and lower adiponetin levels caused by diabetes were effectively reversed by chitosan treatment. In addition, 7% chitosan feeding also elevated plasma glucagon-like peptide-1 levels and lowered the insulin resistance index (homeostasis model assessment) in diabetic rats. Lower adipocyte granular intensities and higher lipolysis rates in adipose tissues were noted in the 7% chitosan group. Moreover, chitosan feeding reduced hepatic triglyceride and cholesterol contents and increased hepatic peroxisomal proliferator-activated receptor α expression in diabetic rats. Our results indicate that long-term administration of chitosan may reduce insulin resistance through suppression of lipid accumulation in liver and adipose tissues and amelioration of chronic inflammation in diabetic rats. Topics: Adiponectin; Adipose Tissue; Animals; Biological Products; Blood Glucose; Chitosan; Cholesterol; Diabetes Mellitus, Experimental; Glucagon-Like Peptide 1; Hypoglycemic Agents; Inflammation; Insulin; Insulin Resistance; Interleukin-6; Lipid Metabolism; Liver; Male; PPAR alpha; Rats; Rats, Sprague-Dawley; Triglycerides; Tumor Necrosis Factor-alpha | 2012 |
The synergistic effect of valsartan and LAF237 [(S)-1-[(3-hydroxy-1-adamantyl)ammo]acetyl-2-cyanopyrrolidine] on vascular oxidative stress and inflammation in type 2 diabetic mice.
To investigate the combination effects and mechanisms of valsartan (angiotensin II type 1 receptor blocker) and LAF237 (DPP-IV inhibitor) on prevention against oxidative stress and inflammation injury in db/db mice aorta.. Db/db mice (n = 40) were randomized to receive valsartan, LAF237, valsartan plus LAF237, or saline. Oxidative stress and inflammatory reaction in diabetic mice aorta were examined.. Valsartan or LAF237 pretreatment significantly increased plasma GLP-1 expression, reduced apoptosis of endothelial cells isolated from diabetic mice aorta. The expression of NAD(P)H oxidase subunits also significantly decreased resulting in decreased superoxide production and ICAM-1 (fold change: valsartan : 7.5 ± 0.7, P < 0.05; LAF237: 10.2 ± 1.7, P < 0.05), VCAM-1 (fold change: valsartan : 5.2 ± 1.2, P < 0.05; LAF237: 4.8 ± 0.6, P < 0.05), and MCP-1 (fold change: valsartan: 3.2 ± 0.6, LAF237: 4.7 ± 0.8; P < 0.05) expression. Moreover, the combination treatment with valsartan and LAF237 resulted in a more significant increase of GLP-1 expression. The decrease of the vascular oxidative stress and inflammation reaction was also higher than monotherapy with valsartan or LAF237.. These data indicated that combination treatment with LAF237 and valsartan acts in a synergistic manner on vascular oxidative stress and inflammation in type 2 diabetic mice. Topics: Adamantane; Angiotensin II Type 1 Receptor Blockers; Animals; Aorta; Apoptosis; Blood Glucose; Diabetes Mellitus, Type 2; Drug Synergism; Endothelial Cells; Endothelium, Vascular; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hypoglycemic Agents; Inflammation; Intercellular Adhesion Molecule-1; Mice; NADPH Oxidases; Oxidative Stress; Pyrrolidines; Receptors, Glucagon; Tetrazoles; Valine; Valsartan; Vascular Cell Adhesion Molecule-1 | 2012 |
The dipeptidyl peptidase-4 inhibitor linagliptin attenuates inflammation and accelerates epithelialization in wounds of diabetic ob/ob mice.
In recent years, new and effective therapeutic agents for blood glucose control have been added to standard diabetes therapies: dipeptidyl peptidase-4 (DPP-4) inhibitors, which prolong the bioavailability of the endogenously secreted incretin hormone glucagon-like peptide-1 (GLP-1). Full-thickness excisional wounding was performed in wild-type (C57BL/6J) and diabetic [C57BL/6J-obese/obese (ob/ob)] mice. DPP-4 activity was inhibited by oral administration of linagliptin during healing. Wound tissue was analyzed by using histological, molecular, and biochemical techniques. In healthy mice, DPP-4 was constitutively expressed in the keratinocytes of nonwounded skin. After skin injury, DPP-4 expression declined and was lowest during the most active phase of tissue reassembly. In contrast, in ob/ob mice, we observed increasing levels of DPP-4 at late time points, when delayed tissue repair still occurs. Oral administration of the DPP-4 inhibitor linagliptin strongly reduced DPP-4 activity, stabilized active GLP-1 in chronic wounds, and improved healing in ob/ob mice. At day 10 postwounding, linagliptin-treated ob/ob mice showed largely epithelialized wounds characterized by the absence of neutrophils. In addition, DPP-4 inhibition reduced the expression of the proinflammatory markers cyclooxygenase-2 and macrophage inflammatory protein-2, but enhanced the formation of myofibroblasts in healing wounds from ob/ob mice. Our data suggest a potentially beneficial role of DPP-4 inhibition in diabetes-affected wound healing. Topics: Animals; Chemokine CXCL2; Cyclooxygenase 2; Diabetes Mellitus, Experimental; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Epithelial Cells; Female; Glucagon-Like Peptide 1; Inflammation; Keratinocytes; Linagliptin; Macrophage Inflammatory Proteins; Macrophages; Mice; Mice, Inbred C57BL; Mice, Obese; Myofibroblasts; Neutrophils; Purines; Quinazolines; Wound Healing | 2012 |
Continuous parenteral and enteral nutrition induces metabolic dysfunction in neonatal pigs.
We previously showed that parenteral nutrition (PN) compared with formula feeding results in hepatic insulin resistance and steatosis in neonatal pigs. The current aim was to test whether the route of feeding (intravenous [IV] vs enteral) rather than other feeding modalities (diet, pattern) had contributed to the outcome.. Neonatal pigs were fed enterally or parenterally for 14 days with 1 of 4 feeding modalities as follows: (1) enteral polymeric formula intermittently (FORM), (2) enteral elemental diet (ED) intermittently (IEN), (3) enteral ED continuously (CEN), and (4) parenteral ED continuously (PN). Subgroups of pigs underwent IV glucose tolerance tests (IVGTT) and hyperinsulinemic-euglycemic clamps (CLAMP). Following CLAMP, pigs were euthanized and tissues collected for further analysis.. Insulin secretion during IVGTT was significantly higher and glucose infusion rates during CLAMP were lower in CEN and PN than in FORM and IEN. Endogenous glucose production rate was suppressed to zero in all groups during CLAMP. In the fed state, plasma glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide (GLP)-1, and GLP-2 were different between feeding modalities. Insulin receptor phosphorylation in liver and muscle was decreased in IEN, CEN, and PN compared with FORM. Liver weight was highest in PN. Steatosis and myeloperoxidase (MPO) activity tended to be highest in PN and CEN. Enterally fed groups had higher plasma GLP-2 and jejunum weight compared with PN.. PN and enteral nutrition (EN) when given continuously as an elemental diet reduces insulin sensitivity and the secretion of key gut incretins. The intermittent vs continuous pattern of EN produced the optimal effect on metabolic function. Topics: Administration, Intravenous; Animals; Animals, Newborn; Blood Glucose; Endpoint Determination; Enteral Nutrition; Fatty Liver; Female; Food, Formulated; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Incretins; Inflammation; Insulin; Insulin Resistance; Insulin Secretion; Intestine, Small; Liver; Metabolic Diseases; Nonlinear Dynamics; Organ Size; Parenteral Nutrition; Swine | 2012 |
Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes.
Obesity and insulin resistance are associated with low-grade chronic inflammation. Glucagon-like peptide-1 (GLP-1) is known to reduce insulin resistance. We investigated whether GLP-1 has anti-inflammatory effects on adipose tissue, including adipocytes and adipose tissue macrophages (ATM).. We administered a recombinant adenovirus (rAd) producing GLP-1 (rAd-GLP-1) to an ob/ob mouse model of diabetes. We examined insulin sensitivity, body fat mass, the infiltration of ATM and metabolic profiles. We analysed the mRNA expression of inflammatory cytokines, lipogenic genes, and M1 and M2 macrophage-specific genes in adipose tissue by real-time quantitative PCR. We also examined the activation of nuclear factor κB (NF-κB), extracellular signal-regulated kinase 1/2 and Jun N-terminal kinase (JNK) in vivo and in vitro.. Fat mass, adipocyte size and mRNA expression of lipogenic genes were significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Macrophage populations (F4/80(+) and F4/80(+)CD11b(+)CD11c(+) cells), as well as the expression and production of IL-6, TNF-α and monocyte chemoattractant protein-1, were significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Expression of M1-specific mRNAs was significantly reduced, but that of M2-specific mRNAs was unchanged in rAd-GLP-1-treated ob/ob mice. NF-κB and JNK activation was significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Lipopolysaccharide-induced inflammation was reduced by the GLP-1 receptor agonist, exendin-4, in 3T3-L1 adipocytes and ATM.. We suggest that GLP-1 reduces macrophage infiltration and directly inhibits inflammatory pathways in adipocytes and ATM, possibly contributing to the improvement of insulin sensitivity. Topics: Adipose Tissue; Animals; Anti-Inflammatory Agents; Body Fat Distribution; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Inflammation; Insulin Resistance; Macrophages; Mice; Mice, Obese; NF-kappa B; Obesity; Real-Time Polymerase Chain Reaction; Receptors, Glucagon | 2012 |
Chronic DPP-IV inhibition with PKF-275-055 attenuates inflammation and improves gene expressions responsible for insulin secretion in streptozotocin induced diabetic rats.
Inhibitors of dipeptidyl peptidase-4 (DPP-IV), a key regulator of the actions of incretin hormones, exert antihyperglycemic effects in type 2 diabetic patients. A major question concerns the potential ability of long term DPP-IV inhibition to have beneficial disease-modifying effects, specifically to attenuate loss of pancreatic β-cell mass due to oxidative stress induced inflammation. Here, we investigated the effects of a potent and selective DPP-4 inhibitor, an analog of vildagliptin (PKF-275-055), on glycemic control, pancreatic β-cell mass, genes and proteins expressions, tumor necrosis factor-alpha, and nitric oxide in an n2-STZ diabetic model of rat with defects in insulin sensitivity and secretion. To induce NIDDM, streptozotocin (STZ) 90 mg/kg was administered i.p. to a group of 2 days old pups. Diabetic rats were administered orally with vildagliptin analog PKF-275-055. Saline treated animals served as diabetic control. Significant and dose-dependent correction of postprandial hyperglycemia was observed in diabetic rats following 8 weeks of chronic therapy. Treatment with PKF-275-055 showed increased the number of insulin-positive β-cells in islets and improved the expressions of genes and proteins are responsible for insulin secretions. In addition, treatment of rats with PKF-275-055 significantly increased insulin content, glycogen content and total proteins content; and decreased the inflammatory markers i.e. nitric oxide and TNF-alpha. The present studies indicate that PKF-275-055 is a novel selective DPP-IV inhibitor having potential to reduce inflammation that might be a potential agent for type 2 diabetes. Topics: Adamantane; Animals; Blood Glucose; Blood Proteins; Diabetes Mellitus, Experimental; Dipeptidyl-Peptidase IV Inhibitors; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucose Transporter Type 2; Glucose Transporter Type 4; Glycogen; Hypoglycemic Agents; Inflammation; Insulin; Insulin Secretion; Liver; Muscle, Skeletal; Nitrates; Nitriles; Nitrites; Pancreas; Pyrrolidines; Rats; Rats, Wistar; RNA, Messenger; Tumor Necrosis Factor-alpha | 2012 |
The effectiveness of liraglutide in nonalcoholic fatty liver disease patients with type 2 diabetes mellitus compared to sitagliptin and pioglitazone.
BACKGROUND. Liraglutide leading to improve not only glycaemic control but also liver inflammation in non-alcoholic fatty liver disease (NAFLD) patients. AIMS. The aim of this study is to elucidate the effectiveness of liraglutide in NAFLD patients with type 2 diabetes mellitus (T2DM) compared to sitagliptin and pioglitazone. METHODS. We retrospectively enrolled 82 Japanese NAFLD patients with T2DM and divided into three groups (liraglutide: N = 26, sitagliptin; N = 36, pioglitazone; N = 20). We compared the baseline characteristics, changes of laboratory data and body weight. RESULTS. At the end of follow-up, ALT, fast blood glucose, and HbA1c level significantly improved among the three groups. AST to platelet ratio significantly decreased in liraglutide group and pioglitazone group. The body weight significantly decreased in liraglutide group (81.8 kg to 78.0 kg, P < 0.01). On the other hands, the body weight significantly increased in pioglitazone group and did not change in sitagliptin group. Multivariate regression analysis indicated that administration of liraglutide as an independent factor of body weight reduction for more than 5% (OR 9.04; 95% CI 1.12-73.1, P = 0.04). CONCLUSIONS. Administration of liraglutide improved T2DM but also improvement of liver inflammation, alteration of liver fibrosis, and reduction of body weight. Topics: Adult; Alanine Transaminase; Blood Glucose; Body Weight; Comorbidity; Diabetes Mellitus, Type 2; Drug Evaluation; Drug Therapy, Combination; Fatty Liver; Female; Follow-Up Studies; Glucagon-Like Peptide 1; Glycated Hemoglobin; Humans; Inflammation; Liraglutide; Liver Cirrhosis; Logistic Models; Male; Middle Aged; Multivariate Analysis; Non-alcoholic Fatty Liver Disease; Odds Ratio; Pioglitazone; Platelet Count; Pyrazines; Retrospective Studies; Sitagliptin Phosphate; Thiazolidinediones; Treatment Outcome; Triazoles | 2012 |
Liraglutide, a long-acting GLP-1 mimetic, and its metabolite attenuate inflammation after intracerebral hemorrhage.
The inflammatory response plays a pivotal role in propagating injury of intracerebral hemorrhage (ICH). Glucagon-like-peptide-1 (GLP-1) is a hormone with antidiabetic effect and may also have antiinflammatory properties. Despite consensus that the glucoregulatory action is mediated by the GLP-1 receptor (GLP-1R), mechanisms in the brain remain unclear. We investigated the effect of a long-acting GLP-1 analog, liraglutide, and its truncated metabolite, GLP-1(9-36)a from dipeptidyl peptidase-4 (DPP-4) cleavage in ICH-induced brain injury. Primary outcomes were cerebral edema formation, neurobehavior, and inflammatory parameters. GLP-1(9-36)a, GLP-1R inhibitor, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation inhibitor and DPP-4 inhibitor were administered to examine the mechanisms of action. Liraglutide suppressed neuroinflammation, prevented brain edema and neurologic deficit following ICH, which were partially reversed by GLP-1R inhibitor and AMPK phosphorylation inhibitor. Liraglutide-mediated AMPK phosphorylation was unaffected by GLP-1R inhibitor, and was found to be induced by GLP-1(9-36)a. GLP-1(9-36)a showed salutary effects on primary outcomes that were reversed by AMPK phosphorylation inhibitor but not by GLP-1R inhibitor. Liraglutide and DPP-4 inhibitor co-administration reversed liraglutide-mediated AMPK phosphorylation and antiinflammatory effects. Liraglutide exerted duals actions and the antiinflammatory effects are partially mediated by its metabolite in a phosphorylated AMPK-dependent manner. Therapies that inhibit GLP-1 degradation may weaken the metabolite-mediated effects. Topics: AMP-Activated Protein Kinases; Animals; Biomimetic Materials; Brain Edema; Cerebral Hemorrhage; Dipeptidyl Peptidase 4; Glucagon-Like Peptide 1; Inflammation; Liraglutide; Male; Mice; Neuroprotective Agents; Phosphorylation | 2012 |
Encapsulated glucagon-like peptide-1-producing mesenchymal stem cells have a beneficial effect on failing pig hearts.
Stem cell therapy is an exciting and emerging treatment option to promote post-myocardial infarction (post-MI) healing; however, cell retention and efficacy in the heart remain problematic. Glucagon-like peptide-1 (GLP-1) is an incretin hormone with cardioprotective properties but a short half-life in vivo. The effects of prolonged GLP-1 delivery from stromal cells post-MI were evaluated in a porcine model. Human mesenchymal stem cells immortalized and engineered to produce a GLP-1 fusion protein were encapsulated in alginate (bead-GLP-1 MSC) and delivered to coronary artery branches. Control groups were cell-free beads and beads containing unmodified MSCs (bead-MSC), n = 4-5 per group. Echocardiography confirmed left ventricular (LV) dysfunction at time of delivery in all groups. Four weeks after intervention, only the bead-GLP-1 MSC group demonstrated LV function improvement toward baseline and showed decreased infarction area compared with controls. Histological analysis showed reduced inflammation and a trend toward reduced apoptosis in the infarct zone. Increased collagen but fewer myofibroblasts were observed in infarcts of the bead-GLP-1 MSC and bead-MSC groups, and significantly more vessels per mm(2) were noted in the infarct of the bead-GLP-1 MSC group. No differences were observed in myocyte cross-sectional area between groups. Post-MI delivery of GLP-1 encapsulated genetically modified MSCs provided a prolonged supply of GLP-1 and paracrine stem cell factors, which improved LV function and reduced epicardial infarct size. This was associated with increased angiogenesis and an altered remodeling response. Combined benefits of paracrine stem cell factors and GLP-1 were superior to those of stem cells alone. These results suggest that encapsulated genetically modified MSCs would be beneficial for recovery following MI. Topics: Alginates; Anatomy, Cross-Sectional; Animals; Apoptosis; Cardiotonic Agents; Cell Survival; Disease Models, Animal; Drug Delivery Systems; Echocardiography; Glucagon-Like Peptide 1; Glucuronic Acid; Heart Failure; Hexuronic Acids; Humans; In Situ Nick-End Labeling; Inflammation; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Myocardial Infarction; Myofibroblasts; Neovascularization, Pathologic; Recombinant Fusion Proteins; Sus scrofa; Ventricular Function, Left | 2012 |
Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate glucose-dependent insulin secretion. The GLP-1 receptor agonist, exendin-4, has similar properties to GLP-1 and is currently in clinical use for type 2 diabetes mellitus. As GLP-1 and exendin-4 confer cardioprotection after myocardial infarction, this study was designed to assess the neuroprotective effects of exendin-4 against cerebral ischemia-reperfusion injury. Mice received a transvenous injection of exendin-4, after a 60-minute focal cerebral ischemia. Exendin-4-treated vehicle and sham groups were evaluated for infarct volume, neurologic deficit score, various physiologic parameters, and immunohistochemical analyses at several time points after ischemia. Exendin-4 treatment significantly reduced infarct volume and improved functional deficit. It also significantly suppressed oxidative stress, inflammatory response, and cell death after reperfusion. Furthermore, intracellular cyclic AMP (cAMP) levels were slightly higher in the exendin-4 group than in the vehicle group. No serial changes were noted in insulin and glucose levels in both groups. This study suggested that exendin-4 provides neuroprotection against ischemic injury and that this action is probably mediated through increased intracellular cAMP levels. Exendin-4 is potentially useful in the treatment of acute ischemic stroke. Topics: Animals; Cyclic AMP; Exenatide; Glucagon-Like Peptide 1; Inflammation; Ischemic Attack, Transient; Mice; Neuroprotective Agents; Oxidative Stress; Peptides; Venoms | 2011 |
Resveratrol increases glucose induced GLP-1 secretion in mice: a mechanism which contributes to the glycemic control.
Resveratrol (RSV) is a potent anti-diabetic agent when used at high doses. However, the direct targets primarily responsible for the beneficial actions of RSV remain unclear. We used a formulation that increases oral bioavailability to assess the mechanisms involved in the glucoregulatory action of RSV in high-fat diet (HFD)-fed diabetic wild type mice. Administration of RSV for 5 weeks reduced the development of glucose intolerance, and increased portal vein concentrations of both Glucagon-like peptid-1 (GLP-1) and insulin, and intestinal content of active GLP-1. This was associated with increased levels of colonic proglucagon mRNA transcripts. RSV-mediated glucoregulation required a functional GLP-1 receptor (Glp1r) as neither glucose nor insulin levels were modulated in Glp1r-/- mice. Conversely, levels of active GLP-1 and control of glycemia were further improved when the Dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin was co-administered with RSV. In addition, RSV treatment modified gut microbiota and decreased the inflammatory status of mice. Our data suggest that RSV exerts its actions in part through modulation of the enteroendocrine axis in vivo. Topics: Animals; Blood Glucose; Dietary Fats; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose Intolerance; Inflammation; Intestines; Male; Metagenome; Mice; Mice, Inbred C57BL; Receptors, Glucagon; Resveratrol; Stilbenes; Time Factors | 2011 |
Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation.
Glucagon-like peptide-1 (GLP-1) is a proglucagon-derived hormone with cellular protective actions. We hypothesized that GLP-1 would protect the endothelium from injury during inflammation. Our aims were to determine the: (1) effect of GLP-1 on basal microvascular permeability, (2) effect of GLP-1 on increased microvascular permeability induced by lipopolysaccaride (LPS), (3) involvement of the GLP-1 receptor in GLP-1 activity, and (4) involvement of the cAMP/PKA pathway in GLP-1 activity. Microvascular permeability (L(p)) of rat mesenteric post-capillary venules was measured in vivo. First, the effect of GLP-1 on basal L(p) was measured. Second, after systemic LPS injection, L(p) was measured after subsequent perfusion with GLP-1. Thirdly, L(p) was measured after LPS injection and perfusion with GLP-1+GLP-1 receptor antagonist. Lastly, L(p) was measured after LPS injection and perfusion with GLP-1+inhibitors of the cAMP/PKA pathway. Results are presented as mean area under the curve (AUC)+/-SEM. GLP-1 had no effect on L(p) (AUC: baseline=27+/-1.4, GLP-1=1+/-0.4, p=0.08). LPS increased L(p) two-fold (AUC: LPS=54+/-1.7, p<0.0001). GLP-1 reduced the LPS increase in L(p) by 75% (AUC: LPS+GLP-1=34+/-1.5, p<0.0001). GLP-1 antagonism reduced the effects of GLP-1 by 60% (AUC: LPS+GLP-1+antagonist=46+/-2.0, p<0.001). The cAMP synthesis inhibitor reduced the effects of GLP-1 by 60% (AUC: LPS+GLP-1+cAMP inhibitor=46+/-1.5, p<0.0001). The PKA inhibitor reduced the effects of GLP-1 by 100% (AUC: LPS+GLP-1+PKA inhibitor=56+/-1.5, p<0.0001). GLP-1 attenuates the increase in microvascular permeability induced by LPS. GLP-1 may protect the endothelium during inflammation, thus decreasing third-space fluid loss. Topics: Animals; Capillary Permeability; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Dideoxyadenosine; Endothelium, Vascular; Enzyme Inhibitors; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Inflammation; Isoquinolines; Lipopolysaccharides; Mesentery; Peptide Fragments; Perfusion; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Rolipram; Sulfonamides; Venules | 2009 |
Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression.
Exendin-4 (Ex-4) is a glucagon-like peptide-1 receptor (GLP-1R) agonist that has been used as a drug injected subcutaneously for treatment of type 2 diabetes. Many studies have revealed molecular targets of Ex-4, but its influence on adipokines has not been determined. Our study showed that Ex-4 induced secretion of adiponectin into the culture medium of 3T3-L1 adipocytes. This effect of Ex-4 is due to increased adiponectin mRNA level through the GLP-1R. Both forskolin and 3-isobutyl-1-methylxanthine (IBMX), which may finally elevate cyclic adenosine monophosphate (cAMP) concentration, prevented the induction of adiponectin expression by Ex-4. Moreover, H89, a protein kinase A inhibitor, blocked the effect of Ex-4 on adiponectin. On the other hand, Ex-4 decreased the mRNA levels of inflammatory adipokines. The results indicate that Ex-4 directly promotes adiponectin secretion via the protein kinase A pathway in 3T3-L1 adipocytes and may ameliorate insulin resistance. Topics: 1-Methyl-3-isobutylxanthine; 3T3-L1 Cells; Adipocytes; Adipokines; Adiponectin; Animals; Colforsin; Cyclic AMP-Dependent Protein Kinases; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Inflammation; Insulin Resistance; Isoquinolines; Mice; Peptides; Phosphodiesterase Inhibitors; Protein Kinase Inhibitors; Receptors, Glucagon; RNA, Messenger; Sulfonamides; Venoms | 2009 |
Racial disparity in glucagon-like peptide 1 and inflammation markers among severely obese adolescents.
Compared with Caucasians, obese African-American adolescents have a higher risk for type 2 diabetes. Subclinical inflammation and reduced glucagon-like peptide 1 (GLP-1) concentration are linked to the pathogenesis of the disease. We determined the relationship between insulin resistance, beta-cell activity, and subclinical inflammation with GLP-1 concentrations and whether racial disparities in GLP-1 response were present in 49 obese adolescents (14 +/- 3 years; 76% African American; 71% female).. Subjects underwent physical examination and an oral glucose tolerance test. We measured levels of high-sensitivity CRP (CRP(hs)), fibrinogen, glucose, GLP-1(total), GLP-1(active), and insulin. Insulin and glucose area under the curve (AUC), insulinogenic index (DeltaI30/DeltaG30), and composite insulin sensitivity index (CISI) were computed. Subjects were categorized by race and as inflammation positive (INF+) if CRP(hs) or fibrinogen were elevated.. No racial differences were seen in mean or relative BMI. Thirty-five percent of subjects had altered fasting or 2-h glucose levels (African American vs. Caucasian, NS), and 75% were INF+ (African American vs. Caucasian, P = 0.046). Glucose and insulin, CISI, and DeltaI30/DeltaG30 values were similar; African Americans had lower GLP-1(total) AUC (P = 0.01), GLP-1(active) at 15 min (P = 0.03), and GLP-1(active) AUC (P = 0.06) and higher fibrinogen (P = 0.01) and CRP(hs) (NS) compared with Caucasians.. African Americans exhibited lower GLP-1 concentrations and increased inflammatory response. Both mechanisms may act synergistically to enhance the predisposition of obese African Americans to type 2 diabetes. Our findings might be relevant to effective deployment of emerging GLP-1-based treatments across ethnicities. Topics: Adolescent; Biomarkers; Black People; Blood Pressure; C-Reactive Protein; Child; Diabetes Mellitus, Type 2; Female; Glucagon-Like Peptide 1; Humans; Hypertension; Inflammation; Insulin Resistance; Male; Obesity; White People | 2008 |
Adverse effects of incretin therapy for type 2 diabetes.
Topics: Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Inflammation; Nasopharyngitis; Substance P | 2007 |
Effects of neurotransmitters, gut hormones, and inflammatory mediators on mucus discharge in rat colon.
The effect of potential mediators of mucus secretion was investigated in the isolated vascularly perfused rat colon by using a sandwich enzyme-linked immunosorbent assay for rat colonic mucin and by histochemical analysis. Bethanechol (100-200 microM), bombesin (100 nM), and vasoactive intestinal peptide (VIP, 100 nM) provoked a dramatic mucin discharge (maximal response at 900, 900, and 600% of control loops, respectively). VIP-stimulated mucin secretion was abolished by tetrodotoxin, whereas atropine was without effect. In contrast, both tetrodotoxin and atropine significantly decreased mucin release induced by bombesin. Isoproterenol or calcitonin gene-related peptide was without effect. Serotonin (1-5 microM) and peptide YY (10 nM) evoked mucin discharge, whereas glucagon-like peptide-1 did not release mucin. Finally, bromolasalocid (20 microM), interleukin-1beta (0.25 nM), sodium nitroprusside (1 mM), and dimethyl-PGE2 (2.5 microM) induced mucus discharge. The results demonstrated a good correlation between the immunological method and histological analysis. In conclusion, these findings suggest a role for the enteric nervous system, the enteroendocrine cells, and resident immune cells in mediation of colonic mucus release. Topics: 16,16-Dimethylprostaglandin E2; Animals; Atropine; Bethanechol; Bombesin; Calcitonin Gene-Related Peptide; Colon; Enteric Nervous System; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptide 1; Inflammation; Interleukin-1; Intestinal Mucosa; Isoproterenol; Lasalocid; Male; Mucus; Neurotransmitter Agents; Nitroprusside; Peptide Fragments; Peptide YY; Protein Precursors; Rats; Rats, Wistar; Serotonin; Tetrodotoxin; Vasoactive Intestinal Peptide | 1998 |