glucagon-like-peptide-1 and Hyperinsulinism

glucagon-like-peptide-1 has been researched along with Hyperinsulinism* in 61 studies

Reviews

7 review(s) available for glucagon-like-peptide-1 and Hyperinsulinism

ArticleYear
Postprandial hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass: an update.
    Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery, 2017, Volume: 13, Issue:2

    Roux-en-Y gastric bypass (RYGB) is an efficient treatment for morbid obesity and reduces obesity-related co-morbidities. With the growing number of patients undergoing gastric bypass, complications now demand further attention. Postprandial hyperinsulinemic hypoglycemia (PHH) after Roux-en-Y gastric bypass is a complex condition, characterized by increased glucose variability including both hyperglycemic and hypoglycemic values. PHH seems to be more prevalent than previously suggested and is highly dependent on the choice of diagnostic tool, which has not yet been standardized. Questionnaires, an oral glucose tolerance test, a mixed meal tolerance test, and continuous glucose monitoring have been used, each with their own advantages. The condition is further complicated by a large group of asymptomatic cases. Patients with symptoms of PHH after gastric bypass are characterized by exaggerated insulin and glucagon-like peptide-1 responses compared to asymptomatic operated patients. The counter-regulatory mechanisms responsible for preventing hypoglycemia appear to be altered. The cause of these changes is not entirely understood, and it remains difficult to identify patients at risk of developing hypoglycemia. Known risk factors are female sex, longer time since surgery, and lack of prior diabetes. Management of the hypoglycemic episodes is difficult, and only dietary modifications consisting of frequent and less carbohydrate-rich meals seem to be efficient. Medical treatments and surgical procedures have been attempted in few studies and still warrant further examination.

    Topics: Biomarkers; Blood Glucose; Female; Gastric Bypass; Glucagon-Like Peptide 1; Humans; Hyperinsulinism; Hypoglycemia; Insulin; Male; Monitoring, Ambulatory; Obesity, Morbid; Postoperative Complications; Postprandial Period; Risk Factors; Sex Factors

2017
Hypoglycaemia after gastric bypass: mechanisms and treatment.
    Diabetes, obesity & metabolism, 2016, Volume: 18, Issue:3

    Hypoglycaemia after gastric bypass can be severe, but is uncommon, and is sometimes only revealed through monitoring glucose concentrations. The published literature is limited by the heterogeneity of the criteria used for diagnosis, arguing in favour of the Whipple triad with a glycaemia threshold of 55 mg/dl as the diagnostic reference. Women who lost most of their excess weight after gastric bypass, long after the surgery was performed, and who did not have diabetes before surgery are at the greatest risk. In this context, hypoglycaemia results from hyperinsulinism, which is either generated by pancreas anomalies (nesidioblastosis) and/or caused by an overstimulation of β cells by incretins, mainly glucagon-like peptide-1 (GLP-1). Glucose absorption is both accelerated and increased because of the direct communication between the gastric pouch and the jejunum. This is a post-surgical exaggeration of a natural adaptation that is seen in patients who have not undergone surgery in whom glucose is infused directly into the jejunum. There is not always a correspondence between symptoms and biological traits; however, hyperinsulinism is constant if hypoglycaemia is severe and there are neuroglucopenic symptoms. The treatment relies firstly on changes in eating habits, splitting food intake into five to six daily meals, slowing gastric emptying, reducing the glycaemic load and glycaemic index of foods, using fructose and avoiding stress at meals. Pharmacological treatment with acarbose is efficient, but other drugs still need to be validated in a greater number of subjects (insulin, glucagon, calcium channel blockers, somatostatin analogues and GLP-1 analogues). Lastly, if the surgical option has to be used, the benefits (efficient symptom relief) and the risks (weight regain, diabetes) should be weighed carefully.

    Topics: Acarbose; Adaptation, Physiological; Adult; Blood Glucose; Diet Therapy; Female; Gastric Bypass; Glucagon-Like Peptide 1; Glycoside Hydrolase Inhibitors; Humans; Hyperinsulinism; Hypoglycemia; Hypoglycemic Agents; Incretins; Insulin-Secreting Cells; Jejunum; Male

2016
Mechanisms of surgical control of type 2 diabetes: GLP-1 is the key factor-Maybe.
    Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery, 2016, Volume: 12, Issue:6

    Bariatric surgery is the most effective treatment for obesity and diabetes. The 2 most commonly performed weight-loss procedures, Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy, improve glycemic control in patients with type 2 diabetes independent of weight loss. One of the early hypotheses raised to explain the immediate antidiabetic effect of RYGB was that rapid delivery of nutrients from the stomach pouch into the distal small intestine enhances enteroinsular signaling to promote insulin signaling. Given the tenfold increase in postmeal glucagon-like peptide-1 (GLP-1) response compared to unchanged integrated levels of postprandial glucose-dependent insulinotropic peptide after RYGB, enhanced meal-induced insulin secretion after this procedure was thought to be the result of elevated glucose and GLP-1 levels. In this contribution to the larger point-counterpoint debate about the role of GLP-1 after bariatric surgery, most of the focus will be on RYGB.

    Topics: Blood Glucose; Diabetes Mellitus, Type 2; Gastrectomy; Gastric Bypass; Glucagon-Like Peptide 1; Humans; Hyperinsulinism; Hypoglycemia; Insulin; Insulin Secretion; Peptide Fragments; Postprandial Period; Weight Loss

2016
[Type 2 diabetes mellitus and obesity: should we treat the obesity or the diabetes?].
    Medicina clinica, 2013, Volume: 141 Suppl 2

    In this article, we review the results that can be expected after significant weight loss in patients with type 2 diabetes mellitus. We provide consensus-based documentation supported by the American Diabetes Association, the European Association for the Study of Diabetes, and the International Diabetes Federation on the importance of physical exercise, metabolic-bariatric surgery, and drug therapy. Lastly, we report the results of studies published in the last few years on glucagon-like peptide-1 analogs and the new family of oral drugs known as gliflozins, specifically studies published on dapagliflozin.

    Topics: Bariatric Surgery; Benzhydryl Compounds; Causality; Comorbidity; Diabetes Mellitus, Type 2; Diet, Diabetic; Diet, Reducing; Disease Management; Evidence-Based Medicine; Exercise Therapy; Glucagon-Like Peptide 1; Glucosides; Humans; Hyperinsulinism; Hypoglycemic Agents; Insulin Resistance; Metabolic Syndrome; Obesity; Practice Guidelines as Topic; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors; Weight Loss

2013
Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery.
    International journal of obesity (2005), 2009, Volume: 33 Suppl 1

    Bariatric surgery is currently the most effective method to promote major, sustained weight loss. Roux-en-Y gastric bypass (RYGB), the most commonly performed bariatric operation, ameliorates virtually all obesity-related comorbid conditions, the most impressive being a dramatic resolution of type 2 diabetes mellitus (T2DM). After RYGB, 84% of patients with T2DM experience complete remission of this disease, and virtually all have improved glycemic control. Increasing evidence indicates that the impact of RYGB on T2DM cannot be explained by the effects of weight loss and reduced energy intake alone. Weight-independent antidiabetic actions of RYGB are apparent because of the very rapid resolution of T2DM (before weight loss occurs), the greater improvement of glucose homeostasis after RYGB than after an equivalent weight loss from other means, and the occasional development of very late-onset, pancreatic beta-cell hyperfunction. Several mechanisms probably mediate the direct antidiabetic impact of RYGB, including enhanced nutrient stimulation of L-cell peptides (for example, GLP-1) from the lower intestine, intriguing but still uncharacterized phenomena related to exclusion of the upper intestine from contact with ingested nutrients, compromised ghrelin secretion, and very probably other effects that have yet to be discovered. Research designed to prioritize these mechanisms and identify potential additional mechanisms promises to help optimize surgical design and might also reveal novel pharmaceutical targets for diabetes treatment.

    Topics: Animals; Blood Glucose; Caloric Restriction; Diabetes Mellitus, Type 2; Gastric Bypass; Ghrelin; Glucagon-Like Peptide 1; Glucose; Glycated Hemoglobin; Homeostasis; Humans; Hyperinsulinism; Hypoglycemia; Insulin; Intestinal Absorption; Obesity; Rats; Remission Induction; Treatment Outcome; Weight Loss

2009
Present and potential future use of gene therapy for the treatment of non-insulin dependent diabetes mellitus (Review).
    International journal of molecular medicine, 1999, Volume: 4, Issue:6

    This review describes the latest approaches towards using gene therapy as a treatment for non-insulin dependent diabetes mellitus (NIDDM; Type 2 diabetes). We examine attempts to directly deliver the insulin gene to non-beta-cells, to improve insulin secretion from existing beta-cells and to develop ex vivo approaches to implanting genetically modified cells. Future research into the pathology of non-insulin dependent diabetes, combined with the latest developments in gene delivery systems, may potentially make gene therapy an attractive alternative NIDDM treatment in the future.

    Topics: Adult; Animals; Antigens, Neoplasm; Biomarkers, Tumor; Blood Glucose; Cell Transplantation; Diabetes Mellitus, Type 2; Gene Expression Regulation; Genes, Synthetic; Genetic Therapy; Genetic Vectors; Glucagon; Glucagon-Like Peptide 1; Glucokinase; Glucose Transporter Type 2; Homeodomain Proteins; Humans; Hyperinsulinism; Hypoglycemic Agents; Insulin; Insulin Resistance; Insulin Secretion; Islets of Langerhans; Islets of Langerhans Transplantation; Lectins, C-Type; Mice; Middle Aged; Monosaccharide Transport Proteins; Muscle Contraction; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Pancreatitis-Associated Proteins; Peptide Fragments; Promoter Regions, Genetic; Protein Precursors; Proteins; Rats; Trans-Activators

1999
Central glucagon-like peptide-I in the control of feeding.
    Biochemical Society transactions, 1996, Volume: 24, Issue:2

    Topics: Animals; Brain; Feeding Behavior; Genes, fos; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Humans; Hyperglycemia; Hyperinsulinism; Neurons; Peptide Fragments; Protein Precursors; Rats; Rats, Zucker; Receptors, Glucagon; Venoms

1996

Trials

13 trial(s) available for glucagon-like-peptide-1 and Hyperinsulinism

ArticleYear
Fructose Consumption Contributes to Hyperinsulinemia in Adolescents With Obesity Through a GLP-1-Mediated Mechanism.
    The Journal of clinical endocrinology and metabolism, 2019, 08-01, Volume: 104, Issue:8

    The consumption of high-fructose beverages is associated with a higher risk for obesity and diabetes. Fructose can stimulate glucagon-like peptide 1 (GLP-1) secretion in lean adults, in the absence of any anorexic effect.. We hypothesized that the ingestion of glucose and fructose may differentially stimulate GLP-1 and insulin response in lean adolescents and adolescents with obesity.. We studied 14 lean adolescents [four females; 15.9 ± 1.6 years of age; body mass index (BMI), 21.8 ± 2.2 kg/m2] and 23 adolescents with obesity (five females; 15.1 ± 1.6 years of age; BMI, 34.5 ± 4.6 kg/m2). Participants underwent a baseline oral glucose tolerance test to determine their glucose tolerance and estimate insulin sensitivity and β-cell function [oral disposition index (oDIcpep)]. Eligible subjects received, in a double-blind, crossover design, 75 g of glucose or fructose. Plasma was obtained every 10 minutes for 60 minutes for the measures of glucose, insulin, and GLP-1 (radioimmunoassay) and glucose-dependent insulinotropic polypeptide (GIP; ELISA). Incremental glucose and hormone levels were compared between lean individuals and those with obesity by a linear mixed model. The relationship between GLP-1 increment and oDIcpep was evaluated by regression analysis.. Following the fructose challenge, plasma glucose excursions were similar in both groups, yet the adolescents with obesity exhibited a greater insulin (P < 0.001) and GLP-1 (P < 0.001) increase than did their lean peers. Changes in GIP were similar in both groups. After glucose ingestion, the GLP-1 response (P < 0.001) was higher in the lean group. The GLP-1 increment during 60 minutes from fructose drink was correlated with a lower oDIcpep (r2 = 0.22, P = 0.009).. Fructose, but not glucose, ingestion elicits a higher GLP-1 and insulin response in adolescents with obesity than in lean adolescents. Fructose consumption may contribute to the hyperinsulinemic phenotype of adolescent obesity through a GLP-1-mediated mechanism.

    Topics: Adolescent; Body Mass Index; Cross-Over Studies; Double-Blind Method; Eating; Female; Fructose; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose; Glucose Tolerance Test; Humans; Hyperinsulinism; Insulin; Male; Pediatric Obesity; Postprandial Period; Sweetening Agents

2019
Impact of Diabetes-Specific Nutritional Formulas versus Oatmeal on Postprandial Glucose, Insulin, GLP-1 and Postprandial Lipidemia.
    Nutrients, 2016, Jul-22, Volume: 8, Issue:7

    Diabetes-specific nutritional formulas (DSNFs) are frequently used as part of medical nutrition therapy for patients with diabetes. This study aims to evaluate postprandial (PP) effects of 2 DSNFs; Glucerna (GL) and Ultra Glucose Control (UGC) versus oatmeal (OM) on glucose, insulin, glucagon-like peptide-1 (GLP-1), free fatty acids (FFA) and triglycerides (TG). After an overnight fast, 22 overweight/obese patients with type 2 diabetes were given 200 kcal of each of the three meals on three separate days in random order. Blood samples were collected at baseline and at 30, 60, 90, 120, 180 and 240 min. Glucose area under the curve (AUC0-240) after GL and UGC was lower than OM (p < 0.001 for both). Insulin positive AUC0-120 after UGC was higher than after OM (p = 0.02). GLP-1 AUC0-120 and AUC0-240 after GL and UGC was higher than after OM (p < 0.001 for both). FFA and TG levels were not different between meals. Intake of DSNFs improves PP glucose for 4 h in comparison to oatmeal of similar caloric level. This is achieved by either direct stimulation of insulin secretion or indirectly by stimulating GLP-1 secretion. The difference between their effects is probably related to their unique blends of amino acids, carbohydrates and fat.

    Topics: Aged; Avena; Body Mass Index; Cross-Over Studies; Diabetes Mellitus, Type 2; Diet, Diabetic; Diet, Reducing; Dietary Carbohydrates; Dietary Fats, Unsaturated; Female; Food, Formulated; Glucagon-Like Peptide 1; Glycated Hemoglobin; Glycemic Index; Humans; Hyperglycemia; Hyperinsulinism; Hyperlipidemias; Male; Meals; Middle Aged; Overweight; Seeds

2016
Effects of consumption of main and side dishes with white rice on postprandial glucose, insulin, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 responses in healthy Japanese men.
    The British journal of nutrition, 2014, Volume: 111, Issue:9

    The co-ingestion of protein, fat and fibre with carbohydrate reportedly affects postprandial glucose, insulin and incretin (glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)) responses. However, the effects of combination dishes with carbohydrate-rich foods at typically eaten amounts remain unclear. The objective of the present study was to evaluate the effects of consuming recommended amounts of side dishes with boiled white rice in the same meal on postprandial plasma glucose, insulin and incretin hormone responses. A total of nine healthy male volunteers consumed four different meals in a random order on separate days. The test meals were as follows: S, white rice; SM, addition of protein-rich main dishes to the S meal; SMF, addition of a fat-rich food item to the SM meal; SMFV, addition of vegetables to the SMF meal. Plasma glucose, GIP and GLP-1 and serum insulin concentrations were determined during a 3 h period after consumption of these meals. Postprandial glucose responses were lower after SMFV meal consumption than after consumption of the other meals. The incremental AUC for GIP (0-180 min) were largest after consumption of the SMF and SMFV meals, followed by that after SM meal consumption, and was smallest after S meal consumption (P< 0·05). Furthermore, we found GIP concentrations to be dose dependently increased by the fat content of meals of ordinary size, despite the amount of additional fat being small. In conclusion, the combination of recommended amounts of main and vegetable side dishes with boiled white rice is beneficial for lowering postprandial glucose concentrations, with an increased incretin response, when compared with white rice alone.

    Topics: Adult; Blood Glucose; Cross-Over Studies; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Health Promotion; Humans; Hyperglycemia; Hyperinsulinism; Insulin; Japan; Male; Meals; Nutrition Policy; Oryza; Postprandial Period; Seeds; Single-Blind Method; Young Adult

2014
Simultaneous GLP-1 and insulin administration acutely enhances their vasodilatory, antiinflammatory, and antioxidant action in type 2 diabetes.
    Diabetes care, 2014, Volume: 37, Issue:7

    To test the hypothesis that the simultaneous administration of GLP-1 and insulin may increase their vasodilatory, antiinflammatory, and antioxidant action in type 2 diabetes.. In two groups of persons with type 2 diabetes, two sets of experiments were performed. The first group had two normoglycemic-normoinsulinemic clamps with or without GLP-1 and two normoglycemic-hyperinsulinemic clamps with or without GLP-1. The second group had two hyperglycemic-normoinsulinemic clamps and two hyperglycemic-hyperinsulinemic clamps with or without GLP-1.. During the normoglycemic-hyperinsulinemic clamp, flow-mediated dilatation (FMD) increased, while soluble intercellular adhesion molecule (sICAM-1), plasma 8-iso-prostaglandin F2α (8-iso-PGF2α), nitrotyrosine, and interleukin (IL)-6 decreased compared with normoglycemic-normoinsulinemic clamp. Similar results were obtained with the infusion of GLP-1 during the normoglycemic-normoinsulinemic clamp. The combination of hyperinsulinemia and GLP-1 in normoglycemia was accompanied by a further FMD increase and sICAM-1, 8-iso-PGF2α, nitrotyrosine, and IL-6 decrease. During the hyperglycemic-normoinsulinemic clamp, FMD significantly decreased, while sICAM-1, 8-iso-PGF2α, nitrotyrosine, and IL-6 significantly increased. When hyperglycemia was accompanied by hyperinsulinemia or by the simultaneous infusion of GLP-1, these phenomena were attenuated. The simultaneous presence of hyperinsulinemia and GLP-1 had an increased beneficial effect.. Our results show that the combination of insulin and GLP-1 is more effective than insulin or GLP-1 alone in improving endothelial dysfunction, inflammation, and oxidative stress in type 2 diabetes.

    Topics: Anti-Inflammatory Agents; Antioxidants; Diabetes Mellitus, Type 2; Dinoprost; Female; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Hyperinsulinism; Hypoglycemic Agents; Insulin; Interleukin-6; Male; Middle Aged; Oxidative Stress; Vasodilator Agents

2014
Effects of GLP-1 on forearm vasodilator function and glucose disposal during hyperinsulinemia in the metabolic syndrome.
    Diabetes care, 2013, Volume: 36, Issue:3

    Patients with the metabolic syndrome (MetS) have impaired insulin-induced enhancement of vasodilator responses. The incretin hormone glucagon-like peptide 1 (GLP-1), beyond its effects on blood glucose, has beneficial actions on vascular function. This study, therefore, aimed to assess whether GLP-1 affects insulin-stimulated vasodilator reactivity in patients with the MetS.. Forearm blood flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were assessed in MetS patients before and after the addition of GLP-1 to an intra-arterial infusion of saline (n = 5) or insulin (n = 5). The possible involvement of oxidative stress in the vascular effects of GLP-1 in this setting was investigated by infusion of vitamin C (n = 5). The receptor specificity of GLP-1 effect during hyperinsulinemia was assessed by infusing its metabolite GLP-1(9-36) (n = 5). The metabolic actions of GLP-1 were also tested by analyzing forearm glucose disposal during hyperinsulinemia (n = 5).. In MetS patients, GLP-1 enhanced endothelium-dependent and -independent responses to ACh and SNP, respectively, during hyperinsulinemia (P < 0.001 for both), but not during saline (P > 0.05 for both). No changes in vasodilator reactivity to ACh and SNP were seen after GLP-1 was added to insulin and vitamin C (P > 0.05 for both) and after GLP-1(9-36) was given during hyperinsulinemia (P > 0.05 for both). Also, GLP-1 did not affect forearm glucose extraction and uptake during hyperinsulinemia (P > 0.05 for both).. In patients with the MetS, GLP-1 improves insulin-mediated enhancement of endothelium-dependent and -independent vascular reactivity. This effect may be influenced by vascular oxidative stress and is possibly exerted through a receptor-mediated mechanism.

    Topics: Acetylcholine; Glucagon-Like Peptide 1; Glucose; Humans; Hyperinsulinism; Metabolic Syndrome; Nitroprusside; Oxidative Stress; Vasodilation

2013
Zinc-α2-glycoprotein is associated with insulin resistance in humans and is regulated by hyperglycemia, hyperinsulinemia, or liraglutide administration: cross-sectional and interventional studies in normal subjects, insulin-resistant subjects, and subject
    Diabetes care, 2013, Volume: 36, Issue:5

    Zinc-α2-glycoprotein (ZAG) has been proposed to play a role in the pathogenesis of insulin resistance. Previous studies in humans and in rodents have produced conflicting results regarding the link between ZAG and insulin resistance. The objective of this study was to examine the relationships between ZAG and insulin resistance in cross-sectional and interventional studies.. Serum ZAG (determined with ELISA) was compared with various parameters related to insulin resistance in subjects with normal glucose tolerance, impaired glucose tolerance (IGT), and newly diagnosed type 2 diabetes mellitus (T2DM), and in women with or without polycystic ovary syndrome (PCOS). Euglycemic-hyperinsulinemic clamps were performed in healthy and PCOS women. Real-time RT-PCR and Western blotting were used to assess mRNA and protein expression of ZAG. The effect of a glucagon-like peptide-1 agonist on ZAG was studied in a 12-week liraglutide treatment trial.. Circulating ZAG was lower in patients with IGT and newly diagnosed T2DM than in controls. Circulating ZAG correlated positively with HDL cholesterol and adiponectin, and correlated inversely with BMI, waist-to-hip ratio, body fat percentage, triglycerides, fasting blood glucose, fasting insulin, HbA1c, and homeostasis model assessment of insulin resistance (HOMA-IR). On multivariate analysis, ZAG was independently associated with BMI, HOMA-IR, and adiponectin. ZAG mRNA and protein were decreased in adipose tissue of T2DM patients. Moreover, circulating ZAG levels were lower in women with PCOS than in women with high insulin sensitivity. Liraglutide treatment for 12 weeks significantly increased circulating ZAG levels.. We conclude that ZAG may be an adipokine associated with insulin resistance.

    Topics: Adipokines; Adult; Aged; Cross-Sectional Studies; Diabetes Mellitus, Type 2; Female; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Hyperinsulinism; Insulin Resistance; Liraglutide; Male; Middle Aged; Polycystic Ovary Syndrome; Seminal Plasma Proteins; Zn-Alpha-2-Glycoprotein

2013
Pharmacodynamic characteristics of lixisenatide once daily versus liraglutide once daily in patients with type 2 diabetes insufficiently controlled on metformin.
    Diabetes, obesity & metabolism, 2013, Volume: 15, Issue:7

    Assess the pharmacodynamics of lixisenatide once daily (QD) versus liraglutide QD in type 2 diabetes insufficiently controlled on metformin.. In this 28-day, randomized, open-label, parallel-group, multicentre study (NCT01175473), patients (mean HbA1c 7.3%) received subcutaneous lixisenatide QD (10 µg weeks 1-2, then 20 µg; n = 77) or liraglutide QD (0.6 mg week 1, 1.2 mg week 2, then 1.8 mg; n = 71) 30 min before breakfast. Primary endpoint was change in postprandial plasma glucose (PPG) exposure from baseline to day 28 during a breakfast test meal.. Lixisenatide reduced PPG significantly more than liraglutide [mean change in AUC(0:30-4:30h) : -12.6 vs. -4.0 h·mmol/L, respectively; p < 0.0001 (0:30 h = start of meal)]. Change in maximum PPG excursion was -3.9 mmol/l vs. -1.4 mmol/l, respectively (p < 0.0001). More lixisenatide-treated patients achieved 2-h PPG <7.8 mmol/l (69% vs. 29%). Changes in fasting plasma glucose were greater with liraglutide (-0.3 vs. -1.3 mmol/l, p < 0.0001). Lixisenatide provided greater decreases in postprandial glucagon (p < 0.05), insulin (p < 0.0001) and C-peptide (p < 0.0001). Mean HbA1c decreased in both treatment groups (from 7.2% to 6.9% with lixisenatide vs. 7.4% to 6.9% with liraglutide) as did body weight (-1.6 kg vs. -2.4 kg, respectively). Overall incidence of adverse events was lower with lixisenatide (55%) versus liraglutide (65%), with no serious events or hypoglycaemia reported.. Once daily prebreakfast lixisenatide provided a significantly greater reduction in PPG (AUC) during a morning test meal versus prebreakfast liraglutide. Lixisenatide provided significant decreases in postprandial insulin, C-peptide (vs. an increase with liraglutide) and glucagon, and better gastrointestinal tolerability than liraglutide.

    Topics: Adult; Aged; C-Peptide; Diabetes Mellitus, Type 2; Drug Administration Schedule; Drug Resistance; Female; Glucagon; Glucagon-Like Peptide 1; Glycated Hemoglobin; Humans; Hyperglycemia; Hyperinsulinism; Hypoglycemic Agents; Incretins; Injections, Subcutaneous; Liraglutide; Male; Metformin; Middle Aged; Peptides

2013
The glycemic, insulinemic and plasma amino acid responses to equi-carbohydrate milk meals, a pilot- study of bovine and human milk.
    Nutrition journal, 2012, Oct-12, Volume: 11

    Dairy proteins, in particular the whey fraction, exert insulinogenic properties and facilitate glycemic regulation through a mechanism involving elevation of certain plasma amino acids, and stimulation of incretins. Human milk is rich in whey protein and has not been investigated in this respect.. Nine healthy volunteers were served test meals consisting of human milk, bovine milk, reconstituted bovine whey- or casein protein in random order. All test meals contributed with 25 g intrinsic or added lactose, and a white wheat bread (WWB) meal was used as reference, providing 25 g starch. Post-prandial levels in plasma of glucose, insulin, incretins and amino acids were investigated at time intervals for up to 2 h.. All test meals elicited lower postprandial blood glucose responses, expressed as iAUC 0-120 min compared with the WWB (P < 0.05). The insulin response was increased following all test meals, although only significantly higher after whey. Plasma amino acids were correlated to insulin and incretin secretion (iAUC 0-60 min) (P ≤ 0.05). The lowered glycemia with the test meals (iAUC 0-90 min) was inversely correlated to GLP-1 (iAUC 0-30 min) (P ≤ 0.05).. This study shows that the glycemic response was significantly lower following all milk/milk protein based test meals, in comparison with WWB. The effect appears to originate from the protein fraction and early phase plasma amino acids and incretins were involved in the insulin secretion. Despite its lower protein content, the human milk was a potent GLP-1 secretagogue and showed insulinogenic properties similar to that seen with reconstituted bovine whey-protein, possibly due to the comparatively high proportion of whey in human milk.

    Topics: Adult; Amino Acids; Animals; Breakfast; Caseins; Cattle; Cross-Over Studies; Female; Glucagon-Like Peptide 1; Glycemic Index; Humans; Hyperglycemia; Hyperinsulinism; Incretins; Intestinal Mucosa; Male; Milk; Milk Proteins; Milk, Human; Pancreas; Pilot Projects; Whey Proteins; Young Adult

2012
Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans.
    Diabetes care, 2011, Volume: 34, Issue:2

    Glucocorticoids (GCs) are regarded as diabetogenic because they impair insulin sensitivity and islet-cell function. This study assessed whether treatment with the glucagon-like peptide receptor agonist (GLP-1 RA) exenatide (EXE) could prevent GC-induced glucose intolerance.. A randomized, placebo-controlled, double-blind, crossover study in eight healthy men (age: 23.5 [20.0-28.3] years; BMI: 26.4 [24.3-28.0] kg/m(2)) was conducted. Participants received three therapeutic regimens for 2 consecutive days: 1) 80 mg of oral prednisolone (PRED) every day (q.d.) and intravenous (IV) EXE infusion (PRED+EXE); 2) 80 mg of oral PRED q.d. and IV saline infusion (PRED+SAL); and 3) oral placebo-PRED q.d. and intravenous saline infusion (PLB+SAL). On day 1, glucose tolerance was assessed during a meal challenge test. On day 2, participants underwent a clamp procedure to measure insulin secretion and insulin sensitivity.. PRED+SAL treatment increased postprandial glucose levels (vs. PLB+SAL, P = 0.012), which was prevented by concomitant EXE (vs. PLB+SAL, P = NS). EXE reduced PRED-induced hyperglucagonemia during the meal challenge (P = 0.018) and decreased gastric emptying (vs. PRED+SAL, P = 0.028; vs. PLB+SAL, P = 0.046). PRED+SAL decreased first-phase glucose- and arginine-stimulated C-peptide secretion (vs. PLB+SAL, P = 0.017 and P = 0.05, respectively), whereas PRED+EXE improved first- and second-phase glucose- and arginine-stimulated C-peptide secretion (vs. PLB+SAL; P = 0.017, 0.012, and 0.093, respectively).. The GLP-1 RA EXE prevented PRED-induced glucose intolerance and islet-cell dysfunction in healthy humans. Incretin-based therapies should be explored as a potential strategy to prevent steroid diabetes.

    Topics: Adolescent; Adult; Blood Glucose; C-Peptide; Cross-Over Studies; Exenatide; Glucagon-Like Peptide 1; Glucocorticoids; Glucose Clamp Technique; Glucose Intolerance; Humans; Hyperglycemia; Hyperinsulinism; Hypoglycemic Agents; Insulin Resistance; Islets of Langerhans; Male; Peptides; Prednisone; Venoms; Young Adult

2011
Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects.
    The British journal of nutrition, 2010, Volume: 103, Issue:1

    High cereal fibre intake is associated with reduced risk for type 2 diabetes, but wheat fibre had little or no effect on glycaemic control or oral glucose tolerance in clinical trials lasting 4-12 weeks. To explain this discrepancy, we hypothesised that colonic adaptation to increased wheat fibre intake takes many months but eventually results in increased SCFA production and glucagon-like peptide-1 (GLP-1) secretion. Thus, the primary objective was to determine the time-course of the effects of increased wheat fibre intake on plasma acetate, butyrate and GLP-1 concentrations in hyperinsulinaemic human subjects over 1 year. Subjects with fasting plasma insulin >or= 40 pmol/l were randomly assigned by computer to receive either a high-wheat fibre cereal (fibre group; 24 g fibre/d; twenty assigned; six dropped out, fourteen included) or a low-fibre cereal (control group; twenty assigned; six dropped-out, fourteen included) daily for 1 year. Acetate, butyrate and GLP-1 were measured during 8 h metabolic profiles performed every 3 months. There were no differences in body weight in the fibre group compared with the control group. After 9 months baseline-adjusted mean 8 h acetate and butyrate concentrations were higher on the high-fibre than the control cereal (P < 0.05). After 12 months on the high-fibre cereal, baseline-adjusted mean plasma GLP-1 was 1.3 (95 % CI 0.4, 2.2) pmol/l (P < 0.05) higher than at baseline (about 25 % increase) and 1.4 (95 % CI 0.1, 2.7) pmol/l (P < 0.05) higher than after 12 months on control. It is concluded that wheat fibre increased SCFA production and GLP-1 secretion in hyperinsulinaemic humans, but these effects took 9-12 months to develop. Since GLP-1 may increase insulin sensitivity and secretion, these results may provide a mechanism for the epidemiological association between high cereal fibre intake and reduced risk for diabetes.

    Topics: Adult; Blood Glucose; Carboxylic Acids; Colon; Dietary Fiber; Edible Grain; Energy Metabolism; Exercise; Fatty Acids, Nonesterified; Female; Glucagon-Like Peptide 1; Humans; Hyperinsulinism; Insulin; Male; Ontario; Reference Values; Surveys and Questionnaires; Triticum

2010
Effect of glucagon-like peptide 1 (7-36 amide) on insulin-mediated glucose uptake in patients with type 1 diabetes.
    Diabetes care, 2003, Volume: 26, Issue:3

    To examine the insulinomimetic insulin-independent effects of glucagon-like peptide (GLP)-1 on glucose uptake in type 1 diabetic patients.. We used the hyperinsulinemic-euglycemic clamp (480 pmol. m(-2) x min(-1)) in paired randomized studies of six women and five men with type 1 diabetes. In the course of one of the paired studies, the subjects also received GLP-1 at a dose of 1.5 pmol. kg(-1) x min(-1). The patients were 41 +/- 3 years old with a BMI of 25 +/- 1 kg/m(2). The mean duration of diabetes was 23 +/- 3 years.. Plasma glucose was allowed to fall from a fasting level of approximately 11 mmol/l to 5.3 mmol/l in each study and thereafter was held stable at that level. Plasma insulin levels during both studies were approximately 900 pmol/l. Plasma C-peptide levels did not change during the studies. In the GLP-1 study, plasma total GLP-1 levels were elevated from the fasting level of 31 +/- 3 to 150 +/- 17 pmol/l. Plasma glucagon levels fell from the fasting levels of approximately 14 pmol/l to 9 pmol/l during both paired studies. Hepatic glucose production was suppressed during the glucose clamps in all studies. Glucose uptake was not different between the two studies ( approximately 40 micromol. kg(-1) x min(-1)).. GLP-1 does not augment insulin-mediated glucose uptake in lean type 1 diabetic patients.

    Topics: Adult; Blood Glucose; C-Peptide; Diabetes Mellitus, Type 1; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Clamp Technique; Humans; Hyperinsulinism; Insulin; Liver; Male; Neurotransmitter Agents; Peptide Fragments; Peptides

2003
Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers.
    The Journal of clinical endocrinology and metabolism, 2002, Volume: 87, Issue:3

    Glucagon-like peptide 1 (GLP-1) and analogues are being evaluated as a new therapeutic principle for the treatment of type 2 diabetes. GLP-1 suppresses glucagon secretion, which could lead to disturbances of hypoglycemia counterregulation. This has, however, not been tested. Nine healthy volunteers with normal oral glucose tolerance received infusions of regular insulin (1 mU x kg(-1) x min(-1)) over 360 min on two occasions in the fasting state. Capillary glucose concentrations were clamped at plateaus of 4.3, 3.7, 3.0, and 2.3 mmol/liter for 90 min each (stepwise hypoglycemic clamp); on one occasion, GLP-1 (1.2 pmol x kg(-1) x min(-1)) was administered i.v. (steady-state concentration, approximately 125 pmol/liter); on the other occasion, NaCl was administered as placebo. Glucagon, cortisol, GH (immunoassays), and catecholamines (radioenzymatic assay) were determined, autonomous and neuroglucopenic symptoms were assessed, and cognitive function was tested at each plateau. Insulin secretion rates were estimated by deconvolution (two-compartment model of C-peptide kinetics). At insulin concentrations of approximately 45 mU/liter, glucose infusion rates were similar with and without GLP-1 (P = 0.26). Only during the euglycemic plateau (4.3 mmol/liter), GLP-1 suppressed glucagon concentrations (4.1 +/- 0.4 vs. 6.5 +/- 0.7 pmol/liter; P = 0.012); at all hypoglycemic plateaus, glucagon increased similarly with GLP-1 or placebo, to maximum values greater than 20 pmol/liter (P = 0.97). The other counterregulatory hormones and autonomic or neuroglucopenic symptom scores increased, and cognitive functions decreased with decreasing glucose concentrations, but there were no significant differences comparing experiments with GLP-1 or placebo, except for a significant reduction of GH responses during hypoglycemia with GLP-1 (P = 0.04). GLP-1 stimulated insulin secretion only at plasma glucose concentrations of at least 4.3 mmol/liter. In conclusion, the suppression of glucagon by GLP-1 does occur at euglycemia, but not at hypoglycemic plasma glucose concentrations (< or = 3.7 mmol/liter). GLP-1 does not impair overall hypoglycemia counterregulation except for a reduction in GH responses, which is in line with other findings demonstrating pituitary actions of GLP-1. Below plasma glucose concentrations of 4.3 mmol/liter, the insulinotropic action of GLP-1 is negligible.

    Topics: Adult; Blood Glucose; Cognition; Glucagon; Glucagon-Like Peptide 1; Glucose Clamp Technique; Hormones; Humans; Hyperinsulinism; Hypoglycemia; Insulin; Insulin Secretion; Male; Osmolar Concentration; Peptide Fragments; Protein Precursors; Reference Values

2002
Inhibitory effects of hyperglycaemia on fed jejunal motility: potential role of hyperinsulinaemia.
    European journal of clinical investigation, 1998, Volume: 28, Issue:1

    Acute hyperglycaemia is known to inhibit jejunal interdigestive motility. This study was undertaken to establish the effects of hyperglycaemia on fed jejunal motility and small intestinal transit time, and to establish if the effects of hyperglycaemia are mediated in part by hyperinsulinaemia.. Nine healthy male volunteers were studied in random order using three experimental conditions: (a) euglycaemic clamp [glucose 5 mmol L(-1)]; (b) hyperglycaemic clamp [glucose 15 mmol L(-1)]; and (c) euglycaemic hyperinsulinaemic clamp [glucose 5 mmol L(-l)]. Fed jejunal motility was induced by an intrajejunal perfusion of lipid (Lipofundin medium-chained triglyceride 10%) at 1.5 mL min(-1) [1.5 kcal min(-1)] for 180 min through the most proximal port of a manometry catheter (eight ports spaced at 2-cm intervals) located just distal to the ligament of Treitz. One minute after starting the lipid perfusion, 15 g of lactulose dissolved in 20 mL of tap water was infused. Small intestinal transit time was measured by the hydrogen breath test.. Acute hyperglycaemia reduced the total number of jejunal contractions and progradely propagated contractions, the motility index (P < 0.05) and the mean amplitude of contractions and delayed intestinal transit time. Hyperinsulinaemia reduced the total number of jejunal contractions, motility index (P < 0.05) and intestinal transit time.. Thus, hyperinsulinaemia may contribute to the inhibitory effects of hyperglycaemia on jejunal motility. In addition, this study demonstrated that intrajejunal infusion of lipid stimulates sustained glucagon-like peptide-1 release. In contrast to fat-induced gastric inhibitory polypeptide release, this glucagon-like peptide-1 release is not inhibited by exogenous or endogenous hyperinsulinaemia (P = 0.59).

    Topics: Adult; Blood Glucose; Body Mass Index; C-Peptide; Drug Combinations; Gastrointestinal Motility; Gastrointestinal Transit; Glucagon; Glucagon-Like Peptide 1; Glucose Clamp Technique; Humans; Hyperglycemia; Hyperinsulinism; Insulin; Jejunum; Male; Pancreatic Polypeptide; Peptide Fragments; Perfusion; Phospholipids; Protein Precursors; Sorbitol

1998

Other Studies

41 other study(ies) available for glucagon-like-peptide-1 and Hyperinsulinism

ArticleYear
Optimization of a Glucagon-Like Peptide 1 Receptor Antagonist Antibody for Treatment of Hyperinsulinism.
    Diabetes, 2023, 09-01, Volume: 72, Issue:9

    Congenital hyperinsulinism (HI) is a genetic disorder in which pancreatic β-cell insulin secretion is excessive and results in hypoglycemia that, without treatment, can cause brain damage or death. Most patients with loss-of-function mutations in ABCC8 and KCNJ11, the genes encoding the β-cell ATP-sensitive potassium channel (KATP), are unresponsive to diazoxide, the only U.S. Food and Drug Administration-approved medical therapy and require pancreatectomy. The glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin-(9-39) is an effective therapeutic agent that inhibits insulin secretion in both HI and acquired hyperinsulinism. Previously, we identified a highly potent antagonist antibody, TB-001-003, which was derived from our synthetic antibody libraries that were designed to target G protein-coupled receptors. Here, we designed a combinatorial variant antibody library to optimize the activity of TB-001-003 against GLP-1R and performed phage display on cells overexpressing GLP-1R. One antagonist, TB-222-023, is more potent than exendin-(9-39), also known as avexitide. TB-222-023 effectively decreased insulin secretion in primary isolated pancreatic islets from a mouse model of hyperinsulinism, Sur1-/- mice, and in islets from an infant with HI, and increased plasma glucose levels and decreased the insulin to glucose ratio in Sur1-/- mice. These findings demonstrate that targeting GLP-1R with an antibody antagonist is an effective and innovative strategy for treatment of hyperinsulinism.. Patients with the most common and severe form of diazoxide-unresponsive congenital hyperinsulinism (HI) require a pancreatectomy. Other second-line therapies are limited in their use because of severe side effects and short half-lives. Therefore, there is a critical need for better therapies. Studies with the glucagon-like peptide 1 receptor (GLP-1R) antagonist, avexitide (exendin-(9-39)), have demonstrated that GLP-1R antagonism is effective at lowering insulin secretion and increasing plasma glucose levels. We have optimized a GLP-1R antagonist antibody with more potent blocking of GLP-1R than avexitide. This antibody therapy is a potential novel and effective treatment for HI.

    Topics: Animals; Antibodies; Blood Glucose; Congenital Hyperinsulinism; Diazoxide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hyperinsulinism; Mice; Mutation; Sulfonylurea Receptors

2023
Effectiveness of beinaglutide in a patient with late dumping syndrome after gastrectomy: A case report.
    Medicine, 2021, May-28, Volume: 100, Issue:21

    Dumping syndrome is a frequent and potentially severe complication after gastric surgery. Beinaglutide, a recombinant human glucagon-like peptide-1 (GLP-1) which shares 100% homology with human GLP-1(7-36), has never been reported in the treatment of dumping syndrome before.. The patient had undergone distal gastrectomy for gastric signet ring cell carcinoma 16 months ago. He presented with symptoms of paroxysmal palpitation, sweating, and dizziness for 4 months.. He was diagnosed with late dumping syndrome.. The patient was treated with dietary changes and acarbose for 4 months before admitted to our hospital. The treatment with dietary changes and acarbose did not prevent postprandial hyperinsulinemia and hypoglycemia according to the 75 g oral glucose tolerance test (OGTT) and continuous glucose monitoring (CGM) on admission.Therefore, the patient was treated with beinaglutide 0.1 mg before breakfast and lunch instead of acarbose. After the treatment of beinaglutide for 1 month, OGTT showed a reduction in postprandial hyperinsulinemia compared with before starting treatment, and the time in the range of 3.9 to 10 mmol/L became 100% in CGM. No side effect was observed in this patient during beinaglutide treatment.. These findings suggest that beinaglutide may be effective for treating post-gastrectomy late dumping syndrome.

    Topics: Blood Glucose; Carcinoma, Signet Ring Cell; Dumping Syndrome; Gastrectomy; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Hyperinsulinism; Hypoglycemia; Male; Middle Aged; Peptide Fragments; Postprandial Period; Recombinant Proteins; Stomach Neoplasms; Treatment Outcome

2021
Postprandial Dyslipidemia, Hyperinsulinemia, and Impaired Gut Peptides/Bile Acids in Adolescents with Obesity.
    The Journal of clinical endocrinology and metabolism, 2020, 04-01, Volume: 105, Issue:4

    With increased rates of obesity and insulin resistance in youth, development of postprandial dyslipidemia, an important cardiovascular disease risk factor, is a concern. Glucagon-like peptides (ie, GLP-1 and GLP-2) and bile acids have been shown to regulate dietary fat absorption and postprandial lipids in animal models and humans. We hypothesize that the physiological response of GLPs and bile acids to dietary fat ingestion is impaired in adolescents with obesity and this associates with marked postprandial dyslipidemia and insulin resistance.. In this cross-sectional study, normal weight adolescents and adolescents with obesity underwent a 6-hour oral fat tolerance test. The postprandial lipoprotein phenotype profile was determined using various assays, including nuclear magnetic resonance spectroscopy, to characterize lipoprotein particle number, size, lipid content, and apolipoproteins. GLP-1 and GLP-2 were quantified by electrochemiluminescent immunoassays. Total bile acids were measured by an automated enzymatic cycling colorimetric method and the bile acid profile by mass spectrometry.. Adolescents with obesity exhibited fasting and postprandial dyslipidemia, particularly augmented postprandial excursion of large triglyceride-rich lipoproteins. Postprandial GLPs were reduced and inversely correlated with postprandial dyslipidemia and insulin resistance. Postprandial bile acids were also diminished, particularly lithocholic acid, a potent stimulator of GLP-1 secretion.. Blunted postprandial GLP and bile acid response to dietary fat ingestion strongly associates with marked postprandial dyslipidemia. Further investigation is needed to assess their potential utility as early biomarkers for postprandial dyslipidemia in adolescents with obesity.

    Topics: Adolescent; Adult; Bile Acids and Salts; Biomarkers; Canada; Child; Cross-Sectional Studies; Dyslipidemias; Female; Follow-Up Studies; Gastrointestinal Tract; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Humans; Hyperinsulinism; Male; Pediatric Obesity; Postprandial Period; Prognosis; Young Adult

2020
The effect of different grazing conditions on the insulin and incretin response to the oral glucose test in ponies.
    BMC veterinary research, 2019, Oct-16, Volume: 15, Issue:1

    The oral glucose test (OGT) is a useful tool for diagnosing insulin dysregulation (ID) and is somewhat repeatable in ponies under consistent management. This study aimed to determine whether the insulin and incretin responses to an OGT in ponies differed after short-term access to fertilised pasture, compared to unfertilised pasture, by using a randomised, repeated measures study design. Sixteen mixed-breed ponies were classified as severely insulin-dysregulated (SD; post-prandial insulin ≥80 μIU/mL) or not severely insulin-dysregulated (NSD; post-prandial insulin < 80 μIU/mL) using an OGT prior to the study. The ponies accessed pasture that was fertilised, or unfertilised, for 5 days (4 h/day, with supplemental hay provided at 0.7% bodyweight), with a 10 day period between phases. An OGT was performed after each phase. Glucose, insulin, active glucagon-like peptide-1 (aGLP-1), and glucose-dependent insulinotropic polypeptide (GIP) were measured in post-prandial blood samples.. The volume of fertilised pasture was five-fold greater than unfertilised pasture, with % non-structural carbohydrates (NSC) similar between all forages. Consuming fertilised pasture increased (P = 0.018) the serum insulin response to an OGT, compared to grazing unfertilised pasture. A limitation of the study was that pasture intake was unable to be quantified. Insulin responses were greater in SD, compared to NSD, ponies (P < 0.001) and remained well above the test cut-off at all times. A subset of ponies, initially screened as NSD, became (more) insulin-dysregulated after pasture access. Further, aGLP-1 was a significant predictor of insulin concentration in this cohort.. Whereas some insulin-dysregulated ponies were comparatively resistant to dietary intervention, others showed markedly different OGT responses following subtle changes in their forage-based diet. This implies that mild/early ID might be unmasked by dietary change, and that dietary management is important in these ponies. However, dietary management alone may not be adequate for all cases of ID.

    Topics: Animal Feed; Animal Nutritional Physiological Phenomena; Animals; Cross-Over Studies; Diet; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose Tolerance Test; Horse Diseases; Horses; Hyperinsulinism; Incretins; Insulin; Metabolic Syndrome; Peptide Fragments; Queensland; Random Allocation

2019
Glucagon-like peptide 1 (GLP-1) drives postprandial hyperinsulinemic hypoglycemia in pregnant women with a history of Roux-en-Y gastric bypass operation.
    Metabolism: clinical and experimental, 2019, Volume: 91

    The influential role of incretin hormones on glucose metabolism in patients with a history of Roux-en-Y gastric bypass (RYGB) has been investigated thoroughly, but there has been little examination of the effect of incretins and ectopic lipids on altered glucose profiles, especially severe hypoglycemia in pregnant women with RYGB.. In this prospective clinical study, an oral glucose tolerance test (OGTT), an intravenous glucose tolerance test (IVGTT), and continuous glucose monitoring (CGM) were conducted in 25 women with RYGB during pregnancy, 19 of normal weight (NW) and 19 with obesity (OB) between the 24th and the 28th weeks of pregnancy, and 3 to 6 months post-partum. Post-partum, the ectopic lipid content in the liver, heart, and skeletal muscle was analyzed using. RYGB patients presented with major fluctuations in glucose profiles, including a high occurrence of postprandial hyperglycemic spikes and hypoglycemic events during the day, as well as a high risk of hypoglycemic periods during the night (2.9 ± 1.1% vs. 0.1 ± 0.2% in the OB and vs. 0.8 ± 0.6% in the NW groups, p < 0.001). During the extended OGTT, RYGB patients presented with exaggerated expression of GLP-1, which was the main driver of the exaggerated risk of postprandial hypoglycemia in a time-lagged correlation analysis. Basal and dynamic GLP-1 levels were not related to insulin sensitivity, insulin secretion, or beta cell function and did not differ between pregnant women with and without GDM. A lower amount of liver fat (2.34 ± 5.22% vs.5.68 ± 4.42%, p = 0.015), which was positively related to insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR: rho = 0.61, p = 0.002) and beta-cell function (insulinogenic index: rho = 0.65, p = 0.001), was observed in the RYGB group after delivery in comparison to the OB group.. GLP-1 is mainly involved in the regulation of postprandial glucose metabolism and therefore especially in the development of postprandial hypoglycemia in pregnant RYGB patients, who are characterized by major alterations in glucose profiles, and thus in long-term regulation, multiple organ-related mechanisms, such as the lipid content in the liver, must be involved.

    Topics: Adult; Anastomosis, Roux-en-Y; Blood Glucose; Diabetes, Gestational; Female; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Hyperglycemia; Hyperinsulinism; Incretins; Insulin Resistance; Insulin-Secreting Cells; Lipid Metabolism; Lipids; Obesity; Pregnancy

2019
Insulin and incretin responses to grazing in insulin-dysregulated and healthy ponies.
    Journal of veterinary internal medicine, 2019, Volume: 33, Issue:1

    Supraphysiological insulin and incretin responses to a cereal-based diet have been described in horses and ponies with insulin dysregulation (ID). However, the hormonal responses to grazing have not yet been described.. To determine if there is a difference in the insulin and incretin responses to grazing pasture between insulin-dysregulated and healthy ponies.. A cohort of 16 ponies comprising 5 with normal insulin regulation (NIR), 6 with moderate ID (MID), and 5 with severe ID (SID).. In this case-control study, an oral glucose test (OGT) was used to determine the insulin responsiveness of each pony to PO carbohydrate before grazing pasture (4 hours) for 3 consecutive days. Serial blood samples collected during grazing were analyzed for glucose, insulin, glucose-dependent insulinotropic peptide (GIP) and active glucagon-like peptide-1 (aGLP-1), and compared among pony groups and day of pasture access.. The area under the insulin curve when grazing increased with ID severity (P < .03). The median (range) maximal insulin concentration was greater in the MID (72.5 [129] μIU/mL) and SID (255 [338.5] μIU/mL) groups, compared to the NIR (11.7 [24.9] μIU/mL) group (P < .03) and occurred within 2-4 hours of grazing. Postprandial OGT insulin concentration was positively correlated with 2 hours post-grazing insulin across all 3 grazing days (P ≤ .03). The aGLP-1 and GIP concentrations increased in response to grazing but did not differ among groups.. Grazing pasture provoked an increased insulin and incretin response in insulin-dysregulated ponies within 4 hours of grazing. The pasture and OGT insulin concentrations were correlated.

    Topics: Animals; Blood Glucose; Case-Control Studies; Eating; Female; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose Tolerance Test; Horse Diseases; Horses; Hyperinsulinism; Incretins; Insulin; Male

2019
Direct effects of glucose, insulin, GLP-1, and GIP on bulbospinal neurons in the rostral ventrolateral medulla in neonatal wistar rats.
    Neuroscience, 2017, 03-06, Volume: 344

    Although patients with diabetes mellitus (DM) often exhibit hypertension, the mechanisms responsible for this correlation are not well known. We hypothesized that the bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are affected by the levels of glucose, insulin, or incretins (glucagon like peptide-1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) in patients with DM. To investigate whether RVLM neurons are activated by glucose, insulin, GLP-1, or GIP, we examined changes in the membrane potentials of bulbospinal RVLM neurons using whole-cell patch-clamp technique during superfusion with various levels of glucose or these hormones in neonatal Wistar rats. A brainstem-spinal cord preparation was used for the experiments. A low level of glucose stimulated bulbospinal RVLM neurons. During insulin superfusion, almost all the RVLM neurons were depolarized, while during GLP-1 or GIP superfusion, almost all the RVLM neurons were hyperpolarized. Next, histological examinations were performed to examine transporters for glucose and receptors for insulin, GLP-1, and GIP on RVLM neurons. Low-level glucose-depolarized RVLM neurons exhibited the presence of glucose transporter 3 (GLUT3). Meanwhile, insulin-depolarized, GLP-1-hyperpolarized, and GIP-hyperpolarized RVLM neurons showed each of the respective specific receptor. These results indicate that a low level of glucose stimulates bulbospinal RVLM neurons via specific transporters on these neurons, inducing hypertension. Furthermore, an increase in insulin or a reduction in incretins may also activate the sympathetic nervous system and induce hypertension by activating RVLM neurons via their own receptors.

    Topics: Animals; Animals, Newborn; Central Nervous System Agents; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose; Glucose Transporter Type 3; Hyperinsulinism; Hypoglycemia; Insulin; Medulla Oblongata; Membrane Potentials; Neurons; Peptide Fragments; Peptides; Rats, Wistar; Tetrodotoxin; Tissue Culture Techniques

2017
GLP-1(32-36)amide Pentapeptide Increases Basal Energy Expenditure and Inhibits Weight Gain in Obese Mice.
    Diabetes, 2015, Volume: 64, Issue:7

    The prevalence of obesity-related diabetes is increasing worldwide. Here we report the identification of a pentapeptide, GLP-1(32-36)amide (LVKGRamide), derived from the glucoincretin hormone GLP-1, that increases basal energy expenditure and curtails the development of obesity, insulin resistance, diabetes, and hepatic steatosis in diet-induced obese mice. The pentapeptide inhibited weight gain, reduced fat mass without change in energy intake, and increased basal energy expenditure independent of physical activity. Analyses of tissues from peptide-treated mice reveal increased expression of UCP-1 and UCP-3 in brown adipose tissue and increased UCP-3 and inhibition of acetyl-CoA carboxylase in skeletal muscle, findings consistent with increased fatty acid oxidation and thermogenesis. In palmitate-treated C2C12 skeletal myotubes, GLP-1(32-36)amide activated AMPK and inhibited acetyl-CoA carboxylase, suggesting activation of fat metabolism in response to energy depletion. By mass spectroscopy, the pentapeptide is rapidly formed from GLP-1(9-36)amide, the major form of GLP-1 in the circulation of mice. These findings suggest that the reported insulin-like actions of GLP-1 receptor agonists that occur independently of the GLP-1 receptor might be mediated by the pentapeptide, and the previously reported nonapeptide (FIAWLVKGRamide). We propose that by increasing basal energy expenditure, GLP-1(32-36)amide might be a useful treatment for human obesity and associated metabolic disorders.

    Topics: Animals; Basal Metabolism; Cells, Cultured; Diet, High-Fat; Energy Metabolism; Fatty Acids; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Hyperinsulinism; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Muscle, Skeletal; Obesity; Weight Gain

2015
Liraglutide, a glucagon-like peptide-1 analog, increased insulin sensitivity assessed by hyperinsulinemic-euglycemic clamp examination in patients with uncontrolled type 2 diabetes mellitus.
    Journal of diabetes research, 2015, Volume: 2015

    Glucagon-like peptide-1 (GLP-1) analog promotes insulin secretion by acting on pancreatic β-cells. This antihyperglycemic treatment for type 2 diabetes mellitus (DM) has attracted increased clinical attention not only for its antihyperglycemic action but also for its potential extrapancreatic effects. We investigated whether liraglutide, a GLP-1 analog, could enhance insulin sensitivity as assessed by the hyperinsulinemic-euglycemic clamp in type 2 DM patients.. We prospectively enrolled 31 uncontrolled type 2 DM patients who were hospitalized and equally managed by guided diet- and exercise-therapies and then introduced to either liraglutide- or intensive insulin-therapy for 4 weeks. Insulin sensitivity was assessed by the glucose infusion rate (GIR) using hyperinsulinemic-euglycemic clamp before and after the therapies.. Values of HbA1c, postprandial plasma glucose, and body mass index (BMI) were significantly decreased by hospitalized intensive insulin-therapy or liraglutide-therapy. GIR was significantly increased by liraglutide-therapy but not by insulin-therapy, indicating that liraglutide-therapy significantly enhanced insulin sensitivity. BMI decreased during liraglutide-therapy but was not significantly correlated with changes in GIR. Multivariate logistic regression analysis demonstrated that liraglutide-therapy significantly correlated with increased insulin sensitivity in uncontrolled DM patients.. Liraglutide may exhibit favorable effects on diabetes control for type 2 DM patients by increasing insulin sensitivity as an extrapancreatic action. Clinical trial registration Unique Identifier is UMIN000015201.

    Topics: Aged; Diabetes Mellitus, Type 2; Diet; Diet Therapy; Exercise; Female; Glucagon-Like Peptide 1; Glucose; Glucose Clamp Technique; Glycated Hemoglobin; Hospitalization; Humans; Hyperinsulinism; Insulin; Insulin-Secreting Cells; Life Style; Liraglutide; Male; Middle Aged; Multivariate Analysis; Prospective Studies

2015
GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering.
    Diabetes, 2014, Volume: 63, Issue:10

    Hypoglycemia and hyperglycemia are both predictors for adverse outcome in critically ill patients. Hyperinsulinemia is induced by inflammatory stimuli as a relevant mechanism for glucose lowering in the critically ill. The incretine hormone GLP-1 was currently found to be induced by endotoxin, leading to insulin secretion and glucose lowering under inflammatory conditions in mice. Here, we describe GLP-1 secretion to be increased by a variety of inflammatory stimuli, including endotoxin, interleukin-1β (IL-1β), and IL-6. Although abrogation of IL-1 signaling proved insufficient to prevent endotoxin-dependent GLP-1 induction, this was abolished in the absence of IL-6 in respective knockout animals. Hence, we found endotoxin-dependent GLP-1 secretion to be mediated by an inflammatory cascade, with IL-6 being necessary and sufficient for GLP-1 induction. Functionally, augmentation of the GLP-1 system by pharmacological inhibition of DPP-4 caused hyperinsulinemia, suppression of glucagon release, and glucose lowering under endotoxic conditions, whereas inhibition of the GLP-1 receptor led to the opposite effect. Furthermore, total GLP-1 plasma levels were profoundly increased in 155 critically ill patients presenting to the intensive care unit (ICU) in comparison with 134 healthy control subjects. In the ICU cohort, GLP-1 plasma levels correlated with markers of inflammation and disease severity. Consequently, GLP-1 provides a novel link between the immune system and the gut with strong relevance for metabolic regulation in context of inflammation.

    Topics: Adolescent; Adult; Aged; Aged, 80 and over; Animals; Blood Glucose; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hyperinsulinism; Inflammation; Interleukin-1beta; Interleukin-6; Lipopolysaccharides; Male; Mice, Knockout; Middle Aged; Peptide Fragments; Receptors, Glucagon; Young Adult

2014
Maternal insulin resistance and transient hyperglycemia impact the metabolic and endocrine phenotypes of offspring.
    American journal of physiology. Endocrinology and metabolism, 2014, Nov-15, Volume: 307, Issue:10

    Studies in both humans and rodents suggest that maternal diabetes leads to a higher risk of the fetus developing impaired glucose tolerance and obesity during adulthood. However, the impact of hyperinsulinemia in the mother on glucose homeostasis in the offspring has not been fully explored. We aimed to determine the consequences of maternal insulin resistance on offspring metabolism and endocrine pancreas development using the LIRKO mouse model, which exhibits sustained hyperinsulinemia and transient increase in blood glucose concentrations during pregnancy. We examined control offspring born to either LIRKO or control mothers on embryonic days 13.5, 15.5, and 17.5 and postpartum days 0, 4, and 10. Control offspring born to LIRKO mothers displayed low birth weights and subsequently rapidly gained weight, and their blood glucose and plasma insulin concentrations were higher than offspring born to control mothers in early postnatal life. In addition, concentrations of plasma leptin, glucagon, and active GLP-1 were higher in control pups from LIRKO mothers. Analyses of the endocrine pancreas revealed significantly reduced β-cell area in control offspring of LIRKO mothers shortly after birth. β-Cell proliferation and total islet number were also lower in control offspring of LIRKO mothers during early postnatal days. Together, these data indicate that maternal hyperinsulinemia and the transient hyperglycemia impair endocrine pancreas development in the control offspring and induce multiple metabolic alterations in early postnatal life. The relatively smaller β-cell mass/area and β-cell proliferation in these control offspring suggest cell-autonomous epigenetic mechanisms in the regulation of islet growth and development.

    Topics: Animals; Animals, Newborn; Blood Glucose; Cell Proliferation; Diabetes, Gestational; Disease Models, Animal; Female; Glucagon; Glucagon-Like Peptide 1; Hyperglycemia; Hyperinsulinism; Insulin; Insulin Resistance; Insulin-Secreting Cells; Islets of Langerhans; Leptin; Mice; Organ Size; Phenotype; Pregnancy; Pregnancy Complications; Prenatal Exposure Delayed Effects; Weight Gain

2014
Effects of induced hyperinsulinaemia with and without hyperglycaemia on measures of cardiac vagal control.
    Diabetologia, 2013, Volume: 56, Issue:6

    We examined the effects of serum insulin levels on vagal control over the heart and tested the hypothesis that higher fasting insulin levels are associated with lower vagal control. We also examined whether experimentally induced increases in insulin by beta cell secretagogues, including glucagon-like peptide-1 (GLP-1), will decrease vagal control.. Respiration and ECGs were recorded for 130 healthy participants undergoing clamps. Three variables of cardiac vagal effects (the root mean square of successive differences [rMSSD] in the interbeat interval of the heart rate [IBI], heart-rate variability [HRV] caused by peak-valley respiratory sinus arrhythmia [pvRSA], and high-frequency power [HF]) and heart rate (HR) were obtained at seven time points during the clamps, characterised by increasing levels of insulin (achieved by administering insulin plus glucose, glucose only, glucose and GLP-1, and glucose and GLP-1 combined with arginine).. Serum insulin level was positively associated with HR at all time points during the clamps except the first-phase hyperglycaemic clamp. Insulin levels were negatively correlated with variables of vagal control, reaching significance for rMSSD and log10HF, but not for pvRSA, during the last four phases of the hyperglycaemic clamp (hyperglycaemic second phase, GLP-1 first and second phases, and arginine). These associations disappeared when adjusted for age, BMI and insulin sensitivity. Administration of the beta cell secretagogues GLP-1 and arginine led to a significant increase in HR, but this was not paired with a significant reduction in HRV measures.. Experimentally induced hyperinsulinaemia is not correlated with cardiac vagal control or HR when adjusting for age, BMI and insulin sensitivity index. Our findings suggest that exposure to a GLP-1 during hyperglycaemia leads to a small acute increase in HR but not to an acute decrease in cardiac vagal control.

    Topics: Adult; Body Mass Index; Cross-Sectional Studies; Electrocardiography; Fasting; Female; Glucagon-Like Peptide 1; Glucose Clamp Technique; Heart; Heart Rate; Humans; Hyperglycemia; Hyperinsulinism; Insulin; Insulin-Secreting Cells; Male; Middle Aged; Myocardium; Vagus Nerve

2013
The difference of glucostatic parameters according to the remission of diabetes after Roux-en-Y gastric bypass.
    Diabetes/metabolism research and reviews, 2012, Volume: 28, Issue:5

    Gut hormones play a role in diabetes remission after a Roux-en-Y gastric bypass (RYGB). Our aim was to investigate differences in gut hormone secretion according to diabetes remission after surgery. Second, we aimed to identify differences in insulin secretion and sensitivity according to diabetes remission after RYGB.. Twenty-two severely obese patients with type 2 diabetes underwent RYGB. A meal tolerance test (MTT) was performed 12 months after RYGB. The secretions of active glucagon-like peptide-1 (active GLP-1), glucose-dependent insulinotropic peptide (GIP), peptide YY, C-peptide and insulin during the MTT test were calculated using total area under the curve values (AUC). Remission was defined as glycated haemoglobin (A(1C)) of <6.5% and a fasting glucose concentration of <126 mg/dL for 1 year or more without active pharmacological therapy.. Of the 22 patients, 16 (73%) had diabetes remission (remission group). The secretion CURVES of active GLP-1, GIP and peptide YY were not different between the groups. AUC of insulin and C-peptide were also not different. Homeostasis model assessment estimate of insulin resistance was significantly lower (1.26 ± 1.05 versus 2.37 ± 1.08, p = 0.006), and Matsuda index of insulin sensitivity was significantly higher in the remission group (10.5 ± 6.2 versus 5.8 ± 2.1, p = 0.039). The disposition index (functional reserve of beta cells) was significantly higher in the remission group compared with that in the non-remission group (5.34 ± 2.74 versus 1.83 ± 0.70, p < 0.001).. Remission of diabetes after RYGB is not associated with a difference in gut hormone secretion. Patients remaining diabetic had higher insulin resistance and decreased β cell functional reserve.

    Topics: Adult; Blood Glucose; C-Peptide; Case-Control Studies; Diabetes Complications; Diabetes Mellitus, Type 2; Female; Gastric Bypass; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Hyperinsulinism; Insulin; Insulin Resistance; Insulin-Secreting Cells; Male; Middle Aged; Obesity; Prognosis; Prospective Studies; Remission Induction; Young Adult

2012
GLP-1 and glucagon secretion from a pancreatic neuroendocrine tumor causing diabetes and hyperinsulinemic hypoglycemia.
    The Journal of clinical endocrinology and metabolism, 2012, Volume: 97, Issue:9

    Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic β-cells and stimulates β-cell hyperplasia. GLP-1 secretion causing hypoglycemia has been described once from an ovarian neuroendocrine tumor (NET) but has not been reported from a pancreatic NET (pNET).. A 56-yr-old male with a previous diagnosis of diabetes presented with fasting hypoglycemia and was found to have a metastatic pNET secreting glucagon. Neither the primary tumor nor metastases stained for insulin, whereas the resected normal pancreas showed histological evidence of islet cell hyperplasia. We provide evidence that GLP-1 secretion from the tumor was the cause of hyperinsulinemic hypoglycemia.. GLP-1 levels were determined in the patient, and immunohistochemistry for GLP-1 was performed on the tumor metastases. Ex vivo tissue culture and a bioassay constructed by transplantation of tumor into nude mice were performed to examine the tumor secretory products and their effects on islet cell function.. The patient had high levels of glucagon and GLP-1 with an exaggerated GLP-1 response to oral glucose. Immunohistochemistry and primary tissue culture demonstrated secretion of glucagon and GLP-1 from the tumor metastases, whereas insulin secretion was almost undetectable. Ex vivo coculture of the tumor with normal human islets resulted in inhibition of insulin release, and transplanted mice developed impaired glucose tolerance.. This is the first description of glucagon and GLP-1 secretion from a metastatic pNET causing sequential diabetes and hypoglycemia. Hypoglycemia was caused by insulin secretion from hyperplastic β-cells stimulated by tumor-derived GLP-1.

    Topics: Adenoma, Islet Cell; Animals; Cells, Cultured; Diabetes Mellitus; Glucagon; Glucagon-Like Peptide 1; Hepatectomy; Humans; Hyperinsulinism; Hypoglycemia; Immunohistochemistry; Male; Mice; Mice, Nude; Middle Aged; Neuroendocrine Tumors; Pancreatectomy; Pancreatic Neoplasms; Real-Time Polymerase Chain Reaction; Splenectomy

2012
Hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass: unraveling the role of gut hormonal and pancreatic endocrine dysfunction.
    The Journal of surgical research, 2011, May-15, Volume: 167, Issue:2

    Profound hypoglycemia occurs rarely as a late complication after Roux-en-Y gastric bypass (RYGB). We investigated the role of glucagon-like-peptide-1 (GLP-1) in four subjects who developed recurrent neuro-glycopenia 2 to 3 y after RYGB.. A standardized test meal (STM) was administered to all four subjects. A 2 h hyperglycemic clamp with GLP-1 infusion during the second hour was performed in one subject, before, during a 4 wk trial of octreotide (Oc), and after 85% distal pancreatectomy. After cessation of both glucose and GLP-1 infusion at the end of the 2 h clamp, blood glucose levels were monitored for 30 min. Responses were compared with a control group (five subjects 12 mo status post-RYGB without hypoglycemic symptoms).. During STM, both GLP-1 and insulin levels were elevated 3- to 4-fold in all subjects, and plasma glucose-dependent insulinotropic peptide (GIP) levels were elevated 2-fold. Insulin responses to hyperglycemia ± GLP-1 infusion in one subject were comparable to controls, but after cessation of glucose infusion, glucose levels fell to 40 mg/dL. During Oc, the GLP-1 and insulin responses to STM were reduced (>50%). During the clamp, insulin response to hyperglycemia alone was reduced, but remained unchanged during GLP-1. Glucagon levels during hyperglycemia alone were suppressed and further suppressed after the addition of GLP-1. With the substantial drop in glucose during the 30 min follow-up, glucagon levels failed to rise. Due to persistent symptoms, one subject underwent 85% distal pancreatectomy; postoperatively, the subject remained asymptomatic (blood glucose: 119-220 mg/dL), but a repeat STM showed persistence of elevated levels of GLP-1. Histologically enlarged islets, and β-cell clusters scattered throughout the acinar parenchyma were seen, as well as β-cells present within pancreatic duct epithelium. An increase in pancreatic and duodenal homeobox-1 protein (PDX-1) expression was observed in the subject compared with control pancreatic tissue.. A persistent exaggerated hypersecretion of GLP-1, which has been shown to be insulinotropic, insulinomimetic, and glucagonostatic, is the likely cause of post-RYGB hypoglycemia. The hypertrophy and ectopic location of β-cells is likely due to overexpression of the islet cell transcription factor, PDX-1, caused by prolonged hypersecretion of GLP-1.

    Topics: Blood Glucose; Endocrine System; Female; Gastric Bypass; Gastric Inhibitory Polypeptide; Gastrointestinal Tract; Glucagon-Like Peptide 1; Glycogen; Homeodomain Proteins; Humans; Hyperinsulinism; Hypoglycemia; Insulin; Middle Aged; Obesity; Pancreas; Trans-Activators

2011
GLP-1-derived nonapeptide GLP-1(28-36)amide inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice.
    Regulatory peptides, 2011, Aug-08, Volume: 169, Issue:1-3

    The metabolic syndrome is an obesity-associated disease manifested as severe insulin resistance, hyperlipidemia, hepatic steatosis, and diabetes. Previously we proposed that a nonapeptide, FIAWLVKGRamide, GLP-1(28-36)amide, derived from the gluco-incretin hormone, glucagon-like peptide-1 (GLP-1), might have insulin-like actions. Recently, we reported that the nonapeptide appears to enter hepatocytes, target to mitochondria, and suppress glucose production and reactive oxygen species. Therefore, the effects of GLP-1(28-36)amide were examined in diet-induced obese, insulin-resistant mice as a model for the development of human metabolic syndrome.. Three- to 11-week infusions of GLP-1(28-36)amide were administered via osmopumps to mice fed a very high fat diet (VHFD) and to control mice on a normal low fat diet (LFD). Body weight, DXA, energy intake, plasma insulin and glucose, and liver triglyceride levels were assessed. GLP-1(28-36)amide inhibited weight gain, accumulation of liver triglycerides, and improved insulin sensitivity by attenuating the development of fasting hyperglycemia and hyperinsulinemia in mice fed VHFD. GLP-1(28-36)amide had no observable effects in control LFD mice. Surprisingly, the energy intake of peptide-infused obese mice is 25-70% greater than in obese mice receiving vehicle alone, yet did not gain excess weight.. GLP-1(28-36)amide exerts insulin-like actions selectively in conditions of obesity and insulin resistance. The peptide curtails weight gain in diet-induced obese mice in the face of an increase in energy intake suggesting increased energy expenditure. These findings suggest utility of GLP-1(28-36)amide, or a peptide mimetic derived there from, for the treatment of insulin resistance and the metabolic syndrome.

    Topics: Animals; Diabetes Mellitus, Type 2; Dietary Fats; Eating; Fatty Liver; Glucagon-Like Peptide 1; Hyperglycemia; Hyperinsulinism; Insulin Resistance; Liver; Male; Metabolic Syndrome; Mice; Mice, Inbred C57BL; Obesity; Peptide Fragments; Triglycerides; Weight Gain

2011
Liraglutide prevents hypoadiponectinemia-induced insulin resistance and alterations of gene expression involved in glucose and lipid metabolism.
    Molecular medicine (Cambridge, Mass.), 2011, Volume: 17, Issue:11-12

    Liraglutide is a glucagonlike peptide (GLP)-1 analog that reduces blood glucose levels, increases insulin secretion and improves insulin sensitivity through mechanisms that are not completely understood. Therefore, we aimed to evaluate the metabolic impact and underlying mechanisms of liraglutide in a hypoadiponectinemia and high-fat diet (HFD)-induced insulin resistance (IR) model. Adiponectin gene targeting was achieved using adenovirus-transduced RNAi and was used to lower plasma adiponectin levels. Liraglutide (1 mg/kg) was given twice daily for 8 wks to HFD-fed apolipoprotein (Apo)E⁻/⁻ mice. Insulin sensitivity was examined by a hyperinsulinemic-euglycemic clamp. Gene mRNA and protein expressions were measured by quantitative real-time polymerase chain reaction (PCR) and Western blot, respectively. Administration of liraglutide prevented hypoadiponectinemia-induced increases in plasma insulin, free fatty acids, triglycerides and total cholesterol. Liraglutide also attenuated hypoadiponectinemia-induced deterioration in peripheral and hepatic insulin sensitivity and alterations in key regulatory factors implicated in glucose and lipid metabolism. These findings demonstrated for the first time that liraglutide could be used to rescue IR induced by hypoadiponectinemia and HFD via regulating gene and protein expression involved in glucose and lipid metabolism.

    Topics: 3T3-L1 Cells; Adiponectin; Animals; Blotting, Western; Cholesterol; Gene Expression Regulation; Gene Knockdown Techniques; Gene Silencing; Glucagon-Like Peptide 1; Glucose; Glucose Clamp Technique; Glucose Tolerance Test; Hyperinsulinism; Insulin Resistance; Lipid Metabolism; Liraglutide; Liver; Male; Mice; Real-Time Polymerase Chain Reaction; Triglycerides

2011
Adverse metabolic effects of a hypercaloric, high-fat diet in rodents precede observable changes in body weight.
    Nutrition research (New York, N.Y.), 2011, Volume: 31, Issue:9

    Although a high-fat diet (HFD) is recognized as an important contributor to obesity, human research is limited by confounders such as income, whereas animal research has typically examined diet during specific developmental periods rather than throughout the lifespan. We hypothesized that the use of an HFD in short-term studies as has been commonly done in animals does not adequately reflect the lifelong dietary patterns seen frequently in humans with consequent metabolic disturbances. We examined the impact of HFD from weaning until 39 weeks (middle age) on the metabolism of male rats. At 7, 26, and 39 weeks, glucose tolerance tests were performed, a subset of animals was euthanized, and serum and tissues were collected. After 4 weeks, preceding increased body weight, HFD animals had increased intra-abdominal fat, triglycerides, and hyperglycemia. Hyperinsulinemia was insufficient to maintain normoglycemia, and beta cell mass and glucagon-like peptide 1 decreased over time in HFD and control animals. Despite lacking significant lipid abnormalities, nonalcoholic fatty liver disease was evident by 39 weeks. Our HFD model demonstrated that significant metabolic abnormalities may go undetected by current standard screening such as weighing and biochemistry.

    Topics: Adiposity; Animals; Blood Glucose; Body Weight; Diet, High-Fat; Dietary Fats; Disease Models, Animal; Fatty Liver; Glucagon-Like Peptide 1; Glucose Tolerance Test; Glycemic Index; Hyperglycemia; Hyperinsulinism; Insulin; Intra-Abdominal Fat; Male; Non-alcoholic Fatty Liver Disease; Obesity; Rats; Rats, Wistar; Triglycerides

2011
Reversible hyperinsulinemic hypoglycemia after gastric bypass: a consequence of altered nutrient delivery.
    The Journal of clinical endocrinology and metabolism, 2010, Volume: 95, Issue:4

    Severe hypoglycemia after Roux-en-Y gastric bypass surgery (RYGB) is an increasingly recognized condition, characterized by neuroglycopenia and inappropriately elevated insulin concentrations that occur primarily in the postprandial state. Both pathophysiology and treatment of this disorder remain elusive, but it has been postulated that hyperplasia and/or hypertrophy of beta-cells due to morbid obesity and/or postsurgical nesidioblastosis may contribute.. The objective of this study was to elucidate the pathophysiology of this condition; specifically, we hypothesized that metabolic abnormalities were a function of altered nutrient transit through the gastrointestinal tract rather than anatomical changes to pancreatic beta-cells that would lead to consistently high insulin secretion irrespective of nutrient transit route. DESIGN/SETTING/SUBJECT/OUTCOME MEASURES: We describe a unique case wherein gastrostomy tube (GT) insertion into the remnant stomach reversed neuroglycopenic symptoms. This subject was admitted to a university hospital research center for standardized measurement of glucose, insulin, and incretin hormones including glucagon-like peptide-1, gastric-inhibitory peptide, and glucagon.. Standardized liquid meal administration via GT vs. oral route demonstrated complete reversal of severe metabolic abnormalities that included hypersecretion of insulin and GLP-1.. Post-RYGB hyperinsulinemia and hypoglycemia result entirely from altered nutrient delivery rather than generalized hyperfunction of beta-cells due to presurgical hypertrophy/hyperfunction or postsurgical nesidioblastosis. These findings support the use of GT for treatment of severe cases and have implications for surgical manipulations that may reverse/prevent this condition.

    Topics: Adult; Blood Glucose; Body Mass Index; Female; Gastric Bypass; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Humans; Hyperinsulinism; Hypoglycemia; Insulin; Nutritional Status; Obesity, Morbid; Postoperative Complications

2010
Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6J mice.
    Biological & pharmaceutical bulletin, 2010, Volume: 33, Issue:6

    In an acute treatment experiment, metformin (150, 300 mg/kg, per os (p.o.)) markedly reduced the consumption of a high-fat diet (HFD) (45 kcal% fat-containing diet) for 2 h after the HFD was given to the fasted male C57BL/6J (B6) mice. In addition, metformin at a higher dose increased plasma active glucagon-like peptide-1 (GLP-1) levels at 1 h after the HFD was given. On the other hand, pioglitazone (12 mg/kg, p.o.) slightly increased the food intake but did not affect active GLP-1 levels when given at 6 and 12 mg/kg, p.o. In a long-team experiment for 9 weeks, metformin treatment (0.25, 0.5% in the HFD) resulted in reduction of body weight gain and HFD intake. When wet weights of various body fat pads of each mouse were measured at 9 weeks after treatment, metformin markedly decreased these weights. However, pioglitazone treatment (0.01, 0.02% in the HFD) did not have obvious effects on these parameters. Oral glucose tolerance test was carried out after 20-h fasting at 4 weeks post-treatment. Whereas metformin treatment (0.25, 0.5%) markedly improved glucose intolerance, pioglitazone treatment (0.02%) slightly improved this parameter. At 9 weeks, both metformin and pioglitazone markedly improved hyperglycemia and hyperinsulinemia. Metformin treatment also improved hyperleptinemia, whereas pioglitazone was ineffective. These results indicate that metformin reduces body weight gain and improves glucose intolerance in HFD-induced obese diabetic B6 mice.

    Topics: Animals; Blood Glucose; Body Weight; Dietary Fats; Energy Intake; Glucagon-Like Peptide 1; Glucose Intolerance; Glucose Tolerance Test; Hyperglycemia; Hyperinsulinism; Hypoglycemic Agents; Insulin; Leptin; Male; Metformin; Mice; Mice, Inbred C57BL; Obesity; Pioglitazone; Thiazolidinediones; Weight Gain

2010
GLP-1 treatment reduces endogenous insulin resistance via activation of central GLP-1 receptors in mice fed a high-fat diet.
    American journal of physiology. Endocrinology and metabolism, 2010, Volume: 299, Issue:2

    Glucagon-like peptide-1 (GLP-1) improves insulin sensitivity in humans and rodents. It is currently unknown to what extent the (metabolic) effects of GLP-1 treatment are mediated by central GLP-1 receptors. We studied the impact of central GLP-1 receptor (GLP-1R) antagonism on the metabolic effects of peripheral GLP-1 administration in mice. High-fat-fed insulin-resistant C57Bl/6 mice were treated with continuous subcutaneous infusion of GLP-1 or saline (PBS) for 2 wk, whereas the GLP-1R antagonist exendin-9 (EX-9) and cerebrospinal fluid (CSF) were simultaneously infused in the left lateral cerebral ventricle (icv). Glucose and glycerol turnover were determined during a hyperinsulinemic euglycemic clamp. VLDL-triglyceride (VLDL-TG) production was determined in hyperinsulinemic conditions. Our data show that the rate of glucose infusion necessary to maintain euglycemia was significantly increased by GLP-1. Simultaneous icv infusion of EX-9 diminished this effect by 62%. The capacities of insulin to stimulate glucose disposal and inhibit glucose production were reinforced by GLP-1. Simultaneous icv infusion of EX-9 significantly diminished the latter effect. Central GLP-1R antagonism alone did not affect glucose metabolism. Also, GLP-1 treatment reinforced the inhibitory action of insulin on VLDL-TG production. In conclusion, peripheral administration of GLP-1 reinforces the ability of insulin to suppress endogenous glucose and VLDL-TG production (but not lipolysis) and boosts its capacity to stimulate glucose disposal in high-fat-fed C57Bl/6 mice. Activation of central GLP-1Rs contributes substantially to the inhibition of endogenous glucose production by GLP-1 treatment in this animal model.

    Topics: Animals; Blood Glucose; Body Weight; Cerebral Ventricle Neoplasms; Dietary Fats; Fatty Acids, Nonesterified; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Glucose Clamp Technique; Hyperinsulinism; Insulin; Insulin Resistance; Lipoproteins, VLDL; Male; Mice; Mice, Inbred C57BL; Receptors, Glucagon; Triglycerides

2010
The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men.
    Diabetologia, 2009, Volume: 52, Issue:7

    We studied the physiological, metabolic and hormonal mechanisms underlying the elevated risk of type 2 diabetes in carriers of TCF7L2 gene.. We undertook genotyping of 81 healthy young Danish men for rs7903146 of TCF7L2 and carried out various beta cell tests including: 24 h glucose, insulin and glucagon profiles; OGTT; mixed meal test; IVGTT; hyperglycaemic clamp with co-infusion of glucagon-like peptide (GLP)-1 or glucose-dependent insulinotropic polypeptide (GIP); and a euglycaemic-hyperinsulinaemic clamp combined with glucose tracer infusion to study hepatic and peripheral insulin action.. Carriers of the T allele were characterised by reduced 24 h insulin concentrations (p < 0.05) and reduced insulin secretion relative to glucose during a mixed meal test (beta index: p < 0.003), but not during an IVGTT. This was further supported by reduced late-phase insulinotropic action of GLP-1 (p = 0.03) and GIP (p = 0.07) during a 7 mmol/l hyperglycaemic clamp. Secretion of GLP-1 and GIP during the mixed meal test was normal. Despite elevated hepatic glucose production, carriers of the T allele had significantly reduced 24 h glucagon concentrations (p < 0.02) suggesting altered alpha cell function.. Elevated hepatic glucose production and reduced insulinotropic effect of incretin hormones contribute to an increased risk of type 2 diabetes in carriers of the rs7903146 risk T allele of TCF7L2.

    Topics: Adolescent; Alleles; Blood Glucose; Diabetes Mellitus, Type 2; Genotype; Glucagon-Like Peptide 1; Glucose Clamp Technique; Glucose Tolerance Test; Glutaminase; Humans; Hyperinsulinism; Incretins; Insulin; Intracellular Signaling Peptides and Proteins; Liver; Male; Risk Factors; TCF Transcription Factors; Transcription Factor 7-Like 2 Protein; Tritium; Young Adult

2009
Genetic influences on the insulin response of the beta cell to different secretagogues.
    Diabetologia, 2009, Volume: 52, Issue:12

    The aim of the present study was to estimate the heritability of the beta cell insulin response to glucose and to glucose combined with glucagon-like peptide-1 (GLP-1) or with GLP-1 plus arginine.. This was a twin-family study that included 54 families from the Netherlands Twin Register. The participants were healthy twin pairs and their siblings of the same sex, aged 20 to 50 years. Insulin response of the beta cell was assessed by a modified hyperglycaemic clamp with additional GLP-1 and arginine. Insulin sensitivity index (ISI) was assessed by the euglycaemic-hyperinsulinaemic clamp. Multivariate structural equation modelling was used to obtain heritabilities and the genetic factors underlying individual differences in BMI, ISI and secretory responses of the beta cell.. The heritability of insulin levels in response to glucose was 52% and 77% for the first and second phase, respectively, 53% in response to glucose + GLP-1 and 80% in response to an additional arginine bolus. Insulin responses to the administration of glucose, glucose + GLP-1 and glucose + GLP-1 + arginine were highly correlated (0.62< r <0.79). Heritability of BMI and ISI was 74% and 60% respectively. The genetic factors that influenced BMI and ISI explained about half of the heritability of insulin levels in response to the three secretagogues. The other half was due to genetic factors specific to the beta cell.. In healthy adults, genetic factors explain most of the individual differences in the secretory capacity of the beta cell. These genetic influences are partly independent from the genes that influence BMI and ISI.

    Topics: Adult; Body Mass Index; Body Weight; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose Clamp Technique; Humans; Hyperinsulinism; Insulin; Insulin Secretion; Insulin-Secreting Cells; Kinetics; Middle Aged; Multivariate Analysis; Receptors, Glucagon; Young Adult

2009
Brain glucagon-like peptide 1 signaling controls the onset of high-fat diet-induced insulin resistance and reduces energy expenditure.
    Endocrinology, 2008, Volume: 149, Issue:10

    Glucagon-like peptide-1 (GLP-1) is a peptide released by the intestine and the brain. We previously demonstrated that brain GLP-1 increases glucose-dependent hyperinsulinemia and insulin resistance. These two features are major characteristics of the onset of type 2 diabetes. Therefore, we investigated whether blocking brain GLP-1 signaling would prevent high-fat diet (HFD)-induced diabetes in the mouse. Our data show that a 1-month chronic blockage of brain GLP-1 signaling by exendin-9 (Ex9), totally prevented hyperinsulinemia and insulin resistance in HFD mice. Furthermore, food intake was dramatically increased, but body weight gain was unchanged, showing that brain GLP-1 controlled energy expenditure. Thermogenesis, glucose utilization, oxygen consumption, carbon dioxide production, muscle glycolytic respiratory index, UCP2 expression in muscle, and basal ambulatory activity were all increased by the exendin-9 treatment. Thus, we have demonstrated that in response to a HFD, brain GLP-1 signaling induces hyperinsulinemia and insulin resistance and decreases energy expenditure by reducing metabolic thermogenesis and ambulatory activity.

    Topics: Animals; Blood Glucose; Body Temperature Regulation; Brain Stem; Carbon Dioxide; Diabetes Mellitus, Type 2; Dietary Fats; Energy Metabolism; Glucagon-Like Peptide 1; Glucose Intolerance; Hyperinsulinism; Insulin Resistance; Ion Channels; Male; Mice; Mice, Inbred C57BL; Mitochondrial Proteins; Motor Activity; Muscle, Skeletal; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oxygen Consumption; Peptide Fragments; Physical Endurance; Proglucagon; RNA, Messenger; Signal Transduction; Uncoupling Protein 2

2008
Nocturnal free fatty acids are uniquely elevated in the longitudinal development of diet-induced insulin resistance and hyperinsulinemia.
    American journal of physiology. Endocrinology and metabolism, 2007, Volume: 292, Issue:6

    Obesity is strongly associated with hyperinsulinemia and insulin resistance, both primary risk factors for type 2 diabetes. It has been thought that increased fasting free fatty acids (FFA) may be responsible for the development of insulin resistance during obesity, causing an increase in plasma glucose levels, which would then signal for compensatory hyperinsulinemia. But when obesity is induced by fat feeding in the dog model, there is development of insulin resistance and a marked increase in fasting insulin despite constant fasting FFA and glucose. We examined the 24-h plasma profiles of FFA, glucose, and other hormones to observe any potential longitudinal postprandial or nocturnal alterations that could lead to both insulin resistance and compensatory hyperinsulinemia induced by a high-fat diet in eight normal dogs. We found that after 6 wk of a high-fat, hypercaloric diet, there was development of significant insulin resistance and hyperinsulinemia as well as accumulation of both subcutaneous and visceral fat without a change in either fasting glucose or postprandial glucose. Moreover, although there was no change in fasting FFA, there was a highly significant increase in the nocturnal levels of FFA that occurred as a result of fat feeding. Thus enhanced nocturnal FFA, but not glucose, may be responsible for development of insulin resistance and fasting hyperinsulinemia in the fat-fed dog model.

    Topics: Animals; Blood Glucose; Body Composition; C-Peptide; Circadian Rhythm; Diet; Dogs; Fasting; Fatty Acids, Nonesterified; Glucagon-Like Peptide 1; Glycerol; Hormones; Hyperinsulinism; Insulin; Insulin Resistance; Male; Triglycerides

2007
Roux-en-Y gastric bypass, Nesidioblastosis and diabetes mellitus.
    South Dakota medicine : the journal of the South Dakota State Medical Association, 2006, Volume: 59, Issue:12

    Topics: Animals; Cell Proliferation; Comorbidity; Diabetes Mellitus, Type 2; Gastric Bypass; Glucagon-Like Peptide 1; Humans; Hyperinsulinism; Hyperplasia; Hypertrophy; Hypoglycemia; Incidence; Insulin; Insulin Secretion; Insulin-Secreting Cells; Nesidioblastosis; Obesity, Morbid; Postoperative Complications; Rats

2006
Gastric bypass and nesidioblastosis--too much of a good thing for islets?
    The New England journal of medicine, 2005, Jul-21, Volume: 353, Issue:3

    Topics: Adenosine Deaminase Inhibitors; Dipeptidyl Peptidase 4; Gastric Bypass; Glucagon; Glucagon-Like Peptide 1; Glycoproteins; Humans; Hyperinsulinism; Hyperplasia; Hypoglycemia; Islets of Langerhans; Nesidioblastosis; Obesity; Peptide Fragments; Postoperative Complications; Protein Precursors; Signal Transduction

2005
Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery.
    The New England journal of medicine, 2005, Nov-17, Volume: 353, Issue:20

    Topics: Animals; Diabetes Mellitus, Type 2; Exenatide; Gastric Bypass; Glucagon-Like Peptide 1; Humans; Hyperinsulinism; Hypoglycemia; Insulin-Secreting Cells; Nesidioblastosis; Peptides; Postoperative Complications; Venoms

2005
Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage.
    The Journal of clinical investigation, 2005, Volume: 115, Issue:12

    Intestinal glucagon-like peptide-1 (GLP-1) is a hormone released into the hepatoportal circulation that stimulates pancreatic insulin secretion. GLP-1 also acts as a neuropeptide to control food intake and cardiovascular functions, but its neural role in glucose homeostasis is unknown. We show that brain GLP-1 controlled whole-body glucose fate during hyperglycemic conditions. In mice undergoing a hyperglycemic hyperinsulinemic clamp, icv administration of the specific GLP-1 receptor antagonist exendin 9-39 (Ex9) increased muscle glucose utilization and glycogen content. This effect did not require muscle insulin action, as it also occurred in muscle insulin receptor KO mice. Conversely, icv infusion of the GLP-1 receptor agonist exendin 4 (Ex4) reduced insulin-stimulated muscle glucose utilization. In hyperglycemia achieved by i.v. infusion of glucose, icv Ex4, but not Ex9, caused a 4-fold increase in insulin secretion and enhanced liver glycogen storage. However, when glucose was infused intragastrically, icv Ex9 infusion lowered insulin secretion and hepatic glycogen levels, whereas no effects of icv Ex4 were observed. In diabetic mice fed a high-fat diet, a 1-month chronic i.p. Ex9 treatment improved glucose tolerance and fasting glycemia. Our data show that during hyperglycemia, brain GLP-1 inhibited muscle glucose utilization and increased insulin secretion to favor hepatic glycogen stores, preparing efficiently for the next fasting state.

    Topics: Adipose Tissue; Animals; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Blood Glucose; Brain; Dose-Response Relationship, Drug; Glucagon-Like Peptide 1; Glucose; Glucose Clamp Technique; Glucose Tolerance Test; Glycogen; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Hyperglycemia; Hyperinsulinism; Insulin; Insulin Resistance; Insulin Secretion; Liver; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscles; Nuclear Proteins; Osmosis; Peptide Fragments; Phosphatidylinositol 3-Kinases; Phosphorylation; Receptor, Insulin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Transcription Factors

2005
Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy.
    Circulation, 2004, Aug-24, Volume: 110, Issue:8

    The failing heart demonstrates a preference for glucose as its metabolic substrate. Whether enhancing myocardial glucose uptake favorably influences left ventricular (LV) contractile performance in heart failure remains uncertain. Glucagon-like peptide-1 (GLP-1) is a naturally occurring incretin with potent insulinotropic effects the action of which is attenuated when glucose levels fall below 4 mmol. We examined the impact of recombinant GLP-1 (rGLP-1) on LV and systemic hemodynamics and myocardial substrate uptake in conscious dogs with advanced dilated cardiomyopathy (DCM) as a mechanism for overcoming myocardial insulin resistance and enhancing myocardial glucose uptake.. Thirty-five dogs were instrumented and studied in the fully conscious state. Advanced DCM was induced by 28 days of rapid pacing. Sixteen dogs with advanced DCM received a 48-hour infusion of rGLP-1 (1.5 pmol x kg(-1) x min(-1)). Eight dogs with DCM served as controls and received 48 hours of a saline infusion (3 mL/d). Infusion of rGLP-1 was associated with significant (P<0.02) increases in LV dP/dt (98%), stroke volume (102%), and cardiac output (57%) and significant decreases in LV end-diastolic pressure, heart rate, and systemic vascular resistance. rGLP-1 increased myocardial insulin sensitivity and myocardial glucose uptake. There were no significant changes in the saline control group.. rGLP-1 dramatically improved LV and systemic hemodynamics in conscious dogs with advanced DCM induced by rapid pacing. rGLP-1 has insulinomimetic and glucagonostatic properties, with resultant increases in myocardial glucose uptake. rGLP-1 may be a useful metabolic adjuvant in decompensated heart failure.

    Topics: Animals; Blood Glucose; Cardiac Pacing, Artificial; Cardiomyopathy, Dilated; Consciousness; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Energy Metabolism; Fatty Acids; Female; Glucagon; Glucagon-Like Peptide 1; Glucose; Glucose Clamp Technique; Heart Failure; Hemodynamics; Hyperinsulinism; Infusions, Intravenous; Insulin Resistance; Male; Myocardium; Oxygen Consumption; Peptide Fragments; Protein Precursors; Recombinant Proteins; Ventricular Dysfunction, Left

2004
Effects of the novel (Pro3)GIP antagonist and exendin(9-39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin.
    Diabetologia, 2003, Volume: 46, Issue:2

    This study examined the biological effects of the GIP receptor antagonist, (Pro3)GIP and the GLP-1 receptor antagonist, exendin(9-39)amide.. Cyclic AMP production was assessed in Chinese hamster lung fibroblasts transfected with human GIP or GLP-1 receptors, respectively. In vitro insulin release studies were assessed in BRIN-BD11 cells while in vivo insulinotropic and glycaemic responses were measured in obese diabetic ( ob/ ob) mice.. In GIP receptor-transfected fibroblasts, (Pro(3))GIP or exendin(9-39)amide inhibited GIP-stimulated cyclic AMP production with maximal inhibition of 70.0+/-3.5% and 73.5+/-3.2% at 10(-6) mol/l, respectively. In GLP-1 receptor-transfected fibroblasts, exendin(9-39)amide inhibited GLP-1-stimulated cyclic AMP production with maximal inhibition of 60+/-0.7% at 10(-6) mol/l, whereas (Pro(3))GIP had no effect. (Pro(3))GIP specifically inhibited GIP-stimulated insulin release (86%; p<0.001) from clonal BRIN-BD11 cells, but had no effect on GLP-1-stimulated insulin release. In contrast, exendin(9-39)amide inhibited both GIP and GLP-1-stimulated insulin release (57% and 44%, respectively; p<0.001). Administration of (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides (25 nmol/kg body weight, i.p.) to fasted (ob/ob) mice decreased the plasma insulin responses by 42%, 54% and 49%, respectively (p<0.01 to p<0.001). The hyperinsulinaemia of non-fasted (ob/ob) mice was decreased by 19%, 27% and 18% (p<0.05 to p<0.01) by injection of (Pro3)GIP, exendin(9-39)amide or combined peptides but accompanying changes of plasma glucose were small.. These data show that (Pro(3))GIP is a specific GIP receptor antagonist. Furthermore, feeding studies in one commonly used animal model of obesity and diabetes, (ob/ob) mice, suggest that GIP is the major physiological component of the enteroinsular axis, contributing approximately 80% to incretin-induced insulin release.

    Topics: Animals; Cells, Cultured; Cricetinae; Cricetulus; Cyclic AMP; Diabetes Mellitus; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hyperinsulinism; Insulin; Insulin Secretion; Mice; Obesity; Peptide Fragments; Postprandial Period; Protein Precursors; Spectrometry, Mass, Electrospray Ionization

2003
Elevated glucagon-like peptide-1-(7-36)-amide, but not glucose, associated with hyperinsulinemic compensation for fat feeding.
    The Journal of clinical endocrinology and metabolism, 2002, Volume: 87, Issue:11

    We previously developed a canine model of central obesity and insulin resistance by supplementing the normal chow diet with 2 g cooked bacon grease/kg body weight. Dogs fed this fatty diet maintained glucose tolerance with compensatory hyperinsulinemia. The signal(s) responsible for this up-regulation of plasma insulin is unknown. We hypothesized that meal-derived factors such as glucose, fatty acids, or incretin hormones may signal beta-cell compensation in the fat-fed dog. We fed the same fat-supplemented diet for 12 wk to six dogs and compared metabolic responses with seven control dogs fed a normal diet. Fasting and stimulated fatty acid and glucose-dependent insulinotropic peptide concentrations were not increased by fat feeding, whereas glucose was paradoxically decreased, ruling out those three factors as signals for compensatory hyperinsulinemia. Fasting plasma glucagon-like peptide-1 (GLP-1) concentration was 2.5-fold higher in the fat-fed animals, compared with controls, and 3.4-fold higher after a mixed meal. Additionally, expression of the GLP-1 receptor in whole pancreas was increased 2.3-fold in the fat-fed dogs. The increase in both circulating GLP-1 and its target receptor may have increased beta-cell responsiveness to lower glucose. Glucose is not the primary cause of hyperinsulinemia in the fat-fed dog. Corequisite meal-related signals may be permissive for development of hyperinsulinemia.

    Topics: Animals; Blood Glucose; Blotting, Northern; Dietary Fats; Dogs; Fasting; Fatty Acids, Nonesterified; Gene Expression; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Glucose; Glucose Tolerance Test; Hyperinsulinism; Insulin; Insulin Resistance; Islets of Langerhans; Kinetics; Magnetic Resonance Imaging; Male; Obesity; Peptide Fragments; Receptors, Glucagon; Reverse Transcriptase Polymerase Chain Reaction

2002
Adaptive changes in insulin secretion by islets from neonatal rats raised on a high-carbohydrate formula.
    American journal of physiology. Endocrinology and metabolism, 2000, Volume: 279, Issue:6

    Artificial rearing of neonatal rats on a high-carbohydrate (HC) milk formula resulted in the immediate onset of hyperinsulinemia. This study examines, in islets of 12-day-old HC rats, adaptive changes that support the hyperinsulinemic state. Increases in plasma glucagon-like peptide-1 (GLP-1) levels and islet GLP-1 receptor mRNA supported increased insulin secretion by HC islets. Isolated HC islets, but not mother-fed (MF) islets, secreted moderate amounts of insulin in a glucose- and Ca(2+)-independent manner. Under stringent Ca(2+)-free conditions and in the presence of glucose, GLP-1 plus acetylcholine augmented insulin release to a larger extent in HC islets. Levels of adenylyl cyclase type VI mRNA and activities of protein kinase A, protein kinase C, and calcium calmodulin kinase II were increased in HC islets. A tenfold increase in norepinephrine concentration was required to inhibit insulin secretion in HC islets compared with MF islets, indicating reduced sensitivity to adrenergic signals. This study shows that significant alterations at proximal and distal sites of the insulin secretory pathway in HC islets may support the hyperinsulinemic state of these rats.

    Topics: Adaptation, Physiological; Adenylyl Cyclases; Adrenergic alpha-Agonists; Animals; Animals, Newborn; Calcium; Calcium Channels; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Cyclic AMP-Dependent Protein Kinases; Dietary Carbohydrates; Enzyme Inhibitors; Female; Gene Expression; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Hyperinsulinism; Insulin; Insulin Secretion; Islets of Langerhans; Norepinephrine; Peptide Fragments; Pregnancy; Protein Kinase C; Protein Precursors; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; RNA, Messenger; Signal Transduction

2000
Glucagon-like peptide (GLP)-1 and leptin concentrations in obese patients with Type 2 diabetes mellitus.
    Diabetic medicine : a journal of the British Diabetic Association, 2000, Volume: 17, Issue:10

    To assess differences in circulating leptin and glucagon-like peptide (GLP)-1 concentrations before and after an oral glucose load, in euglycaemic and isoinsulinaemic conditions, between obese patients with and without Type 2 diabetes mellitus.. Ten male obese (body mass index (BMI) > 30 kg/m2) patients with Type 2 diabetes and 20 matched non-diabetic subjects were studied. Leptin, GLP-1(7-36)amide and GLP-1(7-37) concentrations were measured 0, 30, 60, and 90 min after a 50-g oral glucose load administered 90 min after the beginning of a euglycaemic hyperinsulinaemic clamp.. GLP-1(7-36)amide concentrations before the glucose load were significantly lower in diabetic patients than in controls (median (quartiles): 50.5 (44.7-53.2) vs. 128.7(100-172.5) pg/ml; P < 0.01), while no difference was observed in baseline GLP-1(7-37). In non-diabetic subjects, GLP-1(7-36)amide and GLP-1(7-37) concentrations increased significantly after the oral glucose load, while no glucose-induced increase in GLP-1 concentration was observed in diabetic patients. GLP-1(7-36)amide at 30, 60, and 90 min, and GLP-1(7-37) at 30 min, of the glucose challenge, were significantly lower in diabetic patients. Leptin concentrations were not significantly different in diabetic patients when compared to non-diabetic subjects, and they did not change after the oral glucose load.. Leptin concentrations are not significantly modified in obese Type 2 diabetic patients. GLP-1(7-36)amide baseline concentrations are reduced in Type 2 diabetes; moreover, diabetic subjects show an impaired response of GLP-1 to oral glucose in euglycaemic, isoinsulinaemic conditions. This impairment, which is not the result of differences in glycaemia or insulinaemia during assessment, could contribute to the pathogenesis of hyperglycaemia in Type 2 diabetes mellitus.

    Topics: Blood Glucose; Diabetes Mellitus; Diabetes Mellitus, Type 2; Glucagon; Glucagon-Like Peptide 1; Glucose Clamp Technique; Glucose Tolerance Test; Glycated Hemoglobin; Humans; Hyperinsulinism; Insulin; Leptin; Male; Middle Aged; Obesity; Peptide Fragments; Protein Precursors

2000
Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice.
    Proceedings of the National Academy of Sciences of the United States of America, 1999, Jan-19, Volume: 96, Issue:2

    Leptin controls feeding behavior and insulin secretion from pancreatic beta-cells. Insulin stimulates the production of leptin, thereby establishing an adipoinsular axis. Earlier we identified leptin receptors on pancreatic beta-cells and showed leptin-mediated inhibition of insulin secretion by activation of ATP-sensitive potassium channels. Here we examine transcriptional effects of leptin on the promoter of the rat insulin I gene in rodent beta-cells. A fall in levels of preproinsulin mRNA is detected in vivo in islets of ob/ob mice 24 h after a single injection of leptin, in isolated ob/ob islets treated with leptin in vitro and in the beta-cell line INS-1 on leptin exposure when preproinsulin mRNA expression is stimulated by 25 mM glucose or 10 nM glucagon-like peptide 1. Under these conditions, transcriptional activity of -410 bp of the rat insulin I promoter is inhibited by leptin, whereas transactivation of a 5'-deleted promoter (-307 bp) is not. The -307 sequence contains the known glucose-responsive control elements (E2:A3/4). Constitutive activation of ATP-sensitive potassium channels by diazoxide does not alter leptin inhibition of preproinsulin mRNA levels. Distinct protein-DNA complexes appear on the rat insulin I promoter sequences located between -307 and -410 with nuclear extracts from ob/ob islets in response to leptin, including a signal transducer and activator of transcription (STAT)5b binding site. These results indicate that leptin inhibits transcription of the preproinsulin gene by altering transcription factor binding to sequences upstream from the elements (307 bp) that confer glucose responsivity to the rat insulin I gene promoter. Thus leptin exerts inhibitory effects on both insulin secretion and insulin gene expression in pancreatic beta-cells, but by different cellular mechanisms.

    Topics: Animals; Cell Line; DNA-Binding Proteins; Gene Expression Regulation; Glucagon; Glucagon-Like Peptide 1; Glucose; Hyperinsulinism; Insulin; Islets of Langerhans; Leptin; Mice; Mice, Obese; Nuclear Proteins; Peptide Fragments; Proinsulin; Promoter Regions, Genetic; Protein Precursors; Proteins; Rats; Recombinant Proteins; RNA, Messenger; Transcription, Genetic

1999
Euglycaemic hyperinsulinaemia does not affect gastric emptying in type I and type II diabetes mellitus.
    Diabetologia, 1999, Volume: 42, Issue:3

    Hyperglycaemia slows gastric emptying in both normal subjects and patients with diabetes mellitus. The mechanisms mediating this effect, particularly the potential role of insulin, are uncertain. Hyperinsulinaemia has been reported to slow gastric emptying in normal subjects during euglycaemia. The purpose of this study was to evaluate the effect of euglycaemic hyperinsulinaemia on gastric emptying in Type I (insulin-dependent) and Type II (noninsulin-dependent) diabetes mellitus. In six patients with uncomplicated Type I and eight patients with uncomplicated Type II diabetes mellitus, measurements of gastric emptying were done on 2 separate days. No patients had gastrointestinal symptoms or cardiovascular autonomic neuropathy. The insulin infusion rate was 40 mU x m(-2) x min(-1) on one day and 80 mU x m(-2) x min(-1) on the other. Gastric emptying and intragastric meal distribution were measured using a scintigraphic technique for 3 h after ingestion of a mixed solid/liquid meal and results compared with a range established in normal volunteers. In both Type I and Type II patients the serum insulin concentration had no effect on gastric emptying or intragastric meal distribution of solids or liquids. When gastric emptying during insulin infusion rates of 40 mU x m(-2) x min(-1) and 80 mU x m(-2) x min(-1) were compared the solid T50 was 137.8+/-24.6 min vs. 128.7+/-24.3 min and liquid T50 was 36.7+/-19.4 min vs. 40.4+/-15.7 min in the Type I patients; the solid T50 was 94.9+/-19.1 vs. 86.1+/-10.7 min and liquid T50 was 21.8+/-6.9 min vs. 21.8+/-5.9 min in the Type II patients. We conclude that hyperinsulinaemia during euglycaemia has no notable effect on gastric emptying in patients with uncomplicated Type I and Type II diabetes; any effect of insulin on gastric emptying in patients with diabetes is likely to be minimal.

    Topics: Adult; Amyloid; Blood Glucose; C-Peptide; Cholecystokinin; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Female; Gastric Emptying; Glucagon; Glucagon-Like Peptide 1; Glucose Clamp Technique; Glycated Hemoglobin; Humans; Hyperinsulinism; Hypoglycemic Agents; Infusions, Intravenous; Insulin; Islet Amyloid Polypeptide; Male; Peptide Fragments; Protein Precursors

1999
Elevated post-prandial gastric inhibitory polypeptide concentrations in hypertriglyceridaemic subjects.
    Clinical science (London, England : 1979), 1997, Volume: 93, Issue:4

    1. We investigated whether abnormalities of gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (7-36 amide) (GLP-1) contribute to the hypertriglyceridaemia and hyperinsulinaemia in hypertriglyceridaemic subjects. Serum triglycerides and plasma glucose GIP, GLP-1 and immunoreactive insulin (IRI) concentrations were measured before and after a mixed meal in 15 hypertriglyceridaemic patients and in eight healthy normotriglyceridaemic control subjects. 2. Integrated post-prandial GIP concentrations were greater than in controls (P < 0.05) and correlated positively with both fasting and integrated post-prandial triglyceride concentrations (P < 0.05 for both). Fasting and integrated post-prandial IRI levels were higher in hypertriglyceridaemic subjects than in controls (P < 0.02 and P < 0.05 respectively) and correlated positively with fasting triglycerides (P < 0.02 and P < 0.001 respectively) and integrated post-prandial triglycerides (P < 0.005 and P < 0.05 respectively). There was no correlation between GIP concentrations and either fasting or post-prandial IRI levels. Fasting and post-prandial concentrations of GLP-1 were similar in patients and controls. 3. Hypertriglyceridaemic subjects have post-prandial hyperGIPaemia in addition to the well-documented hyperinsulinaemia. We found no association between GIP and insulin. There is, however, clear evidence for an association between post-prandial GIP concentrations and triglyceride levels. We suggest that this association may depend on changes in lipoprotein lipase activity and that there may be a feedback loop between GIP and triglyceride lipolysis.

    Topics: Adult; Blood Glucose; Cholesterol; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hyperinsulinism; Hypertriglyceridemia; Male; Middle Aged; Peptide Fragments; Postprandial Period; Statistics, Nonparametric

1997
Do gastric inhibitory polypeptide and glucagon-like peptide-1 (7-36) amide contribute to the hyperinsulinaemia of pregnancy?
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 1996, Volume: 28, Issue:5

    Topics: Adult; Blood Glucose; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Hyperinsulinism; Insulin; Peptide Fragments; Pregnancy; Pregnancy Complications; Premenopause; Protein Precursors

1996
The entero-insular axis in polycystic ovarian syndrome.
    Annals of clinical biochemistry, 1996, Volume: 33 ( Pt 3)

    We investigated the contributions made by the entero-insular axis, proinsulin and the fractional hepatic extraction of insulin to the hyperinsulinaemia characteristic of polycystic ovarian syndrome (PCOS). We measured plasma glucose, gastric inhibitory polypeptide (GIP), glucagon-like peptide-1 (7-36 amide) (GLP-1(7-36) amide), immunoreactive insulin (IRI), intact proinsulin (IPI), and C-peptide concentrations during a 75 g oral glucose tolerance test in seven normal weight women with PCOS and eight healthy women. Women with PCOS had higher fasting (P = 0.05) and integrated (P < 0.01) IRI concentrations than controls. Fasting C-peptide levels were similar in both groups but integrated C-peptide (P < 0.05) concentrations were greater in PCOS subjects than controls. Fasting and integrated concentrations of glucose, GIP and GLP-1(7-36) amide were similar in subjects with PCOS and controls. Although fasting IPI concentrations were similar in both groups, integrated IPI concentrations were higher (P = 0.05) in patients with PCOS. Women with PCOS had similar fasting but higher (P < 0.05) integrated IRI:C-peptide molar ratios than controls. Fasting and integrated IPI:IRI molar ratios were similar in both groups. These results confirm that lean women with PCOS have peripheral hyperinsulinaemia. The mild fasting hyperinsulinaemia is due to increased pancreatic secretion, whereas the stimulated hyperinsulinaemia is due to both pancreatic hypersecretion and reduced fractional hepatic extraction of insulin. Hyperproinsulinaemia is modest and appropriate in PCOS, GIP and GLP-1(7-36) amide do not contribute to the stimulated hyperinsulinaemia in PCOS.

    Topics: Adult; Blood Glucose; C-Peptide; Case-Control Studies; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Tolerance Test; Humans; Hyperinsulinism; Insulin; Neurotransmitter Agents; Peptide Fragments; Polycystic Ovary Syndrome; Proinsulin

1996
The effects of acute hyperglycemia and hyperinsulinemia on plasma leptin levels: its relationships with body fat, visceral adiposity, and age in women.
    The Journal of clinical endocrinology and metabolism, 1996, Volume: 81, Issue:12

    The acute effects of hyperglycemia and hyperinsulinemia on plasma leptin levels were determined in 42 highly trained women athletes (18-69 yr) and 14 sedentary control women (18-50 yr, body mass index < 25 kg/m2), using the glucose clamp technique. The relationships of body composition, physical fitness, age, and plasma leptin levels were examined in all participants. In addition, the effect of weight loss and aerobic exercise and plasma leptin levels were examined in 4 Newly diagnosed untreated noninsulin-dependent diabetes mellitus patients. The time course of plasma leptin levels changed little from basal during hyperglycemic (approximately 10 mmol/L) or hyperinsulinemic-euglycemic (400-3000 pmol/L) clamp studies in either athletes, controls, or noninsulin-dependent diabetes mellitus patients. A strong correlation between plasma leptin levels and fasting insulin was present (r = 0.60, P < 0.001). Plasma leptin and percent fat were higher in controls than athletes (12.6 vs. 4.0 ng/mL and 33.2 vs. 20.8%; both P < 0.001). The relationships between percent fat (dual-energy x-ray absorptiometry) or intraabdominal adipose tissue (computed tomography) and leptin for the entire group were highly significant (r = 0.70, r = 0.52; P < 0.001). When percent fat was controlled, the relationship between fasting insulin and leptin remained (P < 0.002). There was not a significant association between age and plasma leptin levels in a univariate analysis in this population. However, after adjustment for percent fat, a significant inverse relationship between age and leptin appeared (P < 0.05). The weight loss and aerobic exercise program resulted in an average 6 +/- 0.8 kg wt loss. Leptin levels decreased > 28% in each patient (P < 0.01). In conclusion, neither acute hyperglycemia or hyperinsulinemia affects plasma leptin levels. Percent fat is the strongest predictor of leptin levels, even in lean, highly trained women athletes.

    Topics: Adipose Tissue; Adolescent; Adult; Age Factors; Aged; Diabetes Mellitus, Type 2; Exercise; Female; Glucagon; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Hyperinsulinism; Leptin; Middle Aged; Peptide Fragments; Protein Precursors; Proteins; Weight Loss

1996
[A case of hyperinsulinemia due to hypersecretion of incretin].
    Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics, 1992, Volume: 29, Issue:2

    A 65-year-old male presented with postprandial hypoglycemic episodes. He had normal glucose tolerance, but plasma glucose reached a hypoglycemic level of 31 mg/dl at 120 min during 75 g oral glucose tolerance test. He had markedly increased insulin response to oral glucose but not to intravenous glucose, intravenous arginine or intravenous glucagon. Hyperresponse of insulin after oral but not intravenous glucose suggested the possible involvement of insulinotropic hormonal factor in the gut (incretin) in hyperinsulinemia of this patient. Therefore we evaluated the secretory response of glucagon like peptide-1 (GLP-1), a most likely candidate for incretin, to oral and intravenous glucose administration. Plasma GLP-1 response to oral glucose was almost five times greater than that of normal subjects. On the other hand, there was no significant response in plasma GLP-1 after intravenous glucose. These results suggest that hypersecretion of GLP-1 may be responsible for the hyperinsulinemia after oral glucose in this patient.

    Topics: Aged; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Tolerance Test; Humans; Hyperinsulinism; Insulin; Insulin Secretion; Male; Peptide Fragments; Protein Precursors

1992