glucagon-like-peptide-1 and Disease-Models--Animal

glucagon-like-peptide-1 has been researched along with Disease-Models--Animal* in 384 studies

Reviews

30 review(s) available for glucagon-like-peptide-1 and Disease-Models--Animal

ArticleYear
Glucose effectiveness: Lessons from studies on insulin-independent glucose clearance in mice.
    Journal of diabetes investigation, 2021, Volume: 12, Issue:5

    Besides insulin-mediated transport of glucose into the cells, an important role is also played by the non-insulin-mediated transport. This latter process is called glucose effectiveness (acronym S

    Topics: Administration, Intravenous; Adult; Aged; Animals; Biological Transport; Diabetes Mellitus, Type 2; Disease Models, Animal; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucose; Homeostasis; Humans; Incretins; Insulin; Insulin Resistance; Insulin Secretion; Male; Mice; Middle Aged

2021
Mechanisms of Beta-Cell Apoptosis in Type 2 Diabetes-Prone Situations and Potential Protection by GLP-1-Based Therapies.
    International journal of molecular sciences, 2021, May-18, Volume: 22, Issue:10

    Type 2 diabetes (T2D) is characterized by chronic hyperglycemia secondary to the decline of functional beta-cells and is usually accompanied by a reduced sensitivity to insulin. Whereas altered beta-cell function plays a key role in T2D onset, a decreased beta-cell mass was also reported to contribute to the pathophysiology of this metabolic disease. The decreased beta-cell mass in T2D is, at least in part, attributed to beta-cell apoptosis that is triggered by diabetogenic situations such as amyloid deposits, lipotoxicity and glucotoxicity. In this review, we discussed the molecular mechanisms involved in pancreatic beta-cell apoptosis under such diabetes-prone situations. Finally, we considered the molecular signaling pathways recruited by glucagon-like peptide-1-based therapies to potentially protect beta-cells from death under diabetogenic situations.

    Topics: Animals; Apoptosis; Cells, Cultured; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose; Humans; Hyperglycemia; Insulin; Insulin Resistance; Insulin-Secreting Cells; Islets of Langerhans; Signal Transduction

2021
Islet adaptation in GIP receptor knockout mice.
    Peptides, 2020, Volume: 125

    Glucose-dependent insulinotropic polypeptide (GIP) receptor knockout (KO) mice are tools for studying GIP physiology. Previous results have demonstrated that these mice have impaired insulin response to oral glucose. In this study, we examined the insulin response to intravenous glucose by measuring glucose, insulin and C-peptide after intravenous glucose (0.35 g/kg) in 5-h fasted female GIP receptor KO mice and their wild-type (WT) littermates. The 1 min insulin and C-peptide responses to intravenous glucose were significantly enhanced in GIP receptor KO mice (n = 26) compared to WT mice (n = 30) as was beta cell function (area under the 50 min C-peptide curve divided by area under the 50 min curve for glucose) (P = 0.001). Beta cell function after intravenous glucose was also enhanced in GIP receptor KO mice in the presence of the glucagon-like peptide-1 receptor antagonist exendin 9 (30 nmol/kg; P = 0.007), the muscarinic antagonist atropine (5 mg/kg; P = 0.007) and the combination of the alpha-adrenoceptor antagonist yohimbine (1.4 mg/kg) and the beta-adrenoceptor antagonist propranolol (2.5 mg/kg; P = 0.042). Analysis of the regression between fasting glucose (6.8 ± 0.1 mmol/l in GIP receptor KO mice and 7.5 ± 0.2 mmol/l in WT mice, P = 0.003) and the 1 min C-peptide response to intravenous glucose showed a negative linear regression between these variables in both WT (n = 60; r = -0.425, P = 0.001) and GIP receptor KO mice (n = 56; r = -0.474, P < 0.001). We conclude that there is a beta cell adaptation in GIP receptor KO mice resulting in enhanced insulin secretion after intravenous glucose to which slight long-term reduction in circulating glucose in these mice may contribute.

    Topics: Adaptation, Physiological; Animals; Disease Models, Animal; Fasting; Female; Glucagon-Like Peptide 1; Glucose; Hypoglycemic Agents; Insulin; Insulin-Secreting Cells; Mice; Mice, Knockout; Receptors, Gastrointestinal Hormone; Sweetening Agents

2020
Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms.
    Peptides, 2020, Volume: 131

    The gut-brain hormone glucagon-like peptide-1 (GLP-1) has received immense attention over the last couple of decades for its widespread metabolic effects. Notably, intestinal GLP-1 has been recognized as an endogenous satiation signal. Yet, the underlying mechanisms and the pathophysiological relevance of intestinal GLP-1 in obesity remain unclear. This review first recapitulates early findings indicating that intestinal GLP-1 is an endogenous satiation signal, whose eating effects are primarily mediated by vagal afferents. Second, on the basis of recent findings challenging a paracrine action of intestinal GLP-1, a new model for the mediation of GLP-1 effects on eating by two discrete vagal afferent subsets will be proposed. The central mechanisms processing the vagal anorexigenic signals need however to be further delineated. Finally, the idea that intestinal GLP-1 secretion and/or effects on eating are altered in obesity and play a pathophysiological role in the development of obesity will be discussed. In summary, despite the successful therapeutic use of GLP-1 receptor agonists as anti-obesity drugs, the eating effects of intestinal GLP-1 still remain to be elucidated. Specifically, the findings presented here call for a further evaluation of the vago-central neuronal substrates activated by intestinal GLP-1 and for further investigation of its pathophysiological role in obesity.

    Topics: Animals; Appetite; Brain; Disease Models, Animal; Eating; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Intestinal Mucosa; Liraglutide; Obesity; Satiation; Signal Transduction; Vagus Nerve

2020
Neuroprotective Actions of Glucagon-Like Peptide-1 (GLP-1) Analogues in Alzheimer's and Parkinson's Diseases.
    CNS drugs, 2019, Volume: 33, Issue:3

    The current absence of effective treatments for Alzheimer's disease (AD) and Parkinson's disease (PD) reflects an incomplete knowledge of the underlying disease processes. Considerable efforts have been made to investigate the central pathological features of these diseases, giving rise to numerous attempts to develop compounds that interfere with such features. However, further characterization of the molecular targets within the interconnected AD and PD pathways is still required. Impaired brain insulin signaling has emerged as a feature that contributes to neuronal dysfunction in both AD and PD, leading to strategies aiming at restoring this pathway in the brain. Long-acting glucagon-like peptide-1 (GLP-1) analogues marketed for treatment of type 2 diabetes mellitus have been tested and have shown encouraging protective actions in experimental models of AD and PD as well as in initial clinical trials. We review studies revealing the neuroprotective actions of GLP-1 analogues in pre-clinical models of AD and PD and promising results from recent clinical trials.

    Topics: Alzheimer Disease; Animals; Brain; Clinical Trials as Topic; Disease Models, Animal; Glucagon-Like Peptide 1; Humans; Insulin Resistance; Neuroprotective Agents; Parkinson Disease

2019
Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on Bone Cell Metabolism.
    Basic & clinical pharmacology & toxicology, 2018, Volume: 122, Issue:1

    The relationship between gut and skeleton is increasingly recognized as part of the integrated physiology of the whole organism. The incretin hormones gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from the intestine in response to nutrient intake and exhibit several physiological functions including regulation of islet hormone secretion and glucose levels. A number of GLP-1 receptor agonists (GLP-1RAs) are currently used in treatment of type 2 diabetes and obesity. However, GIP and GLP-1 cognate receptors are widely expressed suggesting that incretin hormones mediate effects beyond control of glucose homeostasis, and reports on associations between incretin hormones and bone metabolism have emerged. The aim of this MiniReview was to provide an overview of current knowledge regarding the in vivo and in vitro effects of GIP and GLP-1 on bone metabolism. We identified a total of 30 pre-clinical and clinical investigations of the effects of GIP, GLP-1 and GLP-1RAs on bone turnover markers, bone mineral density (BMD), bone microarchitecture and fracture risk. Studies conducted in cell cultures and rodents demonstrated that GIP and GLP-1 play a role in regulating skeletal homeostasis, with pre-clinical data suggesting that GIP inhibits bone resorption whereas GLP-1 may promote bone formation and enhance bone material properties. These effects are not corroborated by clinical studies. While there is evidence of effects of GIP and GLP-1 on bone metabolism in pre-clinical investigations, clinical trials are needed to clarify whether similar effects are present and clinically relevant in humans.

    Topics: Animals; Bone and Bones; Bone Density; Bone Resorption; Diabetes Mellitus, Type 2; Disease Models, Animal; Fractures, Bone; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Insulin; Obesity; Osteoblasts; Osteocalcin; Osteoclasts

2018
RD Lawrence Lecture 2017 Incretins: the intelligent hormones in diabetes.
    Diabetic medicine : a journal of the British Diabetic Association, 2018, Volume: 35, Issue:1

    The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have attracted considerable scientific and clinical interest due largely to their insulin-releasing and glucose-lowering properties. Indeed, GLP-1-based therapies are now key treatment options for many people with diabetes worldwide. In contrast, GIP-based agents have yet to reach the clinic based primarily on the impaired insulinotropic action of GIP observed in people with diabetes. Nevertheless, GIP is a key physiological regulator of insulin secretion and stable forms of GIP show much promise in rodent models to alleviate diabetes-obesity. Recent studies suggest that GIP may have an important role to play in a combination therapeutic approach or bioengineered with other gut peptides. Moreover, recent experimental studies indicate that incretins also exert pleiotropic effects in regions of the brain associated with learning and memory, thereby supporting preclinical data demonstrating that incretin-based drugs improve cognitive function. This review article, based on the RD Lawrence Lecture presented at Diabetes UK Annual Professional Conference (2017), provides a brief overview of incretins with a major focus on GIP, the development of designer GIP analogues, and how these molecules can improve cognition. Thus, incretins can be considered as 'the intelligent hormones' and may hold the key to successfully treating the alarming rise in neurodegenerative disorders.

    Topics: Alzheimer Disease; Animals; Cognition; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Incretins; Learning; Memory; Nootropic Agents

2018
Incretin-based therapy for the treatment of bone fragility in diabetes mellitus.
    Peptides, 2018, Volume: 100

    Bone fractures are common comorbidities of type 2 diabetes mellitus (T2DM). Bone fracture incidence seems to develop due to increased risk of falls, poor bone quality and/or anti-diabetic medications. Previously, a relation between gut hormones and bone has been suspected. Most recent evidences suggest indeed that two gut hormones, namely glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), may control bone remodeling and quality. The GIP receptor is expressed in bone cells and knockout of either GIP or its receptor induces severe bone quality alterations. Similar alterations are also encountered in GLP-1 receptor knock-out animals associated with abnormal osteoclast resorption. Some GLP-1 receptor agonist (GLP-1RA) have been approved for the treatment of type 2 diabetes mellitus and although clinical trials may not have been designed to investigate bone fracture, first results suggest that GLP-1RA may not exacerbate abnormal bone quality observed in T2DM. The recent design of double and triple gut hormone agonists may also represent a suitable alternative for restoring compromised bone quality observed in T2DM. However, although most of these new molecules demonstrated weight loss action, little is known on their bone safety. The present review summarizes the most recent findings on peptide-based incretin therapy and bone physiology.

    Topics: Animals; Bone Remodeling; Comorbidity; Diabetes Mellitus, Type 2; Disease Models, Animal; Fractures, Bone; Gastric Inhibitory Polypeptide; Gastrointestinal Hormones; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Mice; Mice, Knockout

2018
Incretin actions and consequences of incretin-based therapies: lessons from complementary animal models.
    The Journal of pathology, 2016, Volume: 238, Issue:2

    The two incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP1), were discovered 45 and 30 years ago. Initially, only their insulinotropic effect on pancreatic β cells was known. Over the years, physiological and pharmacological effects of GIP and GLP1 in numerous extrapancreatic tissues were discovered which partially overlap, but may also be specific for GIP or GLP1 in certain target tissues. While the insulinotropic effect of GIP was found to be blunted in patients with type 2 diabetes, the function of GLP1 is preserved and GLP1 receptor agonists and dipeptidyl-peptidase 4 (DPP4) inhibitors, which prolong the half-life of incretins, are widely used in diabetes therapy. Wild-type and genetically modified rodent models have provided important mechanistic insights into the incretin system, but may have limitations in predicting the clinical efficacy and safety of incretin-based therapies. This review summarizes insights from rodent and non-rodent models (pig, non-human primate) into physiological and pharmacological incretin effects, with a focus on the pancreas. Similarities and differences between species are discussed and the increasing potential of genetically engineered pig models for translational incretin research is highlighted.

    Topics: Animals; Animals, Genetically Modified; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hypoglycemic Agents; Incretins; Insulin; Insulin Secretion; Insulin-Secreting Cells; Liraglutide; Mice; Mice, Knockout; Primates; Receptors, Gastrointestinal Hormone; Rodentia; Swine

2016
The incretin system ABCs in obesity and diabetes - novel therapeutic strategies for weight loss and beyond.
    Obesity reviews : an official journal of the International Association for the Study of Obesity, 2016, Volume: 17, Issue:7

    Incretins are gastrointestinal-derived hormones released in response to a meal playing a key role in the regulation of postprandial secretion of insulin (incretin effect) and glucagon by the pancreas. Both incretins, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1), have several other actions by peripheral and central mechanisms. GLP-1 regulates body weight by inhibiting appetite and delaying gastric, emptying actions that are dependent on central nervous system GLP-1 receptor activation. Several other hormones and gut peptides, including leptin and ghrelin, interact with GLP-1 to modulate appetite. GLP-1 is rapidly degraded by the multifunctional enzyme dipeptidyl peptidase-4 (DPP-4). DPP-4 is involved in adipose tissue inflammation, which is associated with insulin resistance and diabetes progression, being a common pathophysiological mechanism in obesity-related complications. Furthermore, the incretin system appears to provide the basis for understanding the high weight loss efficacy of bariatric surgery, a widely used treatment for obesity, often in association with diabetes. The present review brings together new insights into obesity pathogenesis, integrating GLP-1 and DPP-4 in the complex interplay between obesity and inflammation, namely, in diabetic patients. This in turn will provide the basis for novel incretin-based therapeutic strategies for obesity and diabetes with promising benefits in addition to weight loss. © 2016 World Obesity.

    Topics: Animals; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Insulin; Insulin Secretion; Obesity; Weight Loss

2016
Anti-atherogenic and anti-inflammatory properties of glucagon-like peptide-1, glucose-dependent insulinotropic polypepide, and dipeptidyl peptidase-4 inhibitors in experimental animals.
    Journal of diabetes investigation, 2016, Volume: 7 Suppl 1

    We reported that native incretins, liraglutide and dipeptidyl peptidase-4 inhibitors (DPP-4i) all confer an anti-atherosclerotic effect in apolipoprotein E-null (Apoe (-/-)) mice. We confirmed the anti-atherogenic property of incretin-related agents in the mouse wire injury model, in which the neointimal formation in the femoral artery is remarkably suppressed. Furthermore, we showed that DPP-4i substantially suppresses plaque formation in coronary arteries with a marked reduction in the accumulation of macrophages in cholesterol-fed rabbits. DPP-4i showed an anti-atherosclerotic effect in Apoe (-/-) mice mainly through the actions of glucagon-like peptide-1 and glucose-dependent insulinotropic polypepide. However, the dual incretin receptor antagonists partially attenuated the suppressive effect of DPP-4i on atherosclerosis in diabetic Apoe (-/-) mice, suggesting an incretin-independent mechanism. Exendin-4 and glucose-dependent insulinotropic polypepide elicited cyclic adenosine monophosphate generation, and suppressed the lipopolysaccharide-induced gene expression of inflammatory molecules, such as interleukin-1β, interleukin-6 and tumor necrosis factor-α, in U937 human monocytes. This suppressive effect, however, was attenuated by an inhibitor of adenylate cyclase and mimicked by 8-bromo-cyclic adenosine monophosphate or forskolin. DPP-4i substantially suppressed the lipopolysaccharide-induced expression of inflammatory cytokines without affecting cyclic adenosine monophosphate generation or cell proliferation. DPP-4i more strongly suppressed the lipopolysaccharide-induced gene expression of inflammatory molecules than incretins, most likely through inactivation of CD26. Glucagon-like peptide-1 and glucose-dependent insulinotropic polypepide suppressed oxidized low-density lipoprotein-induced macrophage foam cell formation in a receptor-dependent manner, which was associated with the downregulation of acyl-coenzyme A cholesterol acyltransferase-1 and CD36, as well as the up-regulation of adenosine triphosphate-binding cassette transporter A1. Our studies strongly suggest that incretin-related agents have favorable effects on macrophage-driven atherosclerosis in experimental animals.

    Topics: Animals; Anti-Inflammatory Agents; Apolipoproteins E; Atherosclerosis; Coronary Restenosis; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Foam Cells; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Humans; Hyperplasia; Incretins; Inflammation; Inflammation Mediators; Liraglutide; Macrophages; Mice; Mice, Knockout; Monocytes

2016
Contribution of the distal small intestine to metabolic improvement after bariatric/metabolic surgery: Lessons from ileal transposition surgery.
    Journal of diabetes investigation, 2016, Volume: 7 Suppl 1

    Roux-en Y gastric bypass is a highly effective bariatric/metabolic surgical procedure that can induce robust weight loss and even remission of type 2 diabetes. One of the characteristic consequences of Roux-en Y gastric bypass is the expedited nutrient delivery to the distal small intestine, where L-cells are abundant and bile acid reabsorption occurs. To examine the role of the distal small intestine in isolation from other components of Roux-en Y gastric bypass, the ileal transposition (IT) surgery has been used in various rat models. IT relocates the distal ileal segment to the upper jejunum distal to the ligament of Treitz without any other alterations in the gastrointestinal anatomy. Therefore, IT exposes the distal ileal tissue to ingested nutrients after a meal faster than the normal condition. Although there is some inconsistency in the effect of IT according to different types of rat models and different types of surgical protocols, IT typically improved glucose tolerance, increased insulin sensitivity and induced weight loss, and the findings were more prominent in obese diabetic rats. Suggested mechanisms for the metabolic improvements after IT include increased L-cell secretion (e.g., glucagon-like peptides and peptide YY), altered bile acid metabolism, altered host-microbial interaction, attenuated metabolic endotoxemia and many others. Based on the effect of IT, we can conclude that the contribution of the distal small intestine to the metabolic benefits of bariatric/metabolic surgery is quite considerable. By unveiling the mechanism of action of IT, we might revolutionize the treatment for obesity and type 2 diabetes.

    Topics: Animals; Body Weight; Diabetes Mellitus, Type 2; Disease Models, Animal; Eating; Endotoxemia; Enteroendocrine Cells; Gastric Bypass; Gastrointestinal Microbiome; Glucagon; Glucagon-Like Peptide 1; Glucose Tolerance Test; Ileum; Insulin; Insulin Resistance; Insulin Secretion; Rats

2016
Mechanisms of surgical control of type 2 diabetes: GLP-1 is key factor.
    Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery, 2016, Volume: 12, Issue:6

    GLP-1 secretion in response to meals is dramatically increased after gastric bypass operations. GLP-1 is a powerful insulinotropic and anorectic hormone, and analogs of GLP-1 are widely used for the treatment of diabetes and recently approved also for obesity treatment. It is, therefore, reasonable to assume that the exaggerated GLP-1 secretion contributes to the antidiabetic and anorectic effects of gastric bypass. Indeed, human experiments with the GLP-1 receptor antagonist, Exendin 9-39, have shown that the improved insulin secretion, which is responsible for part of the antidiabetic effect of the operation, is reduced and or abolished after GLP-1 receptor blockade. Also the postoperative improvement of glucose tolerance is eliminated and or reduced by the antagonist, pointing to a key role for the exaggerated GLP-1 secretion. Indeed, there is evidence that the exaggerated GLP-1 secretion is also responsible for postprandial hypoglycemia sometimes observed after bypass. Other operations (biliopancreatic-diversion and or sleeve gastrectomy) appear to involve different and/or additional mechanisms, and so does experimental bariatric surgery in rodents. However, unlike bypass surgery in humans, the rodent operations are generally associated with increased energy metabolism pointing to an entirely different mechanism of action in the animals.

    Topics: Animals; Bile Acids and Salts; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Bypass; Gastrointestinal Hormones; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Humans; Insulin; Insulin Secretion; Intestinal Absorption; Mice; Obesity; Peptide Fragments; Remission Induction

2016
GLP-1 is not the key mediator of the health benefits of metabolic surgery.
    Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery, 2016, Volume: 12, Issue:6

    The identification of key factors accounting for the health benefits of metabolic surgery is a research priority, as it may help design a medical therapy mimicking this powerful surgical tool. Because of its well-known effects on glucose metabolism and appetite, amongst the several proposed factors, glucagon-like peptide-1 (GLP-1) has been the most extensively evaluated. A large number of association studies have been reported suggesting that the striking changes in GLP-1 after Roux-en-Y gastric bypass and sleeve gastrectomy play a role in the metabolic benefits associated with these surgical techniques. In this review article, we challenge this view. Studies in humans using the specific GLP-1 receptor antagonist exendin 9-39 or the nonspecific inhibitor of GLP-1 secretion octreotide, as well as data derived from genetically engineered mouse models, provide strong evidence that although GLP-1 retains its physiologic role, it is not the cause of the amelioration of glucose tolerance or sustained weight loss after Roux-en-Y gastric bypass or sleeve gastrectomy. It is unlikely that "medical metabolic surgery" will be based on a single component. Importantly, the scrutiny of GLP-1 as candidate has taught us studies beyond association are required to thoroughly assess whether any of the additionally proposed mediators should be part of the cocktail of factors that could medically mimic metabolic surgery.

    Topics: Animals; Blood Glucose; Caloric Restriction; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastrectomy; Gastric Bypass; Glucagon-Like Peptide 1; Homeostasis; Humans; Mice; Mice, Knockout; Weight Loss

2016
Incretin-related drug therapy in heart failure.
    Current heart failure reports, 2015, Volume: 12, Issue:1

    The new pharmacological classes of GLP-1 agonists and DPP-4 inhibitors are now widely used in diabetes and have been postulated as beneficial in heart failure. These proposed benefits arise from the inter-related pathophysiologies of diabetes and heart failure (diabetes increases the risk of heart failure, and heart failure can induce insulin resistance) and also in light of the dysfunctional myocardial energetics seen in heart failure. The normal heart utilizes predominantly fatty acids for energy production, but there is some evidence to suggest that increased myocardial glucose uptake may be beneficial for the failing heart. Thus, GLP-1 agonists, which stimulate glucose-dependent insulin release and enhance myocardial glucose uptake, have become a focus of investigation in both animal models and humans with heart failure. Limited pilot data for GLP-1 agonists shows potential improvements in systolic function, hemodynamics, and quality of life, forming the basis for current phase II trials.

    Topics: Animals; Cardiovascular Agents; Clinical Trials as Topic; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Heart Failure; Humans; Incretins

2015
Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids.
    The Journal of nutritional biochemistry, 2015, Volume: 26, Issue:6

    The widespread acceptance that increased dietary n-3 polyunsaturated fatty acids (PUFAs), especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), improve health is based on extensive studies in animals, isolated cells and humans. Visceral adiposity is part of the metabolic syndrome, together with insulin resistance, dyslipidemia, hypertension and inflammation. Alleviation of metabolic syndrome requires normalization of insulin release and responses. This review assesses our current knowledge of the mechanisms that allow n-3 PUFAs to improve insulin secretion and sensitivity. EPA has been more extensively studied than either ALA or DHA. The complex actions of EPA include increased G-protein-receptor-mediated release of glucagon-like peptide 1 (GLP-1) from enteroendocrine L-cells in the intestine, up-regulation of the apelin pathway and down-regulation of other control pathways to promote insulin secretion by the pancreatic β-cells, together with suppression of inflammatory responses to adipokines, inhibition of peroxisome proliferator-activated receptor α actions and prevention of decreased insulin-like growth factor-1 secretion to improve peripheral insulin responses. The receptors involved and the mechanisms of action probably differ for ALA and DHA, with antiobesity effects predominating for ALA and anti-inflammatory effects for DHA. Modifying both GLP-1 release and the actions of adipokines by n-3 PUFAs could lead to additive improvements in both insulin secretion and sensitivity.

    Topics: Adipokines; alpha-Linolenic Acid; Animals; Disease Models, Animal; Docosahexaenoic Acids; Down-Regulation; Eicosapentaenoic Acid; Glucagon-Like Peptide 1; Humans; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; PPAR alpha; Up-Regulation

2015
Glucagon-like peptides 1 and 2: intestinal hormones implicated in the pathophysiology of mucositis.
    Current opinion in supportive and palliative care, 2015, Volume: 9, Issue:2

    Chemotherapy often causes adverse effects, including pain, bloating, diarrhea, and inflammation and ulceration of the mucous membranes lining the digestive tract, which are collectively referred to as mucositis. Unfortunately, no remedy has been found yet to manage these side-effects.. The intestinal glucagon-like peptide-2 (GLP-2) is secreted from the intestinal endocrine L cells after nutrient intake, but recent findings show that the peptide concentration in the plasma also rises after intestinal injury and that GLP-2 receptor activation is crucial for intestinal healing. The antidiabetic hormone GLP-1, cosecreted with GLP-2, diminished mucositis in an animal model of the condition. Therefore, both peptides could be involved in the pathophysiology of mucositis.. The intestinal GLPs have shown beneficial effects in experimental trials and have potential for therapeutic use. In type 2 diabetic and obese patients, GLP secretion is impaired. Elucidating the role of these endogenous hormones could lead to the identification of mucositis risk factors and an alternative preventive therapy for these patients.

    Topics: Animals; Antineoplastic Agents; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Humans; Mucositis; Neoplasms

2015
Intestinal nutrient sensing and blood glucose control.
    Current opinion in clinical nutrition and metabolic care, 2015, Volume: 18, Issue:4

    Nutrient-specific sensor systems in enteroendocrine cells detect intestinal contents and cause gut hormone release upon activation. Among these peptide hormones, the incretins glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 are of particular interest by their role in glucose homeostasis, metabolic control and for proper ß-cell function. This review focuses on intestinal nutrient-sensing processes and their role in health and disease.. All macronutrients, respectively, their digestion products can cause incretin release by targeting specific sensors. Luminal glucose is the strongest stimulant for incretin release with the Na-dependent glucose transporter as the prime sensor. For peptides, the H-dependent peptide transporter together with calcium-sensing-receptor act as a sensing system. That transporters can function as nutrient-sensing 'transceptors' is conceptually new as G-protein coupled receptors so far were thought to be the sensing entities. This still holds true for GPR40 and GPR120 as sensors for medium/long-chain fatty acids and GPR41 and GPR43 for microbiota-derived short-chain fatty acids. Synthetic agonists for these receptors show impressive effects on glucagon-like peptide 1 output and glycemic control. Moreover, the remarkable and immediate antidiabetic effects of bariatric surgery/gastric bypass put intestinal nutrient sensing into focus of new strategies for metabolic control.. Targeting the intestinal nutrient-sensing machinery by dietary and/or pharmacological means holds promises in particular for treatment of type 2 diabetes. This interest may help to better understand the nutrient-sensing processes and the involvement of the intestine in overall endocrine, neuronal and metabolic control.

    Topics: Animals; Bariatric Surgery; Blood Glucose; Diabetes Mellitus, Type 2; Dietary Carbohydrates; Dietary Fiber; Dietary Proteins; Disease Models, Animal; Enteroendocrine Cells; Fatty Acids, Volatile; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Humans; Incretins; Intestinal Mucosa; Intestines

2015
Evaluation of neuroprotective effect of glucagon-like peptide 1 analogs using neuroimaging.
    Alzheimer's & dementia : the journal of the Alzheimer's Association, 2014, Volume: 10, Issue:1 Suppl

    There is increasing evidence to suggest that glucagon-like peptide 1 (GLP1) analogs are neuroprotective in animal models. In transgenic mice, both insulin and GLP1 analogs reduced inflammation, increased stem cell proliferation, reduced apoptosis, and increased dendritic growth. Furthermore, insulin desensitization was also observed in these animals, and reduced glucose uptake in the brain, as shown on FDG-PET imaging. In this review we discussed the role of PET and MRI in evaluating the effect of GLP1 analogs in disease progression in both Alzheimer's and Parkinson's disease. We have also discussed the potential novel PET markers that will allow us to understand the mechanism by which GLP1 exerts its effects.

    Topics: Animals; Brain; Disease Models, Animal; Glucagon-Like Peptide 1; Humans; Mice; Mice, Transgenic; Neurodegenerative Diseases; Neuroimaging; Neuroprotective Agents; Radionuclide Imaging

2014
The nonhuman primate as a model for type 2 diabetes.
    Current opinion in endocrinology, diabetes, and obesity, 2014, Volume: 21, Issue:2

    Although rodent models provide insight into the mechanisms underlying type 2 diabetes mellitus (T2DM), they are limited in their translatability to humans. The nonhuman primate (NHP) shares important metabolic similarities with the human, making it an ideal model for the investigation of type 2 diabetes and use in preclinical trials. This review highlights the key contributions in the field over the last year using the NHP model.. The NHP has not only provided novel insight into the normal and pathological processes that occur within the islet, but has also allowed for the preclinical testing of novel pharmaceutical targets for obesity and T2DM. Particularly, administration of fibroblast growth factor-21 in the NHP resulted in weight loss and improvements in metabolic health, supporting rodent studies and recent clinical trials. In addition, the NHP was used to demonstrate that a novel melanocortin-4 receptor agonist did not cause adverse cardiovascular effects. Finally, this model has been used to provide evidence that glucagon-like peptide-1-based therapies do not induce pancreatitis in the healthy NHP.. The insight gained from studies using the NHP model has allowed for a better understanding of the processes driving T2DM and has promoted the development of well tolerated and effective treatments.

    Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Hypoglycemic Agents; Insulin-Secreting Cells; Macaca mulatta; Male; Pancreatitis; Weight Loss

2014
Drugs developed for treatment of diabetes show protective effects in Alzheimer's and Parkinson's diseases.
    Sheng li xue bao : [Acta physiologica Sinica], 2014, Oct-25, Volume: 66, Issue:5

    Type 2 diabetes has been identified as a risk factor for Alzheimer's disease (AD) and Parkinson's disease (PD). In the brains of patients with AD and PD, insulin signaling is impaired. This finding has motivated new research that showed good effects using drugs that initially had been developed to treat diabetes. Preclinical studies showed good neuroprotective effects applying insulin or long lasting analogues of incretin peptides. In transgenic animal models of AD or PD, analogues of the incretin GLP-1 prevented neurodegenerative processes and improved neuronal and synaptic functionality and reduced the symptoms of the diseases. Amyloid plaque load and synaptic loss as well as cognitive impairment had been prevented in transgenic AD mouse models, and dopaminergic loss of transmission and motor function has been reversed in animal models of PD. On the basis of these promising findings, several clinical trials are being conducted with the first encouraging clinical results already published. In several pilot studies in AD patients, the nasal application of insulin showed encouraging effects on cognition and biomarkers. A pilot study in PD patients testing a GLP-1 receptor agonist that is currently on the market as a treatment for type 2 diabetes (exendin-4, Byetta) also showed encouraging effects. Several other clinical trials are currently ongoing in AD patients, testing another GLP-1 analogue that is on the market (liraglutide, Victoza). Recently, a third GLP-1 receptor agonist has been brought to the market in Europe (Lixisenatide, Lyxumia), which also shows very promising neuroprotective effects. This review will summarise the range of these protective effects that those drugs have demonstrated. GLP-1 analogues show promise in providing novel treatments that may be protective or even regenerative in AD and PD, something that no current drug does.

    Topics: Alzheimer Disease; Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Liraglutide; Mice; Mice, Transgenic; Neuroprotective Agents; Parkinson Disease; Peptides; Receptors, Glucagon; Venoms

2014
Review article: a comparison of glucagon-like peptides 1 and 2.
    Alimentary pharmacology & therapeutics, 2013, Volume: 37, Issue:1

    Recent advancements in understanding the roles and functions of glucagon-like peptide 1 (GLP-1) and 2 (GLP-2) have provided a basis for targeting these peptides in therapeutic strategies.. To summarise the preclinical and clinical research supporting the discovery of new therapeutic molecules targeting GLP-1 and GLP-2.. This review is based on a comprehensive PubMed search, representing literature published during the past 30 years related to GLP-1 and GLP-2.. Although produced and secreted together primarily from L cells of the intestine in response to ingestion of nutrients, GLP-1 and GLP-2 exhibit distinctive biological functions that are governed by the expression of their respective receptors, GLP-1R and GLP-2R. Through widespread expression in the pancreas, intestine, nervous tissue, et cetera, GLP-1Rs facilitates an incretin effect along with effects on appetite and satiety. GLP-1 analogues resistant to degradation by dipeptidyl peptidase-IV and inhibitors of dipeptidyl peptidase-IV have been developed to aid treatment of diabetes and obesity. The GLP-2R is expressed almost exclusively in the stomach and bowel. The most apparent role for GLP-2 is its promotion of growth and function of intestinal mucosa, which has been targeted for therapies that promote repair and adaptive growth. These are used as treatments for intestinal failure and related conditions.. Our growing understanding of the biology and function of GLP-1, GLP-2 and corresponding receptors has fostered further discovery of fundamental biological function as well as new categories of potent therapeutic medicines.

    Topics: Animals; Clinical Trials as Topic; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Humans; Molecular Targeted Therapy; Receptors, Glucagon

2013
A review on the association between glucagon-like peptide-1 receptor agonists and thyroid cancer.
    Experimental diabetes research, 2012, Volume: 2012

    There is a concern on the risk of thyroid cancer associated with glucagon-like peptide-1 (GLP-1) analogs including liraglutide and exenatide. In this article, we review related experimental studies, clinical trials and observational human studies currently available. In rodents, liraglutide activated the GLP-1 receptors on C-cells, causing an increased incidence of C-cell neoplasia. Animal experiments with monkeys demonstrated no increase in calcitonin release and no C-cell proliferation after long-term liraglutide administration. Longitudinal 2-year data from clinical trials do not support any significant risk for the activation or growth of C-cell cancer in humans in response to liraglutide. However, an analysis of the FDA adverse event reporting system database suggested an increased risk for thyroid cancer associated with exenatide after its marketing. Noticeably, a recent study discovered that GLP-1 receptor could also be expressed in human papillary thyroid carcinomas (PTC), but the impact of GLP-1 analogs on PTC is not known. Therefore, GLP-1 analogs might increase the risk of thyroid C-cell pathology in rodents, but its risk in humans awaits confirmation. Since GLP-1 receptor is also expressed in PTC besides C-cells, it is important to investigate the actions of GLP-1 on different subtypes of thyroid cancer in the future.

    Topics: Animals; Clinical Trials as Topic; Diabetes Complications; Diabetes Mellitus; Disease Models, Animal; Exenatide; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Liraglutide; Macaca fascicularis; Mice; Peptides; Rats; Receptors, Glucagon; Thyroid Neoplasms; Venoms

2012
[Pharmacological and clinical profile of alogliptin benzoate (NESINA®)].
    Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 2011, Volume: 137, Issue:1

    Topics: Adult; Animals; Clinical Trials, Phase II as Topic; Diabetes Mellitus, Type 2; Disease Models, Animal; Drug Design; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Insulin; Insulin Secretion; Male; Piperidines; Rats; Uracil

2011
The evolving place of incretin-based therapies in type 2 diabetes.
    Pediatric nephrology (Berlin, Germany), 2010, Volume: 25, Issue:7

    Treatment options for type 2 diabetes based on the action of the incretin hormone glucagon-like peptide-1 (GLP-1) were first introduced in 2005. These comprise the injectable GLP-1 receptor agonists solely acting on the GLP-1 receptor on the one hand and orally active dipeptidyl-peptidase inhibitors (DPP-4 inhibitors) raising endogenous GLP-1 and other hormone levels by inhibiting the degrading enzyme DPP-4. In adult medicine, both treatment options are attractive and more commonly used because of their action and safety profile. The incretin-based therapies stimulate insulin secretion and inhibit glucagon secretion in a glucose-dependent manner and carry no intrinsic risk of hypoglycaemia. GLP-1 receptor agonists allow weight loss, whereas DPP-4 inhibitors are weight neutral. This review gives an overview of the mechanism of action and the substances and clinical data available.

    Topics: Adolescent; Adult; Animals; Child; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Insulin; Insulin Secretion

2010
Treatment of diabetes with glucagon-like peptide-1 gene therapy.
    Expert opinion on biological therapy, 2010, Volume: 10, Issue:12

    Glucagon-like peptide (GLP)-1 receptor agonists are in widespread clinical use for the treatment of diabetes. While effective, these peptides require frequent injections to maintain efficacy. Therefore, alternative delivery methods including gene therapy are currently being evaluated.. Here, we review the biology of GLP-1, evidence supporting the clinical use of the native peptide as well as synthetic GLP-1 receptor agonists, and the rationale for their delivery by gene therapy. We then review progress made in the field of GLP-1 gene therapy for both type 1 and type 2 diabetes.. Efforts to improve the biological half-life of GLP-1 receptor agonists are discussed. We focus on the development of both viral and non-viral gene delivery methods, highlighting vector designs and the strengths and weaknesses of these approaches. We also discuss the utility of targeting regulated GLP-1 production to tissues including the liver, muscle, islet and gut.. GLP-1 is a natural peptide possessing several actions that effectively combat diabetes. Current delivery methods for GLP-1-based drugs are cumbersome and do not recapitulate the normal secretion pattern of the native hormone. Gene therapy offers a useful method for directing long-term production and secretion of the native peptide. Targeted production of GLP-1 using tissue-specific promoters and delivery methods may improve therapeutic efficacy, while also eliminating the burden of frequent injections.

    Topics: Animals; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Disease Models, Animal; Genetic Therapy; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Receptors, Glucagon; Treatment Outcome

2010
Glucagon-like peptide-1 and myocardial protection: more than glycemic control.
    Clinical cardiology, 2009, Volume: 32, Issue:5

    Pharmacologic intervention for the failing heart has traditionally targeted neurohormonal activation and ventricular remodeling associated with cardiac dysfunction. Despite the multitude of agents available for the treatment of heart failure, it remains a highly prevalent clinical syndrome with substantial morbidity and mortality, necessitating alternative strategies of targeted management. One such area of interest is the ability to modulate myocardial glucose uptake and its impact on cardioprotection. Glucose-insulin-potassium (GIK) infusions have been studied for decades, with conflicting results regarding benefit in acute myocardial infarction. Based on the same concepts, glucagon-like peptide-1-[7-36] amide (GLP-1) has recently been demonstrated to be a more effective alternative in left ventricular (LV) systolic dysfunction. This paper provides a review on the current evidence supporting the use of GLP-1 in both animal models and humans with ischemic and nonischemic cardiomyopathy.

    Topics: Animals; Cardiomyopathy, Dilated; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose; Hemodynamics; Humans; Incretins; Myocardial Ischemia; Myocardium; Stroke Volume; Ventricular Dysfunction, Left; Ventricular Function, Left

2009
ABCC8 and ABCC9: ABC transporters that regulate K+ channels.
    Pflugers Archiv : European journal of physiology, 2007, Volume: 453, Issue:5

    The sulfonylurea receptors (SURs) ABCC8/SUR1 and ABCC9/SUR2 are members of the C-branch of the transport adenosine triphosphatase superfamily. Unlike their brethren, the SURs have no identified transport function; instead, evolution has matched these molecules with K(+) selective pores, either K(IR)6.1/KCNJ8 or K(IR)6.2/KCNJ11, to assemble adenosine triphosphate (ATP)-sensitive K(+) channels found in endocrine cells, neurons, and both smooth and striated muscle. Adenine nucleotides, the major regulators of ATP-sensitive K(+) (K(ATP)) channel activity, exert a dual action. Nucleotide binding to the pore reduces the activity or channel open probability, whereas Mg-nucleotide binding and/or hydrolysis in the nucleotide-binding domains of SUR antagonize this inhibitory action to stimulate channel openings. Mutations in either subunit can alter this balance and, in the case of the SUR1/KIR6.2 channels found in neurons and insulin-secreting pancreatic beta cells, are the cause of monogenic forms of hyperinsulinemic hypoglycemia and neonatal diabetes. Additionally, the subtle dysregulation of K(ATP) channel activity by a K(IR)6.2 polymorphism has been suggested as a predisposing factor in type 2 diabetes mellitus. Studies on K(ATP) channel null mice are clarifying the roles of these metabolically sensitive channels in a variety of tissues.

    Topics: Amino Acids; Animals; ATP-Binding Cassette Transporters; Calcium; Catecholamines; Congenital Hyperinsulinism; Diabetes Mellitus; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose; Humans; Infant; Infant, Newborn; Insulin; Insulin Secretion; Liver; Mice; Mice, Transgenic; Models, Molecular; Potassium Channels; Potassium Channels, Inwardly Rectifying; Protein Structure, Tertiary; Receptors, Drug; Sulfonylurea Receptors

2007
[Animal models of diabetes and development of anti-diabetic agents].
    Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 2006, Volume: 128, Issue:1

    Topics: Animals; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon-Like Peptide 1; Glycoside Hydrolase Inhibitors; Insulin; Insulin Resistance; Insulin Secretion; Rats

2006
The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism.
    Diabetes, 2004, Volume: 53 Suppl 3

    Glucagon-like peptide (GLP)-1 is a gut hormone that stimulates insulin secretion, gene expression, and beta-cell growth. Together with the related hormone glucose-dependent insulinotropic polypeptide (GIP), it is responsible for the incretin effect, the augmentation of insulin secretion after oral as opposed to intravenous administration of glucose. Type 2 diabetic patients typically have little or no incretin-mediated augmentation of insulin secretion. This is due to decreased secretion of GLP-1 and loss of the insulinotropic effects of GIP. GLP-1, however, retains insulinotropic effects, and the hormone effectively improves metabolism in patients with type 2 diabetes. Continuous subcutaneous administration greatly improved glucose profiles and lowered body weight and HbA1c levels. Further, free fatty acid levels were lowered, insulin resistance was improved, and beta-cell performance was greatly improved. The natural peptide is rapidly degraded by the enzyme dipeptidyl peptidase IV (DPP IV), but resistant analogs as well as inhibitors of DPP IV are now under development, and both approaches have shown remarkable efficacy in experimental and clinical studies.

    Topics: Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptide 1; Humans; Islets of Langerhans; Peptide Fragments; Protein Precursors

2004

Trials

1 trial(s) available for glucagon-like-peptide-1 and Disease-Models--Animal

ArticleYear
Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus.
    Basic research in cardiology, 2013, Volume: 108, Issue:4

    Glucagon-like peptide 1 (GLP-1) has insulin-like effects on myocardial glucose uptake which may contribute to its beneficial effects in the setting of myocardial ischemia. Whether these effects are different in the setting of obesity or type 2 diabetes (T2DM) requires investigation. We examined the cardiometabolic actions of GLP-1 (7-36) in lean and obese/T2DM humans, and in lean and obese Ossabaw swine. GLP-1 significantly augmented myocardial glucose uptake under resting conditions in lean humans, but this effect was impaired in T2DM. This observation was confirmed and extended in swine, where GLP-1 effects to augment myocardial glucose uptake during exercise were seen in lean but not in obese swine. GLP-1 did not increase myocardial oxygen consumption or blood flow in humans or in swine. Impaired myocardial responsiveness to GLP-1 in obesity was not associated with any apparent alterations in myocardial or coronary GLP1-R expression. No evidence for GLP-1-mediated activation of cAMP/PKA or AMPK signaling in lean or obese hearts was observed. GLP-1 treatment augmented p38-MAPK activity in lean, but not obese cardiac tissue. Taken together, these data provide novel evidence indicating that the cardiometabolic effects of GLP-1 are attenuated in obesity and T2DM, via mechanisms that may involve impaired p38-MAPK signaling.

    Topics: Adult; Animals; Comorbidity; Diabetes Mellitus, Type 2; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Glucose; Hemodynamics; Humans; Incretins; Male; Middle Aged; Myocardium; Obesity; Oxygen Consumption; p38 Mitogen-Activated Protein Kinases; Physical Conditioning, Animal; Regional Blood Flow; Rest; Signal Transduction; Swine; Treatment Outcome

2013

Other Studies

353 other study(ies) available for glucagon-like-peptide-1 and Disease-Models--Animal

ArticleYear
The Effects of Dual GLP-1/Glucagon Receptor Agonists with Different Receptor Selectivity in Mouse Models of Obesity and Nonalcoholic Steatohepatitis.
    The Journal of pharmacology and experimental therapeutics, 2023, Volume: 384, Issue:3

    There is an unmet need for nonalcoholic steatohepatitis (NASH) therapeutics, considering the increase in global obesity. Dual GLP-1/glucagon (GCG) receptor agonists have shown beneficial effects in circumventing the pathophysiology linked to NASH. However, dual GLP-1/GCG receptor agonists as a treatment of metabolic diseases need delicate optimization to maximize metabolism effects. The impacts of increased relative GLP-1/GCG receptor activity in NASH settings must be addressed to unleash the full potential. In this study, we investigated the potential of OXM-104 and OXM-101, two dual GLP-1/GCG receptor agonists with different receptor selectivity in the setting of NASH, to establish the relative receptor activities leading to the best metabolic outcome efficacies to reduce the gap between surgery and pharmacological interventions. We developed dual GLP-1/GCG receptor agonists with selective agonism. Despite the improved metabolic effects of OXM-101, we explored a hyperglycemic risk attached to increased relative GCG receptor agonism. Thirty-eight days of treatment with a dual GLP-1/GCG receptor agonist, OXM-104, with increased GLP-1 receptor agonism in obese NASH mice was found to ameliorate the development of NASH by lowering body weight, improving liver and lipid profiles, reducing the levels of the fibrosis marker PRO-C4, and improving glucose control. Similarly, dual GLP-1/GCG receptor agonist OXM-101 with increased relative GCG receptor agonism ameliorated NASH by eliciting dramatic body weight reductions to OXM-104, reflected in the improvement of liver and lipid enzymes and reduced PRO-C4 levels. Optimizing dual GLP-1/GCG agonists with increased relative GCG receptor agonism can provide the setting for future agonists to treat obesity, type 2 diabetes, and NASH without having a hyperglycemic risk. SIGNIFICANT STATEMENT: There is an unmet need for nonalcoholic steatohepatitis (NASH) therapeutics, considering the increase in global obesity. Dual GLP-1/glucagon (GCG) receptor agonists have shown beneficial effects in circumventing the pathophysiology linked to NASH. Therefore, this study has examined OXM-104 and OXM-101, two dual GLP-1/GCG receptor agonists in the setting of NASH, to establish the relative receptor activities leading to the best metabolic outcome efficacies to reduce the gap between surgery and pharmacological interventions.

    Topics: Animals; Body Weight; Complement C4; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Lipids; Mice; Non-alcoholic Fatty Liver Disease; Obesity; Receptors, Glucagon

2023
Effects of liraglutide on depressive behavior in a mouse depression model and cognition in the probe trial of Morris water maze test.
    Journal of affective disorders, 2023, 03-01, Volume: 324

    We investigated the effects of liraglutide, a glucagon-like peptide-1 (GLP-1) agonist, on a depression-like phenotype in mice exposed to chronic unpredictable stress (CUS). Learning and memory were also assessed using the Morris water maze (MWM) test.. Liraglutide (0.3 mg/kg/day for 21 days) was administered to mice with or without exposure to CUS. After 21 days of CUS, the forced swim test (FST) was performed to assess its antidepressant effect. To evaluate cognitive function, liraglutide was administered to mice under stress-free conditions for 21 days, and then the MWM test was performed on 6 consecutive days.. Chronic liraglutide treatment reduced FST immobility in mice with and without CUS. In the probe trial of the Morris water maze test, the search error rate was reduced and the time spent and path length in the target quadrant and the number of platform crossings were increased.. Additional animal model experiments and molecular level studies are needed to support the results obtained in this study.. Liraglutide appears to exert antidepressant effects and could improve cognitive function. Based on these results, GLP-1 agonists could have potential as novel antidepressants.

    Topics: Animals; Antidepressive Agents; Behavior, Animal; Cognition; Depression; Disease Models, Animal; Glucagon-Like Peptide 1; Liraglutide; Maze Learning; Mice; Morris Water Maze Test; Stress, Psychological

2023
The effect of gastric bypass surgery on cognitive function of Alzheimer's disease and the role of GLP1-SGLT1 pathway.
    Experimental neurology, 2023, Volume: 363

    Gastric bypass surgery has been shown to improve metabolic profiles via GLP1, which may also have cognitive benefits for Alzheimer's disease (AD) patients. However, the exact mechanism requires further investigation.. Roux-en-Y gastric bypass or sham surgery was performed on APP/PS1/Tau triple transgenic mice (an AD mice model) or wild type C57BL/6 mice. Morris Water Maze (MWM) test was used to evaluate the cognitive function of mice and animal tissue samples were obtained for measurements two months after the surgery. Additionally, STC-1 intestine cells were treated with siTAS1R2 and siSGLT1, and HT22 nerve cells were treated with Aβ, siGLP1R, GLP1 and siSGLT1 in vitro to explore the role of GLP1-SGLT1 related signaling pathway in cognitive function.. The MWM test showed that bypass surgery significantly improved cognitive function in AD mice as measured by navigation and spatial probe tests. Moreover, bypass surgery reversed neurodegeneration, down-regulated hyperphosphorylation of Tau protein and Aβ deposition, improved glucose metabolism, and up-regulated the expression of GLP1, SGLT1, and TAS1R2/3 in the hippocampus. Furthermore, GLP1R silencing down-regulated SGLT1 expression, whereas SGLT1 silencing increased Tau protein deposition and exacerbated dysregulated of glucose metabolism in HT22 cells. However, RYGB did not alter the level of GLP1 secretion in the brainstem (where central GLP1 is mainly produced). Additionally, GLP1 expression was upregulated by RYGB via TAS1R2/3-SGLT1 activation sequentially in the small intestine.. RYGB surgery could improve cognition function in AD mice through facilitating glucose metabolism and reducing Tau phosphorylation and Aβ deposition in the hippocampus, mediated by peripheral serum GLP1 activation of SGLT1 in the brain. Furthermore, RYGB increased GLP1 expression through sequential activation of TAS1R2/TAS1R3 and SGLT1 in the small intestine.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Cognition; Disease Models, Animal; Gastric Bypass; Glucagon-Like Peptide 1; Glucose; Intestines; Mice; Mice, Inbred C57BL; Mice, Transgenic; Sodium-Glucose Transporter 1; tau Proteins

2023
Exploiting the biological effect exerted by lipid nanocapsules in non-alcoholic fatty liver disease.
    Journal of controlled release : official journal of the Controlled Release Society, 2023, Volume: 356

    Non-alcoholic fatty liver disease (NAFLD) affects approximately 25% of the global adult population and can progress to end-stage liver disease with life-threatening complications; however, no pharmacologic therapy has been approved. Drug delivery systems such as lipid nanocapsules (LNCs) are a very versatile platform, easy to produce, and can induce the secretion of the native glucagon-like peptide 1 (GLP-1) when orally administered. GLP-1 analogs are currently being extensively studied in clinical trials in the context of NAFLD. Our nanosystem provides with increased levels of GLP-1, triggered by the nanocarrier itself, and by the plasmatic absorption of the encapsulated synthetic analog (exenatide). Our goal in this study was to demonstrate a better outcome and a greater impact on the metabolic syndrome and liver disease progression associated with NAFLD with our nanosystem than with the subcutaneous injection of the GLP-1 analog alone. To that end, we studied the effect of chronic administration (one month) of our nanocarriers in two mouse models of early NASH: a genetic model (foz/foz mice fed a high fat diet (HFD)) and a dietary model (C57BL/6J mice fed with a western diet plus fructose (WDF)). Our strategy had a positive impact in promoting the normalization of glucose homeostasis and insulin resistance in both models, mitigating the progression of the disease. In the liver, diverging results were observed between the models, with the foz/foz mice presenting a better outcome. Although a complete resolution of NASH was not achieved in either model, the oral administration of the nanosystem was more efficient at preventing the progression of the disease into more severe states than the subcutaneous injection. We thus confirmed our hypothesis that the oral administration of our formulation has a stronger effect on alleviating the metabolic syndrome associated with NAFLD than the subcutaneous injection of the peptide.

    Topics: Animals; Diet, High-Fat; Disease Models, Animal; Glucagon-Like Peptide 1; Lipids; Liver; Metabolic Syndrome; Mice; Mice, Inbred C57BL; Nanocapsules; Non-alcoholic Fatty Liver Disease

2023
Dapiglutide, a novel dual GLP-1 and GLP-2 receptor agonist, attenuates intestinal insufficiency in a murine model of short bowel.
    JPEN. Journal of parenteral and enteral nutrition, 2022, Volume: 46, Issue:5

    Extensive intestinal resection may lead to short bowel (SB) syndrome, resulting in intestinal insufficiency or intestinal failure (IF). Intestinal insufficiency and IF involve deficiency of the proglucagon-derived hormones glucagon-like peptide-1 (GLP-1) and GLP-2. Two major problems of SB are epithelial surface loss and accelerated transit. Standard treatment now targets intestinal adaptation with a GLP-2 analogue to enlarge absorptive surface area. It is possible that additional benefit can be gained from a combination of GLP-1 and GLP-2 activity, with the aim to enlarge intestinal surface area and slow intestinal transit.. The GLP-1- and GLP-2-specific effects of the novel dual GLP-1 receptor (GLP-1R) and GLP-2 receptor (GLP-2R) agonist dapiglutide (rINN) were characterized in rodents. Furthermore, in a murine SB model of intestinal insufficiency with 40% ileocecal resection, the influence of dapiglutide on intestinal growth, body weight, food intake, volume status, and stool water content was tested against vehicle and sham-operated male mice.. Dapiglutide significantly improves oral glucose tolerance, reduces intestinal transit time, and promotes intestinal growth. In the SB mouse model, dapiglutide promotes body weight recovery, despite unchanged intake of liquid diet. Dapiglutide promotes significant intestinal growth, as indicated by significantly increased villus height as well as intestinal length. Furthermore, dapiglutide reduces stool water losses, resulting in reduced plasma aldosterone.. Dapiglutide possesses specific and potent GLP-1R and GLP-2R agonist effects in rodents. In the murine SB model, combined unimolecular GLP-1R and GLP-2R stimulation with dapiglutide potently attenuates intestinal insufficiency and potentially also IF.

    Topics: Animals; Body Weight; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Glucagon-Like Peptide-2 Receptor; Male; Mice; Short Bowel Syndrome; Water

2022
Insulin resistance induced by long-term sleep deprivation in rhesus macaques can be attenuated by
    American journal of physiology. Endocrinology and metabolism, 2022, 02-01, Volume: 322, Issue:2

    Long-term sleep deprivation (SD) is a bad lifestyle habit, especially among specific occupational practitioners, characterized by circadian rhythm misalignment and abnormal sleep/wake cycles. SD is closely associated with an increased risk of metabolic disturbance, particularly obesity and insulin resistance. The incretin hormone, glucagon-like peptide-1 (GLP-1), is a critical insulin release determinant secreted by the intestinal L-cell upon food intake. Besides, the gut microbiota participates in metabolic homeostasis and regulates GLP-1 release in a circadian rhythm manner. As a commonly recognized intestinal probiotic,

    Topics: Animals; Bifidobacterium; Blood Glucose; Body Weight; Cholesterol, HDL; Cholesterol, LDL; Circadian Rhythm; Dietary Supplements; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose Tolerance Test; Incretins; Insulin; Insulin Resistance; Macaca mulatta; Male; Sleep Deprivation; Treatment Outcome; Triglycerides

2022
A novel DPP-4 inhibitor Gramcyclin A attenuates cognitive deficits in APP/PS1/tau triple transgenic mice via enhancing brain GLP-1-dependent glucose uptake.
    Phytotherapy research : PTR, 2022, Volume: 36, Issue:3

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Brain; Cognition; Cognitive Dysfunction; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose; Hippocampus; Mice; Mice, Transgenic

2022
Effects of ALT-801, a GLP-1 and glucagon receptor dual agonist, in a translational mouse model of non-alcoholic steatohepatitis.
    Scientific reports, 2022, 04-23, Volume: 12, Issue:1

    Body weight loss of ≥ 10% improves the metabolic derangements and liver disease in the majority of non-alcoholic steatohepatitis (NASH) patients, suggesting metabolic modulators may be effective in controlling disease. The pharmacodynamics of ALT-801, a GLP-1/glucagon receptor dual agonist optimized for NASH and weight loss, were compared to semaglutide (GLP-1 receptor agonist) and elafibranor (peroxisome proliferator-activated receptor, PPAR-α/δ, agonist) in a biopsy-confirmed, diet-induced obese (DIO) mouse model of NASH (DIO-NASH). Male C57BL/6J mice were fed Amylin Liver NASH (AMLN) diet for 32 weeks. Animals with biopsy-confirmed steatosis and fibrosis received ALT-801, semaglutide, elafibranor, or vehicle daily for 12 weeks while maintained on the AMLN diet. Study endpoints included body and liver weight, liver and plasma total cholesterol and triglycerides, plasma aminotransferases, histological analysis of liver steatosis, inflammation (galectin-3) and fibrosis (collagen type 1 alpha 1), and evaluation of individual animal changes in composite Non-alcoholic Fatty Liver Disease Activity Score (NAS), and fibrosis stage. ALT-801 demonstrated significant reductions in body weight (approx. 25%), plasma aminotransferases, plasma total cholesterol and liver triglycerides/total cholesterol in conjunction with improved liver steatosis, with greater reductions (p < 0.05) compared to semaglutide and elafibranor. ALT-801 significantly reduced the inflammation marker galectin-3 and the fibrosis marker collagen type 1 alpha 1 vs. vehicle (p < 0.05), with ALT-801 producing greater reductions in galectin-3 vs. elafibranor (p < 0.05). Importantly, all animals treated with ALT-801 significantly improved composite NAS compared to the active controls. This study provides evidence for a potential role for ALT-801 in the therapeutic treatment of NASH.

    Topics: Animals; Cholesterol; Collagen; Disease Models, Animal; Galectin 3; Glucagon; Glucagon-Like Peptide 1; Inflammation; Interleukin-2; Liver; Liver Cirrhosis; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Non-alcoholic Fatty Liver Disease; Obesity; Receptors, Antigen, T-Cell; Receptors, Glucagon; Recombinant Fusion Proteins; Transaminases; Triglycerides

2022
Cholecystokinin and glucagon-like peptide-1 analogues regulate intestinal tight junction, inflammation, dopaminergic neurons and α-synuclein accumulation in the colon of two Parkinson's disease mouse models.
    European journal of pharmacology, 2022, Jul-05, Volume: 926

    Parkinson's disease (PD) is the second most common neurodegenerative disease, and no treatment is available to stop its progression. Studies have shown that the colonic pathology of PD precedes that of the brain. The 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and the human A53T α-synuclein (α-syn) transgenic PD mouse model show colonic pathology and intestinal dopaminergic neuronal damage, which is comparable to the intestinal pathology of PD. Cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), which are brain-gut peptides, have neurotrophic and anti-inflammatory properties. Two GLP-1R agonists have already shown robust effects in phase II trials in PD patients. However, whether they have beneficial effects on colonic pathology in PD remains unclear. In this study, MPTP-treated mice and human A53T α-syn transgenic mice were intraperitoneally injected with a CCK analogue or Liraglutide, a GLP-1 analogue, once a day for 5 weeks. Levels of colonic epithelial tight junction proteins including occludin and zonula occludens-1 (ZO-1), inflammatory biomarkers including inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α), brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH) and α-syn were analyzed. The results show that the CCK analogue and Liraglutide both restored the disruption of intestinal tight junction, reduced colonic inflammation, inhibited colonic dopaminergic neurons reduction and the accumulation of α-syn oligomers in the colon of both PD mice models. This study suggested that CCK or GLP-1 analogues could be beneficial to the improvement of leaky gut barrier, inflammation, dopaminergic neuron impairment and accumulation of α-syn in the colon of PD patients.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; alpha-Synuclein; Animals; Cholecystokinin; Colon; Disease Models, Animal; Dopaminergic Neurons; Glucagon-Like Peptide 1; Humans; Inflammation; Liraglutide; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neurodegenerative Diseases; Parkinson Disease; Tight Junctions

2022
GLP-1 receptor nitration contributes to loss of brain pericyte function in a mouse model of diabetes.
    Diabetologia, 2022, Volume: 65, Issue:9

    We have previously shown that diabetes causes pericyte dysfunction, leading to loss of vascular integrity and vascular cognitive impairment and dementia (VCID). Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), used in managing type 2 diabetes mellitus, improve the cognitive function of diabetic individuals beyond glycaemic control, yet the mechanism is not fully understood. In the present study, we hypothesise that GLP-1 RAs improve VCID by preventing diabetes-induced pericyte dysfunction.. Mice with streptozotocin-induced diabetes and non-diabetic control mice received either saline (NaCl 154 mmol/l) or exendin-4, a GLP-1 RA, through an osmotic pump over 28 days. Vascular integrity was assessed by measuring cerebrovascular neovascularisation indices (vascular density, tortuosity and branching density). Cognitive function was evaluated with Barnes maze and Morris water maze. Human brain microvascular pericytes (HBMPCs), were grown in high glucose (25 mmol/l) and sodium palmitate (200 μmol/l) to mimic diabetic conditions. HBMPCs were treated with/without exendin-4 and assessed for nitrative and oxidative stress, and angiogenic and blood-brain barrier functions.. Diabetic mice treated with exendin-4 showed a significant reduction in all cerebral pathological neovascularisation indices and an improved blood-brain barrier (p<0.05). The vascular protective effects were accompanied by significant improvement in the learning and memory functions of diabetic mice compared with control mice (p<0.05). Our results showed that HBMPCs expressed the GLP-1 receptor. Diabetes increased GLP-1 receptor expression and receptor nitration in HBMPCs. Stimulation of HBMPCs with exendin-4 under diabetic conditions decreased diabetes-induced vascular inflammation and oxidative stress, and restored pericyte function (p<0.05).. This study provides novel evidence that brain pericytes express the GLP-1 receptor, which is nitrated under diabetic conditions. GLP-1 receptor activation improves brain pericyte function resulting in restoration of vascular integrity and BBB functions in diabetes. Furthermore, the GLP-1 RA exendin-4 alleviates diabetes-induced cognitive impairment in mice. Restoration of pericyte function in diabetes represents a novel therapeutic target for diabetes-induced cerebrovascular microangiopathy and VCID.

    Topics: Animals; Brain; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Mice; Pericytes

2022
Disrupted and Elevated Circadian Secretion of Glucagon-Like Peptide-1 in a Murine Model of Type 2 Diabetes.
    Endocrinology, 2022, 09-01, Volume: 163, Issue:9

    Metabolism and circadian rhythms are intimately linked, with circadian glucagon-like peptide-1 (GLP-1) secretion by the intestinal L-cell entraining rhythmic insulin release. GLP-1 secretion has been explored in the context of obesogenic diets, but never in a rodent model of type 2 diabetes (T2D). There is also considerable disagreement regarding GLP-1 levels in human T2D. Furthermore, recent evidence has demonstrated decreased expression of the β-cell exocytotic protein secretagogin (SCGN) in T2D. To extend these findings to the L-cell, we administered oral glucose tolerance tests at 6 time points in 4-hour intervals to the high-fat diet/streptozotocin (HFD-STZ) mouse model of T2D. This revealed a 10-fold increase in peak GLP-1 secretion with a phase shift of the peak from the normal feeding period into the fasting-phase. This was accompanied by impairments in the rhythms of glucose, glucagon, mucosal clock genes (Arntl and Cry2), and Scgn. Immunostaining revealed that L-cell GLP-1 intensity was increased in the HFD-STZ model, as was the proportion of L-cells that expressed SCGN; however, this was not found in L-cells from humans with T2D, which exhibited decreased GLP-1 staining but maintained their SCGN expression. Gcg expression in isolated L-cells was increased along with pathways relating to GLP-1 secretion and electron transport chain activity in the HFD-STZ condition. Further investigation into the mechanisms responsible for this increase in GLP-1 secretion may give insights into therapies directed toward upregulating endogenous GLP-1 secretion.

    Topics: Animals; Circadian Rhythm; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Insulin; Mice

2022
Amelioration of intracerebroventricular streptozotocin-induced cognitive dysfunction by Ocimum sanctum L. through the modulation of inflammation and GLP-1 levels.
    Metabolic brain disease, 2022, Volume: 37, Issue:7

    DPP-4 inhibitors have been shown to reverse amyloid deposition in Alzheimer's disease (AD) patients with cognitive impairment. Ocimum sanctum L. leaves reported the presence of important phytoconstituents which are reported to have DPP-4 inhibitory activity. To investigate the effects of petroleum ether extract of Ocimum sanctum L. (PEOS) in Intracerebroventricular streptozotocin (ICV-STZ) induced AD rats. ICV-STZ (3 mg/kg) was injected bilaterally into male Wistar rats, while sham animals received the artificial CSF. The ICV-STZ-induced rats were administered with three doses of PEOS (100, 200, and 400 mg/kg, p.o.) for thirty days. All experimental rats were subjected to behaviour parameters (radial arm maze task and novel object recognition test), neurochemical parameters such as GLP-1, Aβ42, and TNF-α levels, and histopathological examination (Congo red staining) of the left brain hemisphere. PEOS significantly reversed the spatial learning and memory deficit exhibited by ICV-STZ-induced rats. Furthermore, PEOS also shows promising results in retreating Aβ deposition, TNF α, and increasing GLP-1 levels. The histopathological study also showed a significant dose-dependent reduction in amyloid plaque formation and dense granule in PEOS -treated rats as compared to the ICV-STZ induced rats (Negative control). The results show that extract of Ocimum sanctum L. attenuated ICV-STZ-induced learning and memory deficits in rats and has the potential to be employed in the therapy of AD.

    Topics: Alzheimer Disease; Animals; Cognitive Dysfunction; Congo Red; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Inflammation; Male; Maze Learning; Memory Disorders; Ocimum sanctum; Plant Extracts; Rats; Rats, Wistar; Streptozocin; Tumor Necrosis Factor-alpha

2022
Duodenal Dual-Wavelength Photobiomodulation Improves Hyperglycemia and Hepatic Parameters with Alteration of Gut Microbiome in Type 2 Diabetes Animal Model.
    Cells, 2022, 11-03, Volume: 11, Issue:21

    Recently, the duodenum has garnered interest for its role in treating metabolic diseases, including type 2 diabetes (T2DM). Multiple sessions of external photobiomodulation (PBM) in previous animal studies suggested it resulted in improved hyperglycemia, glucose intolerance, and insulin resistance with a multifactorial mechanism of action, despite the target organ of PBM not being clearly proven. This study aimed to determine whether a single session of a duodenal light-emitting diode (LED) PBM may impact the T2DM treatment in an animal model.. Goto-Kakizaki rats as T2DM models were subjected to PBM through duodenal lumen irradiation, sham procedure, or control in 1-week pilot (630 nm, 850 nm, or 630/850 nm) and 4-week follow-up (630 nm or 630/850 nm) studies. Oral glucose tolerance tests; serum glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide, and insulin levels; liver chemistry and histology; and gut microbiome in the PBM, sham control, and control groups were evaluated.. In the 1-week study, duodenal dual-wavelength (D, 630/850 nm) LED PBM showed improved glucose intolerance, alkaline phosphatase and cholesterol levels, and weight gain than other groups. The D-LED PBM group in the 4-week study also showed improved hyperglycemia and liver enzyme levels, with relatively preserved pancreatic islets and increased serum insulin and GLP-1 levels. Five genera (. A single session of D-LED PBM improved hyperglycemia and hepatic parameters through the change of serum insulin, insulin resistance, insulin expression in the pancreatic β-cells, and gut microbiome in T2DM animal models.

    Topics: Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Duodenum; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glucose Intolerance; Hyperglycemia; Insulin; Insulin Resistance; Liver; Rats

2022
Glucagon-like Peptide-1 receptor Tie2+ cells are essential for the cardioprotective actions of liraglutide in mice with experimental myocardial infarction.
    Molecular metabolism, 2022, Volume: 66

    Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce the rates of major cardiovascular events, including myocardial infarction in people with type 2 diabetes, and decrease infarct size while preserving ventricular function in preclinical studies. Nevertheless, the precise cellular sites of GLP-1R expression that mediate the cardioprotective actions of GLP-1 in the setting of ischemic cardiac injury are uncertain.. Publicly available single cell RNA sequencing (scRNA-seq) datasets on mouse and human heart cells were analyzed for Glp1r/GLP1R expression. Fluorescent activated cell sorting was used to localize Glp1r expression in cell populations from the mouse heart. The importance of endothelial and hematopoietic cells for the cardioprotective response to liraglutide in the setting of acute myocardial infarction (MI) was determined by inactivating the Glp1r in Tie2+ cell populations. Cardiac gene expression profiles regulated by liraglutide were examined using RNA-seq to interrogate mouse atria and both infarcted and non-infarcted ventricular tissue after acute coronary artery ligation.. In mice, cardiac Glp1r mRNA transcripts were exclusively detected in endocardial cells by scRNA-seq. In contrast, analysis of human heart by scRNA-seq localized GLP1R mRNA transcripts to populations of atrial and ventricular cardiomyocytes. Moreover, very low levels of GIPR, GCGR and GLP2R mRNA transcripts were detected in the human heart. Cell sorting and RNA analyses detected cardiac Glp1r expression in endothelial cells (ECs) within the atria and ventricle in the ischemic and non-ischemic mouse heart. Transcriptional responses to liraglutide administration were not evident in wild type mouse ventricles following acute MI, however liraglutide differentially regulated genes important for inflammation, cardiac repair, cell proliferation, and angiogenesis in the left atrium, while reducing circulating levels of IL-6 and KC/GRO within hours of acute MI. Inactivation of the Glp1r within the Tie2+ cell expression domain encompassing ECs revealed normal cardiac structure and function, glucose homeostasis and body weight in Glp1r. These findings identify the importance of the murine Tie2+ endothelial cell GLP-1R as a target for the cardioprotective actions of GLP-1R agonists and support the importance of the atrial and ventricular endocardial GLP-1R as key sites of GLP-1 action in the ischemic mouse heart. Hitherto unexplored species-specific differences in cardiac GLP-1R expression challenge the exclusive use of mouse models for understanding the mechanisms of GLP-1 action in the normal and ischemic human heart.

    Topics: Animals; Atrial Fibrillation; Diabetes Mellitus, Type 2; Disease Models, Animal; Endothelial Cells; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Liraglutide; Mice; Myocardial Infarction; Receptor, TIE-2; RNA, Messenger

2022
Colonic inflammation induces changes in glucose levels through modulation of incretin system.
    Pharmacological reports : PR, 2021, Volume: 73, Issue:6

    The role of the incretin hormone, glucagon-like peptide (GLP-1), in Crohn's disease (CD), is still poorly understood. The aim of this study was to investigate whether colitis is associated with changes in blood glucose levels and the possible involvement of the incretin system as an underlaying factor.. We used a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). Macroscopic and microscopic score and expression of inflammatory cytokines were measured. The effect of colitis on glucose level was studied by measurement of fasting glucose and GLP-1, dipeptidyl peptidase IV (DPP IV) levels, prohormone convertase 1/3 (PC 1/3) and GLP-1 receptor (GLP-1R) expression in mice. We also measured the level of GLP-1, DPP IV and expression of glucagon (GCG) and PC 1/3 mRNA in serum and colon samples from healthy controls and CD patients.. Fasting glucose levels were increased in animals with colitis compared to controls. GLP-1 was decreased in both serum and colon of mice with colitis in comparison to the control group. DPP IV levels were significantly increased in serum, but not in the colon of mice with colitis as compared to healthy animals. Furthermore, PC 1/3 and GLP-1R expression levels were increased in mice with colitis as compared to controls. In humans, no differences were observed in fasting glucose level between healthy subjects and CD patients. GLP-1 levels were significantly decreased in the serum. Interestingly, GLP-1 level was significantly increased in colon samples of CD patients compared to healthy subjects. No significant differences in DPP IV levels in serum and colon samples were observed between groups.. Changes in the incretin system during colitis seem to contribute to the impaired glucose levels. Differences in incretin levels seem to be modulated by degrading enzyme DPP-IV and PC 1/3. Obtained results suggest that the incretin system may become a novel therapeutic approach in the treatment of CD.

    Topics: Adult; Animals; Blood Glucose; Case-Control Studies; Colitis; Crohn Disease; Dipeptidyl Peptidase 4; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Humans; Incretins; Inflammation; Male; Mice; Mice, Inbred C57BL; Middle Aged; Proprotein Convertase 1; Trinitrobenzenesulfonic Acid; Young Adult

2021
A pilot study about the development and characterization of a Roux en Y gastric bypass model in obese Yucatan minipigs.
    Scientific reports, 2021, 10-12, Volume: 11, Issue:1

    Performing the Roux-en-Y gastric bypass (RYGBP) in obese Yucatan minipigs provides an opportunity to explore the mechanisms behind the effects of this surgery in controlled environmental and nutritional conditions. We hypothesized that RYGBP in these minipigs would induce changes at multiple levels, as in obese humans. We sought to characterize RYGBP in a diet-induced obese minipig model, compared with a pair-fed sham group. After inducing obesity with an ad libitum high-fat/high-sugar diet, we performed RYGBP (n = 7) or sham surgery (n = 6). Oral glucose tolerance tests (OGTT) were performed before and after surgery. Histological analyses were conducted to compare the alimentary limb at sacrifice with tissue sampled during RYGBP surgery. One death occurred in the RYGBP group at postoperative day (POD) 3. Before sacrifice, weight loss was the same across groups. GLP-1 secretion (OGTT) was significantly higher at 15, 30 and 60 min at POD 7, and at 30 and 60 min at POD 30 in the RYGBP group. Incremental insulin area under the curve increased significantly after RYGBP (p = 0.02). RYGBP induced extensive remodeling of the alimentary limb. Results show that RYGBP can be safely performed in obese minipigs, and changes mimic those observed in humans.

    Topics: Animals; Diet, High-Fat; Disease Models, Animal; Gastric Bypass; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Obesity, Morbid; Pilot Projects; Swine; Swine, Miniature; Treatment Outcome

2021
Saxagliptin ameliorated the depressive-like behavior induced by chronic unpredictable mild stress in rats: Impact on incretins and AKT/PI3K pathway.
    European journal of pharmacology, 2021, Dec-05, Volume: 912

    Depression is a widespread, withering illness, resulting in a massive personal suffering and economic loss. The chronic exposure to stress may be involved in the etiology of human psychiatric disorders; such as depression. In the current study, the animals were subjected to chronic unpredictable mild stress (CUMS) for 14 days. Saxagliptin (SAXA) is a member of dipeptidyl peptidase-4 (DPP-4) inhibitors class. The current study was the first one to examine the anti-depressive effect of SAXA in an experimental model of CUMS-induced depression in rats and the possible underlying mechanisms. Animals were orally treated with SAXA (0.5, 1 and 2 mg/kg) for 14 days. SAXA treatment reversed the CUMS-induced alterations in the behavioral, biochemical as well as histopathological parameters. Moreover, it hindered the CUMS-induced increase in the oxidative stress, inflammatory, and apoptotic markers. On the other hand, it increased the monoamines levels and the neurogenic brain derived neurotrophic factor (BDNF). In addition, SAXA treatment increased the incretin hormones, glucagon like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), which are linked to the activation of protein kinase B (AKT)/phosphatidylinositol3-kinase (PI3K) pathway. In conclusion, the current study revealed that the modulation of the interplay between the key events involved in depression, including oxidative stress, inflammation, and GLP-1/PI3K/AKT signaling pathway, can explain the anti-depressant activity of SAXA.

    Topics: Adamantane; Animals; Antidepressive Agents; Behavior, Animal; Biogenic Monoamines; Brain; Brain-Derived Neurotrophic Factor; Caspase 3; Depression; Dipeptides; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Incretins; Inflammation; Male; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction; Stress, Psychological

2021
NSAID-Induced Enteropathy Affects Regulation of Hepatic Glucose Production by Decreasing GLP-1 Secretion.
    Nutrients, 2021, Dec-28, Volume: 14, Issue:1

    Given their widespread use and their notorious effects on the lining of gut cells, including the enteroendocrine cells, we explored if chronic exposure to non-steroidal anti-inflammatory drugs (NSAIDs) affects metabolic balance in a mouse model of NSAID-induced enteropathy.. We administered variable NSAIDs to C57Blk/6J mice through intragastric gavage and measured their energy balance, glucose hemostasis, and GLP-1 levels. We treated them with Exendin-9 and Exendin-4 and ran a euglycemic-hyperinsulinemic clamp.. Chronic administration of multiple NSAIDs to C57Blk/6J mice induces ileal ulcerations and weight loss in animals consuming a high-fat diet. Despite losing weight, NSAID-treated mice exhibit no improvement in their glucose tolerance. Furthermore, glucose-stimulated (glucagon-like peptide -1) GLP-1 is significantly attenuated in the NSAID-treated groups. In addition, Exendin-9-a GLP-1 receptor antagonist-worsens glucose tolerance in the control group but not in the NSAID-treated group. Finally, the hyper-insulinemic euglycemic clamp study shows that endogenous glucose production, total glucose disposal, and their associated insulin levels were similar among an ibuprofen-treated group and its control. Exendin-4, a GLP-1 receptor agonist, reduces insulin levels in the ibuprofen group compared to their controls for the same glucose exchange rates.. Chronic NSAID use can induce small intestinal ulcerations, which can affect intestinal GLP-1 production, hepatic insulin sensitivity, and consequently, hepatic glucose production.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Diet, High-Fat; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Glucose Clamp Technique; Glucose Intolerance; Ibuprofen; Insulin; Insulin Resistance; Intestinal Diseases; Liver; Mice; Mice, Inbred C57BL

2021
Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson's disease via gut microbiota-GLP-1 pathway.
    Brain, behavior, and immunity, 2021, Volume: 91

    A connection between gut microbiota and Parkinson's disease (PD) indicates that dysbiosis of the gut microbiota might represent a risk factor for PD. Microbiota-targeted interventions, including probiotic Clostridium butyricum (Cb), have been recently shown to have favorable effects in PD by regulating microbiota-gut-brain axis. However, the potential beneficial roles and its mechanisms of Cb on PD were still unknown. Male C57BL/6 mice were subjected to a PD model-induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and were treated intragastrically with Cb for 4 weeks. The motor functions were assessed by a series of behavioral tests including pole test, beam walking teat, forced swimming test and open field test. The dopaminergic neuron loss, synaptic plasticity and microglia activation, as well as the levels of colonic glucagon-like peptide-1 (GLP-1), colonic G protein-coupled receptors GPR41/43 and cerebral GLP-1 receptors were assessed. Gut microbial composition was assessed by 16S rRNA sequencing analysis. Our results showed that oral administration of Cb could improve motor deficits, dopaminergic neuron loss, synaptic dysfunction and microglia activation in the MPTP-induced mice. Meanwhile, Cb treatment could reverse the dysbiosis of gut microbiota and the decreased levels of colonic GLP-1, colonic GPR41/43 and cerebral GLP-1 receptor in the MPTP-induced mice. These findings indicated that the neuroprotective mechanism of Cb on PD might be related to the improvement of abnormal gut microbiota-gut-brain axis.

    Topics: Animals; Clostridium butyricum; Disease Models, Animal; Dopaminergic Neurons; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Parkinson Disease; Probiotics; RNA, Ribosomal, 16S

2021
GK-rats respond to gastric bypass surgery with improved glycemia despite unaffected insulin secretion and beta cell mass.
    Peptides, 2021, Volume: 136

    Roux-en-Y gastric bypass (RYGB) is the most effective treatment for morbid obesity and results in rapid remission of type 2 diabetes (T2D), before significant weight loss occurs. The underlying mechanisms for T2D remission are not fully understood. To gain insight into these mechanisms we used RYGB-operated diabetic GK-rats and Wistar control rats. Twelve adult male Wistar- and twelve adult male GK-rats were subjected to RYGB- or sham-operation. Oral glucose tolerance tests (OGTT) were performed six weeks after surgery. RYGB normalized fasting glucose levels in GK-rats, without affecting fasting insulin levels. In both rat strains, RYGB caused increased postprandial responses in glucose, GLP-1, and GIP. RYGB caused elevated postprandial insulin secretion in Wistar-rats, but had no effect on insulin secretion in GK-rats. In agreement with this, RYGB improved HOMA-IR in GK-rats, but had no effect on HOMA-β. RYGB-operated GK-rats had an increased number of GIP receptor and GLP-1 receptor immunoreactive islet cells, but RYGB had no major effect on beta or alpha cell mass. Furthermore, in RYGB-operated GK-rats, increased Slc5a1, Pck2 and Pfkfb1 and reduced Fasn hepatic mRNA expression was observed. In summary, our data shows that RYGB induces T2D remission and enhanced postprandial incretin hormone secretion in GK-rats, without affecting insulin secretion or beta cell mass. Thus our data question the dogmatic view of how T2D remission is achieved and instead point at improved insulin sensitivity as the main mechanism of remission.

    Topics: Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Bypass; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Insulin; Insulin Secretion; Insulin-Secreting Cells; Islets of Langerhans; Obesity, Morbid; Rats; Rats, Wistar; Weight Loss

2021
Glucagon Resistance and Decreased Susceptibility to Diabetes in a Model of Chronic Hyperglucagonemia.
    Diabetes, 2021, Volume: 70, Issue:2

    Elevation of glucagon levels and increase in α-cell mass are associated with states of hyperglycemia in diabetes. Our previous studies have highlighted the role of nutrient signaling via mTOR complex 1 (mTORC1) regulation that controls glucagon secretion and α-cell mass. In the current studies we investigated the effects of activation of nutrient signaling by conditional deletion of the mTORC1 inhibitor, TSC2, in α-cells (αTSC2

    Topics: Animals; Blood Glucose; Body Weight; Disease Models, Animal; Disease Susceptibility; Eating; Glucagon; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucose Intolerance; Insulin; Insulin Secretion; Mechanistic Target of Rapamycin Complex 1; Mice; Receptors, Glucagon; Signal Transduction; Tuberous Sclerosis Complex 2 Protein

2021
Expression of a novel dual-functional polypeptide and its pharmacological action research.
    Life sciences, 2021, Feb-15, Volume: 267

    To develop a dual-functional medicine for hypoglycemic and anti-thrombus.. The long-acting glucagon like peptide-1 (5×GLP-1) and nattokinase (NK) were cloned by SOE PCR and gained the GLP-1 and NK fusion polypeptide after transformed into E. coli. Use of mice models for the hypoglycemic and anti-thrombus activity of the fusion polypeptide. Balb/C mice were given the carrageenan by intraperitoneal injection to induce tail thrombus models. Type 2 diabetes mellitus mice model was used to research the hypoglycemic function of the fusion polypeptide.. Results showed that the fusion polypeptide could significantly prevent thrombus formation after oral administration. Continuous administration for 15 days, fasting blood glucose levels of the experimental group decreased to nearly normal levels.. The present study investigated the expression, purification and functional activity of the rolGLP-1 and NK fusion polypeptide, which provided a foundation for further studying the detailed pharmaceutical mechanism and drug development.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon-Like Peptide 1; Hypoglycemia; Insulin; Male; Mice; Mice, Inbred BALB C; Peptides; Subtilisins; Thrombosis

2021
A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis.
    EBioMedicine, 2021, Volume: 63

    Fibroblast growth factor 21 (FGF21) has become a promising therapeutic target for metabolic diseases such as type 2 diabetes (T2D), obesity and non-alcoholic steatohepatitis. However, the clinical application of natural FGF21 molecule is limited because of its instability in vitro and short half-life in vivo. To improve FGF21's therapeutic property, we screened high receptor binding FGF21 analogs and made FGF21-Fc-GLP-1 dual-targeted constructs to investigate their activity in a number of experiments .. Utilizing phage display high-throughput screening we identified mutations that could improve β-Klotho binding property of FGF21. IgG4 Fc was fused to FGF21 variants to extend the in vivo half-life. We further explored the potential synergistic actions of FGF21 with the incretin glucagon-like peptide-1 (GLP-1) by generating GLP-1-Fc-FGF21 dual agonists.. Two Fc-FGF21 variants showed enhanced β-Klotho binding affinity in vitro as well as improved glucose lowering effect in vivo. One of the dual agonists, GLP-1-Fc-FGF21 D1, provided potent and sustained glucose lowering effect in diabetic mice models. It also demonstrated superior weight loss effect to GLP-1 or FGF21 alone. Moreover, GLP-1-Fc-FGF21 D1 exhibited strong anti-NASH effect in the high-fat diet-induced ob/ob model as it improved liver function, serum and hepatic lipid profile and reduced NAFLD activity score with an efficacy superior to either FGF21 or GLP-1 analogs alone.. This novel GLP-1/FGF21 dual agonist is worth clinical development for the treatment of T2D, obesity and NASH.. HEC Pharm R&D Co., Ltd, National natural science fund of China.

    Topics: Animals; Blood Glucose; Body Weight; Cell Line; Diabetes Mellitus, Experimental; Diet, High-Fat; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Discovery; Fibroblast Growth Factors; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Mice; Non-alcoholic Fatty Liver Disease; Rats; Recombinant Fusion Proteins; Treatment Outcome

2021
Antagonizing somatostatin receptor subtype 2 and 5 reduces blood glucose in a gut- and GLP-1R-dependent manner.
    JCI insight, 2021, 02-22, Volume: 6, Issue:4

    Somatostatin (SS) inhibits glucagon-like peptide-1 (GLP-1) secretion in a paracrine manner. We hypothesized that blocking somatostatin subtype receptor 2 (SSTR2) and 5 (SSTR5) would improve glycemia by enhancing GLP-1 secretion. In the perfused mouse small intestine, the selective SSTR5 antagonist (SSTR5a) stimulated glucose-induced GLP-1 secretion to a larger degree than the SSTR2 antagonist (SSTR2a). In parallel, mice lacking the SSTR5R showed increased glucose-induced GLP-1 secretion. Both antagonists improved glycemia in vivo in a GLP-1 receptor-dependent (GLP-1R-dependent) manner, as the glycemic improvements were absent in mice with impaired GLP-1R signaling and in mice treated with a GLP-1R-specific antagonist. SSTR5a had no direct effect on insulin secretion in the perfused pancreas, whereas SSTR2a increased insulin secretion in a GLP-1R-independent manner. Adding a dipeptidyl peptidase 4 inhibitor (DPP-4i) in vivo resulted in additive effects on glycemia. However, when glucose was administered intraperitoneally, the antagonist was incapable of lowering blood glucose. Oral administration of SSTR5a, but not SSTR2a, lowered blood glucose in diet-induced obese mice. In summary, we demonstrate that selective SSTR antagonists can improve glucose control primarily through the intestinal GLP-1 system in mice.

    Topics: Animals; Blood Glucose; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hypoglycemic Agents; Insulin; Insulin Secretion; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Obese; Receptors, Somatostatin

2021
The glucagon-like peptide-1 (GLP-1) analog exenatide ameliorates intrauterine adhesions in mice.
    Peptides, 2021, Volume: 137

    The purpose of the experiments in this study was to explore the effect of exenatide on intrauterine adhesions (IUAs) and to elucidate its mechanism to provide new ideas for the clinical treatment of IUAs.. In this study, an animal model of IUAs was established by double stimulation using mechanical curettage and inflammation. After modeling, the treatment group was injected subcutaneously with three doses of exenatide for two weeks. The model group was injected with sterile ultrapure water, and the sham operation group was treated the same as the normal group, except for the observation of abdominal wound changes. Two weeks later, all mice were sacrificed by cervical dysfunction. The obtained mouse uterine tissue was used for subsequent experimental detection, using HE and Masson staining for histomorphological and pathological analysis; qRT-PCR for the detection of TGF-β1, α-SMA, and MMP-9 gene expression in uterine tissue; and western blotting analysis of TGF-β1, α-SMA, and collagen 1 protein expression to verify whether exenatide has a therapeutic effect on IUAs in mice.. In the high-dose exenatide treatment group, the endometrial glands significantly increased in size, and the deposition area of collagen fibers in the endometrial tissue was significantly reduced. We observed that the mRNA expression of TGF-β1 and α-SMA in the endometrial tissue of IUAs mice in this group was significantly reduced, while the expression of MMP-9 was significantly increased. In addition, we found that the protein expression of TGF-β1, α-SMA, and collagen 1 remarkably decreased after treatment with exenatide.. Exenatide may reduce the deposition of collagen fibers in the uterus of IUAs mice and promote the proliferation of endometrial glands in mice.

    Topics: Actins; Animals; Collagen Type I; Disease Models, Animal; Endometrium; Exenatide; Female; Gene Expression Regulation; Glucagon-Like Peptide 1; Matrix Metalloproteinase 9; Mice; Tissue Adhesions; Transforming Growth Factor beta1; Uterus

2021
S3-2, a novel long-lasting oxyntomodulin derivative, exerts improvement on diabesity and renal injury through activating GLP-1 and glucagon receptors.
    Life sciences, 2021, Apr-01, Volume: 270

    To prolong the short lifespan of oxyntomodulin (OXM) for treating obesity and diabetes, we designed a novel fused OXM analog, containing an albumin-binding sequence, a protease cleavable tetrapeptide, and a mutated OXM.. We screened two albumin-binding sequences (S3 and S6) to construct OXM derivatives, termed S3-2 (with two cysteines) and S6-0 (without cysteine). After peptides were synthesized, isothermal titration calorimetry (ITC) was applied to assess binding-affinity for HSA. Further in vivo acute efficacies evaluation and candidate selection were performed in diabetic db/db mice via oral glucose tolerance test (OGTT) and glucose-lowering duration test. Chronic efficacy test of selected candidate was also performed in diabetic mice.. S3-2re exhibits outstanding therapeutical potential as a candidate drug for treating the obesity and diabetes.

    Topics: Albumins; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Hypoglycemic Agents; Insulin; Kidney; Male; Mice; Mice, Inbred C57BL; Obesity; Oxyntomodulin; Peptides; Receptors, Glucagon

2021
Continuous stimulation of dual-function peptide PGLP-1-VP inhibits the morbidity and mortality of NOD mice through anti-inflammation and immunoregulation.
    Scientific reports, 2021, 02-11, Volume: 11, Issue:1

    Multiple animal and human studies have shown that administration of GLP-1RA can enhance β-cell recovery, reduce insulin dosage, reduce HbA1c content in the blood, reduce the risk of hypoglycemia and reduce inflammation. In the NOD mouse model, peptide VP treatment can prevent and treat type 1 diabetes through immunomodulation. Therefore, we designed a new dual-functional PGLP-1-VP, which is expected to combine the anti-inflammatory effect of PGLP-1 and the immunomodulatory effect of VP peptide. In streptozotocin-induced hyperglycemic mice model, we demonstrated that PGLP-1-VP can act as a GLP-1R agonist to improve hyperglycemia and increase insulin sensitivity. In the NOD mouse model, PGLP-1-VP treatment reduced morbidity, mortality, and pancreatic inflammation, and showed superior effect to PGLP-1 or VP treatment alone, confirming that PGLP-1-VP may act as a dual-function peptide. PGLP-1-VP provided immunomodulatory effect through increasing Th2 cell percentage and balancing the ratio of Th2/Th1 in spleen and PLN, similar to P277 and VP. Additionally, PGLP-1-VP and PGLP-1 act the anti-inflammation by increasing Treg cells and TGF-β1 content like DPP-IV inhibitor. Taken together, our data shows that the dual-functional PGLP-1-VP reduces morbidity and mortality in the NOD model, suggesting a potential role in preventing and treating type 1 diabetes.

    Topics: Animals; Anti-Inflammatory Agents; B-Lymphocytes; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Immunomodulation; Inflammation; Mice; Peptide Fragments; Transforming Growth Factor beta1

2021
Glucagon-like peptide 1 receptor (GLP-1R) agonist relieved asthmatic airway inflammation via suppression of NLRP3 inflammasome activation in obese asthma mice model.
    Pulmonary pharmacology & therapeutics, 2021, Volume: 67

    Obesity is a correctable factor for uncontrolled bronchial asthma. However, the effects of glucagon-like peptide-1 receptor (GLP-1R) agonist, a recently approved antiobestic drug, on airway hyperresponsiveness (AHR) and immune responses are not known.. Mice were fed with high-fat diet (HFD, 60% fat) for 8 weeks to induce obesity. Ovalbumin (OVA) sensitization and challenges were performed for 7 weeks. The mice were injected intraperitoneally with GLP-1R agonist 5 times a week for 4 weeks after OVA sensitization. After AHR measurement, expression of Th2, Th17 cytokines, and interleukin (IL)-33 were measured in BALF and lung tissues. Moreover, IL-1β and activity level of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) were analyzed to investigate the mechanism of GLP-1R agonist on asthmatic airway inflammation.. HFD induced significant weight gain, OVA sensitization and challenge in obese mice made eosinophilic airway inflammation, and increased AHR. Treatment with GLP-1R agonist-induced weight loss suppressed eosinophilic airway inflammation and decreased AHR. Expression of IL-4, 5, and 33 was increased in BALF of obese asthma mice followed by a decrease in response to GLP-1R agonist treatment. Moreover, lung tissue H&E stain revealed that peribronchial inflammation induced by obesity and OVA was effectively suppressed by GLP-1R agonist. Expressions of NLRP3, activated caspase-1, and IL-1β were increased in lung tissues of obese asthma mice and demonstrated a decrease in response to GLP-1R agonist treatment.. GLP-1R agonist effectively induced weight loss, suppressed eosinophilic bronchial airway inflammation, and AHR in obese asthma mice. These effects were mediated by suppression of NLRP3 inflammasome activity and IL-1β. GLP-1R agonist is proposed as a novel anti-asthmatic agent targeting the obese asthmatics.

    Topics: Animals; Asthma; Disease Models, Animal; Glucagon-Like Peptide 1; Inflammasomes; Inflammation; Mice; Mice, Inbred BALB C; Mice, Obese; NLR Family, Pyrin Domain-Containing 3 Protein; Obesity; Ovalbumin; Pharmaceutical Preparations

2021
Effects of Single or Combined Supplementation of Probiotics and Zinc on Histological Features of Ileum, Glucagon Like Peptide-1 and Ghrelin Levels in Malnourished Rats.
    Folia medica, 2021, Feb-28, Volume: 63, Issue:1

    Malnutrition causes small intestinal atrophy leading to impaired nutrient absorption, zinc deficiency, and intestinal mi-crobiota imbalance affecting appetite. Zinc-only supplementation programs have been shown to be ineffective in reducing the national prevalence of malnutrition.. The aim of this study was to assess the effects of probiotics and zinc in single or combined supplementation on the histological features of ileum and appetite regulating hormone in malnourished rats.. This study included 25 rats aged 8 weeks (weight 150-200 g) divided into 5 groups. Group A served as normal receiving standard diet, group B served as malnourished receiving low calorie diet. Groups C, D, E were pretreated with calo-rie restriction for 14 days to induce malnutrition. The treatment was given for 14 days. Group C was treated with probiotics and zinc combination, group D was treated with probiotics, group E - with zinc. All treatment groups received standard diet at the same time. Ileum sample was taken and subjected to histological preparations using hematoxylin-eosin staining to evaluate villi height and mucosal thickness, blood sample was taken for GLP-1 and ghrelin levels evaluation using ELISA methods.. Probiotics and zinc co-supplementation significantly increased villi height and zinc supplementation significantly increased mucosal thickness compared to malnourished rats. GLP-1 levels were significantly increased and ghrelin level was reduced with single or combined supplementation of probiotics and zinc.. Low-calorie feed administered within 14 days successfully changed the profiles of small intestinal histology in rats. Either single or combined administration of probiotics and zinc develop the histological features of ileum and appetite in the malnou- rished rats.

    Topics: Animals; Disease Models, Animal; Drug Therapy, Combination; Ghrelin; Glucagon-Like Peptide 1; Ileum; Intestinal Mucosa; Male; Malnutrition; Probiotics; Rats; Rats, Wistar; Zinc

2021
An extended release GLP-1 analogue increases α-synuclein accumulation in a mouse model of prodromal Parkinson's disease.
    Experimental neurology, 2021, Volume: 341

    The repurposing of drugs developed to treat type 2 diabetes for the treatment of Parkinson's disease (PD) was encouraged by the beneficial effect exerted by the glucagon-like peptide 1 (GLP-1) analogue exenatide in a phase 2 clinical trial. The effects of GLP-1 analogues have been investigated extensively using rodent toxin models of PD. However, many of the toxin-based models used lack robust α-synuclein (α-syn) pathology, akin to the Lewy bodies and neurites seen in PD. One prior study has reported a protective effect of a GLP-1 analogue on midbrain dopamine neurons following injection of α-syn preformed fibrils (PFF) into the striatum. Here, we used olfactory bulb injections of PFF as a model of prodromal PD and monitored the effect of a long-acting GLP-1 analogue on the propagation of α-syn pathology in the olfactory system. Thirteen weeks after PFF injection, mice treated with long-acting the GLP-1 analogue had a significant increase in pathological α-syn in brain regions connected to the olfactory bulb, accompanied by signs of microglia activation. Our results suggest that the nature of the neuronal insult and intrinsic properties of the targeted neuronal population markedly influence the effect of GLP-1 analogues.

    Topics: alpha-Synuclein; Animals; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Injections, Subcutaneous; Male; Mice; Mice, Inbred C57BL; Parkinson Disease, Secondary; Prodromal Symptoms

2021
GLP-1R activation ameliorated novel-object recognition memory dysfunction via regulating hippocampal AMPK/NF-κB pathway in neuropathic pain mice.
    Neurobiology of learning and memory, 2021, Volume: 182

    Growing evidences indicate that neuropathic pain is frequently accompanied with cognitive impairments, which aggravate the decrease in the quality of life of chronic pain patients. Furthermore, it has been shown that the activation of Glucagon-like-peptide-1receptor (GLP-1R) improved memory deficit in multiple diseases, including Alzheimer's disease (AD), stroke. However, whether GLP-1R activation could improve memory impairment induced by neuropathic pain and the mechanisms underlying the effect of the activation of GLP-1R on memory protection have not yet been established. The spared nerve injury (SNI) model was established as a kind of neuropathic pain. And novel-object recognition memory (hippocampus-dependent memory) was tested by the novel object recognition test (NORT). The expression levels of GLP-1, GLP-1R, adenosine monophosphate-activated protein kinase (AMPK), p-AMPKThr172, nuclear factor κ B p65 (NF-κB p65), interleukin-1beta (IL-1β), IL-1β p17 (mature IL-1β), tumor necrosis factor-alpha (TNF-α) and the synaptic proteins were tested in the murine hippocampus with memory deficits caused by neuropathic pain. Then, exenatide acetate (Ex-4, a GLP-1R agonist), exendin (9-39) (Ex(9-39), a GLP-1R antagonist) and Compound C dihydrochloride (CC, an AMPK inhibitor) were used to test the effects of the activation of GLP-1R in the mice with neuropathic pain. First, we uncovered that neuropathic pain could inhibit GLP-1/GLP-R axis, disturb inflammatory signaling pathway, increase the expression of IL-1β, IL-1β p17 and TNF-α, downregulate the synaptic proteins (postsynaptic density protein 95 (PSD95) and Arc). Subsequently, we reported that Ex-4 treatment could improve recognition memory impairment, increase the ratio of p-AMPKThr172/AMPK, inhibit the phosphorylation NF-κB p65 and decrease the expression of IL-1β, IL-1β p17 and TNF-α, upregulate the levels of PSD95 and Arc. Moreover, we found that Ex(9-39) and CC treatment could abrogate the memory protection of activation of GLP-1R in mice with neuropathic pain. The results indicated that the activation of GLP-1R could improve recognition memory impairment via regulating AMPK/NF-κB pathway, improving neuroinflammation, reversing the decreased level of synaptic proteins in neuropathic pain mice.

    Topics: AMP-Activated Protein Kinase Kinases; Animals; Chronic Pain; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hippocampus; Interleukin-1beta; Memory Disorders; Mice; Neuralgia; Neuroinflammatory Diseases; Open Field Test; Peptide Fragments; Peripheral Nerve Injuries; Recognition, Psychology; Sciatic Nerve; Transcription Factor RelA; Tumor Necrosis Factor-alpha

2021
Leptin Receptors Are Not Required for Roux-en-Y Gastric Bypass Surgery to Normalize Energy and Glucose Homeostasis in Rats.
    Nutrients, 2021, May-04, Volume: 13, Issue:5

    Sensitization to the adipokine leptin is a promising therapeutic strategy against obesity and its comorbidities and has been proposed to contribute to the lasting metabolic benefits of Roux-en-Y gastric bypass (RYGB) surgery. We formally tested this idea using Zucker fatty

    Topics: Animals; Blood Glucose; Disease Models, Animal; Energy Metabolism; Fatty Liver; Gastric Bypass; Glucagon-Like Peptide 1; Glucose Tolerance Test; Homeostasis; Insulin; Obesity; Postoperative Period; Rats; Rats, Wistar; Rats, Zucker; Receptors, Leptin; Weight Loss

2021
A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse.
    International journal of molecular sciences, 2021, May-20, Volume: 22, Issue:10

    Increasing evidence links metabolic disorders with neurodegenerative processes including Alzheimer's disease (AD). Late AD is associated with amyloid (Aβ) plaque accumulation, neuroinflammation, and central insulin resistance. Here, a humanized AD model, the 5xFAD mouse model, was used to further explore food intake, energy expenditure, neuroinflammation, and neuroendocrine signaling in the hypothalamus. Experiments were performed on 6-month-old male and female full transgenic (Tg

    Topics: Alzheimer Disease; Amyloid; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Amyloidogenic Proteins; Animals; Brain; Disease Models, Animal; Energy Metabolism; Female; Gastric Inhibitory Polypeptide; Ghrelin; Glucagon-Like Peptide 1; Hypothalamus; Insulin; Male; Metabolic Diseases; Mice; Mice, Transgenic; Plaque, Amyloid; Resistin

2021
Impaired Ca
    American journal of physiology. Cell physiology, 2021, 07-01, Volume: 321, Issue:1

    Ca

    Topics: Alstrom Syndrome; Animals; Blood Glucose; Calcium; Calcium Signaling; Diabetes Mellitus, Type 2; Disease Models, Animal; Endoplasmic Reticulum; Exenatide; Fluorescent Dyes; Fura-2; Glucagon-Like Peptide 1; Hepatocytes; Hypoglycemic Agents; Insulin; Insulin Resistance; Liver; Male; Mice; Mice, Transgenic; Non-alcoholic Fatty Liver Disease; Obesity; Palmitic Acid

2021
The GLP-1/GIP dual-receptor agonist DA5-CH inhibits the NF-κB inflammatory pathway in the MPTP mouse model of Parkinson's disease more effectively than the GLP-1 single-receptor agonist NLY01.
    Brain and behavior, 2021, Volume: 11, Issue:8

    The GLP-1 receptor agonist exendin-4 has recently shown good effects in a phase II clinical trial in Parkinson's disease (PD) patients. Here, a comparison of the new GLP-1/GIP dual receptor agonist DA5-CH and NLY01, a 40 kDa pegylated form of exendin-4, on motor impairments and reducing inflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD mouse model is provided. The drug groups received either DA5-CH or NLY01 (25 nmol/kg) i.p. after daily MPTP intraperitoneal injection. Both drugs showed improvements in motor activity, open field experiments, rotarod tests, and gait analysis, but DA5-CH was more potent. Tyrosine hydroxylase expression in dopaminergic neurons was much reduced by MPTP and improved by DA5-CH, while NLY01 showed weak effects. When analyzing levels of α-synuclein (α-Syn), DA5-CH reduced levels effectively while NLY01 had no effect. When measuring the levels of the inflammation markers Toll-like receptor 4 (TLR4), specific markers of microglia activation (Iba-1), the marker of astrocyte activation glial fibrillary acidic protein (GFAP), nuclear factor-κB (NF-κB), tumor necrosis factor (TNF-α), and transforming growth factor β1 (TGF-β1), DA5-CH was very effective in reducing the chronic inflammation response, while NLY01 did not show significant effects. Levels of key growth factors such as Glial cell-derived neurotrophic factor (GDNF) and Brain-derived neurotrophic factor (BDNF) were much reduced by MPTP, and DA5-CH was able to normalize levels in the brain, while NLY01 showed little effect. The levels of pro-inflammatory cytokines (IL-6 and IL-Iβ) were much reduced by DA5-CH, too, while NLY01 showed no effect. In a separate experiment, we tested the ability of the two drugs to cross the blood-brain barrier. After injecting fluorescin-labelled peptides peripherally, the fluorescence in brain tissue was measured. It was found that the pegylated NLY01 peptide did not cross the BBB in meaningful quantities while exendin-4 and the dual agonist DA5-CH did. The results show that DA5-CH shows promise as a therapeutic drug for PD.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Disease Models, Animal; Glucagon-Like Peptide 1; Humans; Mice; Mice, Inbred C57BL; Neuroprotective Agents; NF-kappa B; Parkinson Disease; Pharmaceutical Preparations

2021
Tocopheryl quinone improves non-alcoholic steatohepatitis (NASH) associated dysmetabolism of glucose and lipids by upregulating the expression of glucagon-like peptide 1 (GLP-1)
    Pharmaceutical biology, 2021, Volume: 59, Issue:1

    Glucagon-like peptide 1 (GLP-1) and α-tocopheryl quinone can promote the growth of intestinal flora and affect the pathogenesis of non-alcoholic steatohepatitis (NASH).. This study determines the molecular mechanism of the effect of tocopheryl quinone in the treatment of high cholesterol and cholate diet (HFCC)-induced NASH.. HFCC rats presented higher levels of cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL), while tocopheryl quinone reversed the effects of HFCC. HFCC dysregulated malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), Vitamin E, 12-hydroxyeicosatetraenoic acid (12-HETE), 13-hydroxyoctadecadienoic acid (13-HODE) and nuclear factor kappa B (NF-κB), and the effects of HFCC were reversed by the treatment of tocopheryl quinone. Also, GLP-1 in the HFCC group was down-regulated while the IL-6 and TNF-α activity and endotoxins were all up-regulated. HFCC significantly decreased the number and diversity of bacteria, whereas tocopheryl quinone substantially restored the balance of intestinal flora and promoted the growth of both. α-Tocopheryl quinone relieves HFCC-induced NASH

    Topics: Animals; Antioxidants; Diet, High-Fat; Disease Models, Animal; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glucose; Lipid Metabolism; Male; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Rats; Rats, Sprague-Dawley; Up-Regulation; Vitamin E

2021
Holdemanella biformis improves glucose tolerance and regulates GLP-1 signaling in obese mice.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2021, Volume: 35, Issue:7

    Impaired glucose homeostasis in obesity is mitigated by enhancing the glucoregulatory actions of glucagon-like peptide 1 (GLP-1), and thus, strategies that improve GLP-1 sensitivity and secretion have therapeutic potential for the treatment of type 2 diabetes. This study shows that Holdemanella biformis, isolated from the feces of a metabolically healthy volunteer, ameliorates hyperglycemia, improves oral glucose tolerance and restores gluconeogenesis and insulin signaling in the liver of obese mice. These effects were associated with the ability of H. biformis to restore GLP-1 levels, enhancing GLP-1 neural signaling in the proximal and distal small intestine and GLP-1 sensitivity of vagal sensory neurons, and to modify the cecal abundance of unsaturated fatty acids and the bacterial species associated with metabolic health. Our findings overall suggest the potential use of H biformis in the management of type 2 diabetes in obesity to optimize the sensitivity and function of the GLP-1 system, through direct and indirect mechanisms.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Firmicutes; Glucagon-Like Peptide 1; Gluconeogenesis; Glucose; Glucose Tolerance Test; Hyperglycemia; Insulin; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity

2021
Intestinal MYC modulates obesity-related metabolic dysfunction.
    Nature metabolism, 2021, Volume: 3, Issue:7

    MYC is a transcription factor with broad biological functions, notably in the control of cell proliferation. Here, we show that intestinal MYC regulates systemic metabolism. We find that MYC expression is increased in ileum biopsies from individuals with obesity and positively correlates with body mass index. Intestine-specific reduction of MYC in mice improves high-fat-diet-induced obesity, insulin resistance, hepatic steatosis and steatohepatitis. Mechanistically, reduced expression of MYC in the intestine promotes glucagon-like peptide-1 (GLP-1) production and secretion. Moreover, we identify Cers4, encoding ceramide synthase 4, catalysing de novo ceramide synthesis, as a MYC target gene. Finally, we show that administration of the MYC inhibitor 10058-F4 has beneficial effects on high-fat-diet-induced metabolic disorders, and is accompanied by increased GLP-1 and reduced ceramide levels in serum. This study positions intestinal MYC as a putative drug target against metabolic diseases, including non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.

    Topics: Animals; Biomarkers; Diet, High-Fat; Disease Models, Animal; Disease Susceptibility; Glucagon-Like Peptide 1; Humans; Ilium; Insulin Resistance; Intestinal Mucosa; Mice; Non-alcoholic Fatty Liver Disease; Obesity; Proto-Oncogene Proteins c-myc

2021
A quinoxaline-based compound ameliorates bone loss in ovariectomized mice.
    Experimental biology and medicine (Maywood, N.J.), 2021, Volume: 246, Issue:23

    DMB (6,7-dichloro-2-methylsulfonyl-3-Ntert-butylaminoquinoxaline) is a quinoxaline-based compound that has been investigated as a glucagon-like peptide-1 receptor (GLP-1R) agonist. To clarify anti-osteoporosis effect of DMB, an osteoporotic mice model was established by ovariectomy (OVX) operation. The OVX mice were given intraperitoneally DMB, exendin-4 (EX-4), or 17β-estradiol (E

    Topics: Animals; Bone Density; Bone Resorption; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Menopause; Mice; Mice, Inbred C57BL; Osteoclasts; Osteogenesis; Osteoporosis; Quinoxalines

2021
Glucagon-like peptide-1 attenuates cardiac hypertrophy via the AngII/AT1R/ACE2 and AMPK/mTOR/p70S6K pathways.
    Acta biochimica et biophysica Sinica, 2021, Aug-31, Volume: 53, Issue:9

    Glucagon-like peptide-1 (GLP-1), a novel type of glucose-lowering agent, has been reported to exert cardioprotective effects. However, the cardioprotective mechanism of GLP-1 on spontaneous hypertension-induced cardiac hypertrophy has not been fully elucidated. In this study, we revealed that liraglutide or alogliptin treatment ameliorated spontaneous hypertension-induced cardiac hypertrophy, as evidenced by decreased levels of cardiac hypertrophic markers (atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain), as well as systolic blood pressure, diastolic blood pressure, mean arterial pressure, and histological changes. Both drugs significantly reduced the levels of angiotensin II (AngII) and AngII type 1 receptor (AT1R) and upregulated the levels of AngII type 2 receptor (AT2R) and angiotensin-converting enzyme 2 (ACE2), as indicated by a reduced AT1R/AT2R ratio. Simultaneously, treatment with liraglutide or alogliptin significantly increased GLP-1 receptor expression and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and downregulated the phosphorylation of mammalian target of rapamycin (mTOR), p70 ribosomal S6 protein kinase, and eukaryotic translation initiation factor 4E binding protein 1 in spontaneous hypertension rats. Furthermore, our data demonstrated that the AMPK inhibitor compound C or mTOR activator MHY1485 inhibited the anti-hypertrophic effect of GLP-1. In summary, our study suggests that liraglutide or alogliptin protects the heart against cardiac hypertrophy by regulating the expression of AngII/AT1R/ACE2 and activating the AMPK/mTOR pathway, and GLP-1 agonist can be used in the treatment of patients with cardiac hypertrophy.

    Topics: Adenylate Kinase; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Cardiomegaly; Cardiotonic Agents; Cell Line; Disease Models, Animal; Glucagon-Like Peptide 1; Hypertension; Liraglutide; Male; Morpholines; Myocytes, Cardiac; Piperidines; Rats; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; TOR Serine-Threonine Kinases; Triazines; Uracil

2021
A GLP-1/GIP Dual Receptor Agonist DA4-JC Effectively Attenuates Cognitive Impairment and Pathology in the APP/PS1/Tau Model of Alzheimer's Disease.
    Journal of Alzheimer's disease : JAD, 2021, Volume: 83, Issue:2

    Alzheimer's disease (AD) is a degenerative disorder, accompanied by progressive cognitive decline, for which there is no cure. Recently, the close correlation between AD and type 2 diabetes mellitus (T2DM) has been noted, and a promising anti-AD strategy is the use of anti-T2DM drugs.. To investigate if the novel glucagon-like peptide-1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist DA4-JC shows protective effects in the triple APP/PS1/tau mouse model of AD.. A battery of behavioral tests were followed by in vivo recording of long-term potentiation (LTP) in the hippocampus, quantified synapses using the Golgi method, and biochemical analysis of biomarkers.. DA4-JC improved cognitive impairment in a range of tests and relieved pathological features of APP/PS1/tau mice, enhanced LTP in the hippocampus, increased numbers of synapses and dendritic spines, upregulating levels of post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), normalized volume and numbers of mitochondria and improving the phosphatase and tensin homologue induced putative kinase 1 (PINK1) - Parkin mitophagy signaling pathway, while downregulating amyloid, p-tau, and autophagy marker P62 levels.. DA4-JC is a promising drug for the treatment of AD.

    Topics: Alzheimer Disease; Animals; Cognitive Dysfunction; Diabetes Mellitus, Type 2; Disease Models, Animal; Disks Large Homolog 4 Protein; Female; Glucagon-Like Peptide 1; Hippocampus; Humans; Long-Term Potentiation; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neuroprotective Agents; Synapses

2021
A long-acting, dual-agonist analogue of lamprey GLP-1 shows potent insulinotropic, β-cell protective, and anorexic activities and improves glucose homeostasis in high fat-fed mice.
    Molecular and cellular endocrinology, 2020, 01-01, Volume: 499

    Topics: Animals; Blood Glucose; Body Weight; Cells, Cultured; Diet, High-Fat; Disease Models, Animal; Dose-Response Relationship, Drug; Eating; Fish Proteins; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Incretins; Insulin; Insulin-Secreting Cells; Islets of Langerhans; Lampreys; Mice; Receptors, Glucagon

2020
The Glucagon-like peptide-1 receptor agonist, exendin-4, ameliorated gastrointestinal dysfunction in the Wistar Kyoto rat model of Irritable Bowel Syndrome.
    Neurogastroenterology and motility, 2020, Volume: 32, Issue:2

    Glucagon-like peptide-1 (GLP-1) is beneficial in relieving pain-related symptoms of Irritable bowel syndrome (IBS), a prevalent, multi-factorial functional bowel disorder characterized by diarrhea and/or constipation, abdominal bloating, and pain. Activation of myenteric neurons has been implicated in the inhibitory effects of GLP-1 on gastrointestinal motility; however, the mechanisms of action underlying this are not clear.. A rat model of IBS was used to examine physiological changes evoked by intraperitoneal administration of a GLP-1 receptor agonist, exendin-4. Behavioral and physiological analysis of stress-sensitive Wister Kyoto (WKY) rats was used to determine if administration of exendin-4, in the presence or absence of neutralizing interleukin-6 receptor monoclonal antibodies, modified IBS-like symptoms. Immunofluorescence, calcium imaging, and Western blotting techniques were used to investigate the potential role of enteric neural plexi and tight junction protein expression in this effect.. Consistent with the expression of GLP-1 and interleukin-6 receptors in both submucosal and myenteric ganglia, exendin-4 and interleukin-6 stimulated calcium responses in these neurons. In vivo administration of exendin-4 normalized stress-induced defecation and visceral pain sensitivity in WKY rats. No additional changes were noted in rats co-treated with exendin-4 and anti-interleukin-6 receptor antibodies. Mucosal expression of occludin, a tight junction protein, was decreased by exendin-4. Centrally regulated anxiety-like behaviors were not modified.. These data suggest that intraperitoneal injection of exendin-4 improves bowel dysfunction in WKY rats without impacting on centrally regulated anxiety-like behaviors. Modulation of enteric neuronal function and tight junction expression appear to underlie the functional benefits of this intervention.

    Topics: Animals; Disease Models, Animal; Enteric Nervous System; Exenatide; Glucagon-Like Peptide 1; Interleukin-6; Irritable Bowel Syndrome; Rats; Rats, Inbred WKY

2020
A dual GLP-1 and Gcg receptor agonist rescues spatial memory and synaptic plasticity in APP/PS1 transgenic mice.
    Hormones and behavior, 2020, Volume: 118

    Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Disease Models, Animal; Glucagon-Like Peptide 1; Hippocampus; Insulin; Long-Term Potentiation; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neuronal Plasticity; Neuroprotective Agents; Oxyntomodulin; Presenilin-1; Receptors, Glucagon; Spatial Memory

2020
Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia.
    JCI insight, 2020, 01-30, Volume: 5, Issue:2

    Friedreich ataxia is an autosomal recessive neurodegenerative disease associated with a high diabetes prevalence. No treatment is available to prevent or delay disease progression. Friedreich ataxia is caused by intronic GAA trinucleotide repeat expansions in the frataxin-encoding FXN gene that reduce frataxin expression, impair iron-sulfur cluster biogenesis, cause oxidative stress, and result in mitochondrial dysfunction and apoptosis. Here we examined the metabolic, neuroprotective, and frataxin-inducing effects of glucagon-like peptide-1 (GLP-1) analogs in in vivo and in vitro models and in patients with Friedreich ataxia. The GLP-1 analog exenatide improved glucose homeostasis of frataxin-deficient mice through enhanced insulin content and secretion in pancreatic β cells. Exenatide induced frataxin and iron-sulfur cluster-containing proteins in β cells and brain and was protective to sensory neurons in dorsal root ganglia. GLP-1 analogs also induced frataxin expression, reduced oxidative stress, and improved mitochondrial function in Friedreich ataxia patients' induced pluripotent stem cell-derived β cells and sensory neurons. The frataxin-inducing effect of exenatide was confirmed in a pilot trial in Friedreich ataxia patients, showing modest frataxin induction in platelets over a 5-week treatment course. Taken together, GLP-1 analogs improve mitochondrial function in frataxin-deficient cells and induce frataxin expression. Our findings identify incretin receptors as a therapeutic target in Friedreich ataxia.

    Topics: Adolescent; Adult; Aged; Animals; Brain; Cerebellum; Disease Models, Animal; Exenatide; Female; Frataxin; Friedreich Ataxia; Ganglia, Spinal; Gene Expression Regulation; Gene Knock-In Techniques; Glucagon-Like Peptide 1; Humans; Insulin; Insulin-Secreting Cells; Iron; Iron-Binding Proteins; Male; Mice; Mice, Knockout; Middle Aged; Mitochondria; Oxidative Stress; Reactive Oxygen Species; Trinucleotide Repeat Expansion; Young Adult

2020
Attenuation of diabetic kidney injury in DPP4-deficient rats; role of GLP-1 on the suppression of AGE formation by inducing glyoxalase 1.
    Aging, 2020, 01-06, Volume: 12, Issue:1

    Dipeptidyl peptidase 4 (DPP4) inactivates incretin hormone glucagon-like peptide-1. DPP4 inhibitors may exert beneficial effects on diabetic nephropathy (DN) independently of glycemic control; however, the mechanisms underlying are not fully understood. Here, we investigated the mechanisms of the beneficial effects of DPP4 inhibition on DN using DPP4-deficient (DPP4-def) rats and rat mesangial cells.Blood glucose and HbA1c significantly increased by streptozotocin (STZ) and no differences were between WT-STZ and DPP4-def-STZ. The albumin level in urine decreased significantly and the albumin/creatinine ratio decreased slightly in DPP4-def-STZ. The glomerular volume in DPP4-def-STZ significantly decreased compared with that of WT-STZ. Advanced glycation end products formation, receptor for AGE (RAGE) protein expression, and its downstream inflammatory cytokines and fibrotic factors in kidney tissue, were significantly suppressed in the DPP4-def-STZ compared to the WT-STZ with increasing glyoxalase-1 (GLO-1) expression responsible for the detoxification of methylglyoxal (MGO).

    Topics: Animals; Biomarkers; Biopsy; Cytokines; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Dipeptidyl Peptidase 4; Disease Models, Animal; Gene Expression; Glucagon-Like Peptide 1; Glycation End Products, Advanced; Inflammation Mediators; Lactoylglutathione Lyase; Mesangial Cells; Rats

2020
CRISPR/Cas9 gene editing demonstrates metabolic importance of GPR55 in the modulation of GIP release and pancreatic beta cell function.
    Peptides, 2020, Volume: 125

    Topics: Animals; Cell Line; CRISPR-Cas Systems; Diabetes Mellitus, Experimental; Disease Models, Animal; Gastric Inhibitory Polypeptide; Gene Editing; Glucagon-Like Peptide 1; Humans; Insulin-Secreting Cells; Male; Mice; Receptors, Cannabinoid

2020
The Novel Dual GLP-1/GIP Receptor Agonist DA-CH5 Is Superior to Single GLP-1 Receptor Agonists in the MPTP Model of Parkinson's Disease.
    Journal of Parkinson's disease, 2020, Volume: 10, Issue:2

    Parkinson's disease (PD) is a progressive neurodegenerative disease for which there is no cure. In a clinical trial, the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has shown good protective effects in PD patients. The hormone glucose-dependent insulinotropic polypeptide (GIP) has also shown protective effects in animal models of PD.. We tested DA-CH5, a novel dual GLP-1/GIP receptor agonist.. DA-CH5 activity was tested on cells expressing GLP-1, GLP-2, GIP or glucagon receptors. The ability to cross the blood-brain barrier (BBB) of DA-CH5, exendin-4, liraglutide or other dual receptor agonists was tested with fluorescein-labelled peptides. DA-CH5, exendin-4 and liraglutide were tested in the MPTP mouse model of PD.. Analysing the receptor activating properties showed a balanced activation of GLP-1 and GIP receptors while not activating GLP-2 or glucagon receptors. DA-CH5 crossed the BBB better than other single or other dual receptor agonists. In a dose-response comparison, DA-CH5 was more effective than the GLP-1 receptor agonist exendin-4. When comparing the neuroprotective effect of DA-CH5 with Liraglutide, a GLP-1 analogue, both DA-CH5 and Liraglutide improved MPTP-induced motor impairments. In addition, the drugs reversed the decrease of the number of neurons expressing tyrosine hydroxylase (TH) in the SN, alleviated chronic inflammation, reduced lipid peroxidation, inhibited the apoptosis pathway (TUNEL assay) and increased autophagy -related proteins expression in the substantia nigra (SN) and striatum. Importantly, we found DA-CH5 was superior to Liraglutide in reducing microglia and astrocyte activation, improving mitochondrial activity by reducing the Bax/Bcl-2 ratio and normalising autophagy as found in abnormal expression of LC3 and p62.. The results demonstrate that the DA-CH5 is superior to liraglutide and could be a therapeutic treatment for PD.

    Topics: Animals; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Liraglutide; Mice; Neuroprotective Agents; Parkinson Disease; Parkinsonian Disorders; Receptors, Gastrointestinal Hormone

2020
Newly identified peptide hormone inhibits intestinal fat absorption and improves NAFLD through its receptor GPRC6A.
    Journal of hepatology, 2020, Volume: 73, Issue:2

    Circulating peptides and G protein-coupled receptors (GPCRs) have gained much attention because of their biofunctions in metabolic disorders including obesity and non-alcoholic fatty liver disease (NAFLD). Herein, we aimed to characterize the role and therapeutic potential of a newly identified peptide hormone in NAFLD.. Using bioinformatics, we identified a murine circulating pentadecapeptide flanked by potential convertase cleavage sites of osteocalcin (OCN), which we named 'metabolitin (MTL)'. We used ligand-receptor binding, receptor internalization, bioluminescence resonance energy transfer and Nano isothermal titration calorimetry assays to study the binding relationship between MTL and GPRC6A. For in vivo biological studies, wild-type mice kept on a high-fat diet (HFD) were injected or gavaged with MTL to study its function in NAFLD.. We confirmed that MTL binds to GPRC6A and OCN interacts with GPRC6A using in vitro biological studies. Both intraperitoneal and oral administration of MTL greatly improved NAFLD and insulin resistance in a mouse model. Interacting with GPRC6A expressed in intestines, MTL can significantly inhibit intestinal neurotensin secretion, which in turn inhibits triglyceride but not cholesterol gut absorption, mediated by the 5'AMP-activated protein kinase pathway. In addition, glucagon like peptide-1 secretion was induced by MTL treatment.. Oral or intraperitoneal MTL significantly improves the symptoms of NAFLD by inhibiting lipid absorption and insulin resistance. MTL could be a potential therapeutic candidate for the treatment of NAFLD.. A novel murine peptide hormone, herein named 'metabolitin', inhibits fatty acid absorption and improves systemic insulin resistance in a murine model of obesity and non-alcoholic fatty liver disease. Thus, metabolitin has therapeutic potential for the treatment of patients with non-alcoholic fatty liver disease.

    Topics: Animals; Dietary Fats; Disease Models, Animal; Glucagon-Like Peptide 1; Hypolipidemic Agents; Insulin Resistance; Intestinal Absorption; Mice; Non-alcoholic Fatty Liver Disease; Obesity; Osteocalcin; Peptide Hormones; Receptors, G-Protein-Coupled; Signal Transduction; Treatment Outcome; Triglycerides

2020
Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice.
    Molecular metabolism, 2020, Volume: 35

    Non-alcoholic steatohepatitis (NASH) is characterized by a robust pro-inflammatory component at both hepatic and systemic levels together with a disease-specific gut microbiome signature. Protein tyrosine phosphatase 1 B (PTP1B) plays distinct roles in non-immune and immune cells, in the latter inhibiting pro-inflammatory signaling cascades. In this study, we have explored the role of PTP1B in the composition of gut microbiota and gut barrier dynamics in methionine and choline-deficient (MCD) diet-induced NASH in mice.. Gut features and barrier permeability were characterized in wild-type (PTP1B WT) and PTP1B-deficient knockout (PTP1B KO) mice fed a chow or methionine/choline-deficient (MCD) diet for 4 weeks. The impact of inflammation was studied in intestinal epithelial and enteroendocrine cells. The secretion of GLP-1 was evaluated in primary colonic cultures and plasma of mice.. We found that a shift in the gut microbiota shape, disruption of gut barrier function, higher levels of serum bile acids, and decreased circulating glucagon-like peptide (GLP)-1 are features during NASH. Surprisingly, despite the pro-inflammatory phenotype of global PTP1B-deficient mice, they were partly protected against the alterations in gut microbiota composition during NASH and presented better gut barrier integrity and less permeability under this pathological condition. These effects concurred with higher colonic mucosal inflammation, decreased serum bile acids, and protection against the decrease in circulating GLP-1 levels during NASH compared with their WT counterparts together with increased expression of GLP-2-sensitive genes in the gut. At the molecular level, stimulation of enteroendocrine STC-1 cells with a pro-inflammatory conditioned medium (CM) from lipopolysaccharide (LPS)-stimulated macrophages triggered pro-inflammatory signaling cascades that were further exacerbated by a PTP1B inhibitor. Likewise, the pro-inflammatory CM induced GLP-1 secretion in primary colonic cultures, an effect augmented by PTP1B inhibition.. Altogether our results have unraveled a potential role of PTP1B in the gut-liver axis during NASH, likely mediated by increased sensitivity to GLPs, with potential therapeutic value.

    Topics: Animals; Choline Deficiency; Diet; Disease Models, Animal; Gastrointestinal Microbiome; Gene Expression; Gene Knockout Techniques; Glucagon-Like Peptide 1; Inflammation; Intestinal Mucosa; Liver; Male; Methionine; Mice; Mice, Inbred C57BL; Mice, Knockout; Non-alcoholic Fatty Liver Disease; Permeability; Protein Tyrosine Phosphatase, Non-Receptor Type 1; RAW 264.7 Cells

2020
DPP-4 inhibitor reduces striatal microglial deramification after sensorimotor cortex injury induced by external force impact.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2020, Volume: 34, Issue:5

    Dipeptidyl peptidase-4 inhibitors (or gliptins), a class of antidiabetic drugs, have recently been shown to have protective actions in the central nervous system. Their cellular and molecular mechanisms responsible for these effects are largely unknown. In the present study, two structurally different gliptins, sitagliptin and vildagliptin, were examined for their therapeutic actions in a controlled cortical impact (CCI) model of moderate traumatic brain injury (TBI) in mice. Early post-CCI treatment with sitagliptin, but not vildagliptin, significantly reduced body asymmetry, locomotor hyperactivity, and brain lesion volume. Sitagliptin attenuated post-CCI microglial deramification in the ipsilateral dorsolateral (DL) striatum, while vildagliptin had no effect. Sitagliptin also reduced striatal expression of galectin-3 and monocyte chemoattractant protein 1(MCP-1), and increased the cortical and striatal levels of the anti-inflammatory cytokine IL-10 on the ipsilateral side. These data support a differential protective effect of sitagliptin against TBI, possibly mediated by an anti-inflammatory effect in striatum to preserve connective network. Both sitagliptin and vildagliptin produced similar increases of active glucagon-like peptide-1 (GLP-1) in blood and brain. Increasing active GLP-1 may not be the sole molecular mechanisms for the neurotherapeutic effect of sitagliptin in TBI.

    Topics: Animals; Brain Injuries, Traumatic; Chemokine CCL2; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Galectin 3; Glucagon-Like Peptide 1; Interleukin-10; Male; Mice; Mice, Inbred C57BL; Microglia; Neuroprotective Agents; Sensorimotor Cortex; Sitagliptin Phosphate; Vildagliptin; Visual Cortex

2020
Inhibition of Hepatic Bile Acid Uptake by Myrcludex B Promotes Glucagon-Like Peptide-1 Release and Reduces Obesity.
    Cellular and molecular gastroenterology and hepatology, 2020, Volume: 10, Issue:3

    Bile acids are important metabolic signaling molecules. Bile acid receptor activation promotes body weight loss and improves glycemic control. The incretin hormone GLP-1 and thyroid hormone activation of T4 to T3 have been suggested as important contributors. Here, we identify the hepatic bile acid uptake transporter Na. Organic anion transporting polypeptide (OATP)1a/1b KO mice with or without reconstitution with human OATP1B1 in the liver were treated with the NTCP inhibitor Myrcludex B for 3.5 weeks after the onset of obesity induced by high fat diet-feeding. Furthermore, radiolabeled T4 was injected to determine the role of NTCP and OATPs in thyroid hormone clearance from plasma.. Inhibition of NTCP by Myrcludex B in obese Oatp1a/1b KO mice inhibited hepatic clearance of bile acids from portal and systemic blood, stimulated GLP-1 secretion, reduced body weight, and decreased (hepatic) adiposity. NTCP inhibition did not affect hepatic T4 uptake nor lead to increased thyroid hormone activation. Myrcludex B treatment increased fecal energy output, explaining body weight reductions amongst unaltered food intake and energy expenditure.. Pharmacologically targeting hepatic bile acid uptake to increase bile acid signaling is a novel approach to treat obesity and induce GLP1- secretion.

    Topics: Animals; Bile Acids and Salts; Diet, High-Fat; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Humans; Lipopeptides; Liver; Liver-Specific Organic Anion Transporter 1; Male; Mice; Mice, Transgenic; Obesity; Organic Anion Transporters, Sodium-Dependent; Organic Cation Transport Proteins; Symporters

2020
GLP-1 mediated diuresis and natriuresis are blunted in heart failure and restored by selective afferent renal denervation.
    Cardiovascular diabetology, 2020, 05-08, Volume: 19, Issue:1

    Glucagon-like peptide-1 (GLP-1) induces diuresis and natriuresis. Previously we have shown that GLP-1 activates afferent renal nerve to increase efferent renal sympathetic nerve activity that negates the diuresis and natriuresis as a negative feedback mechanism in normal rats. However, renal effects of GLP-1 in heart failure (HF) has not been elucidated. The present study was designed to assess GLP-1-induced diuresis and natriuresis in rats with HF and its interactions with renal nerve activity.. HF was induced in rats by coronary artery ligation. The direct recording of afferent renal nerve activity (ARNA) with intrapelvic injection of GLP-1 and total renal sympathetic nerve activity (RSNA) with intravenous infusion of GLP-1 were performed. GLP-1 receptor expression in renal pelvis, densely innervated by afferent renal nerve, was assessed by real-time PCR and western blot analysis. In separate group of rats after coronary artery ligation selective afferent renal denervation (A-RDN) was performed by periaxonal application of capsaicin, then intravenous infusion of GLP-1-induced diuresis and natriuresis were evaluated.. In HF, compared to sham-operated control; (1) response of increase in ARNA to intrapelvic injection of GLP-1 was enhanced (3.7 ± 0.4 vs. 2.0 ± 0.4 µV s), (2) GLP-1 receptor expression was increased in renal pelvis, (3) response of increase in RSNA to intravenous infusion of GLP-1 was enhanced (132 ± 30% vs. 70 ± 16% of the baseline level), and (4) diuretic and natriuretic responses to intravenous infusion of GLP-1 were blunted (urine flow 53.4 ± 4.3 vs. 78.6 ± 4.4 µl/min/gkw, sodium excretion 7.4 ± 0.8 vs. 10.9 ± 1.0 µEq/min/gkw). A-RDN induced significant increases in diuretic and natriuretic responses to GLP-1 in HF (urine flow 96.0 ± 1.9 vs. 53.4 ± 4.3 µl/min/gkw, sodium excretion 13.6 ± 1.4 vs. 7.4 ± 0.8 µEq/min/gkw).. The excessive activation of neural circuitry involving afferent and efferent renal nerves suppresses diuretic and natriuretic responses to GLP-1 in HF. These pathophysiological responses to GLP-1 might be involved in the interaction between incretin-based medicines and established HF condition. RDN restores diuretic and natriuretic effects of GLP-1 and thus has potential beneficial therapeutic implication for diabetic HF patients.

    Topics: Animals; Capsaicin; Disease Models, Animal; Diuresis; Diuretics; Glucagon-Like Peptide 1; Heart Failure; Infusions, Intravenous; Kidney; Male; Natriuresis; Rats, Sprague-Dawley; Sympathectomy, Chemical

2020
GLP-1-induced renal vasodilation in rodents depends exclusively on the known GLP-1 receptor and is lost in prehypertensive rats.
    American journal of physiology. Renal physiology, 2020, 06-01, Volume: 318, Issue:6

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate postprandial insulin release. However, GLP-1 also exerts extrapancreatic effects, including renal effects. Some of these renal effects are attenuated in hypertensive rats, where renal expression of GLP-1 receptors is reduced. Here, we assessed the expression and vascular function of GLP-1 receptors in kidneys from young prehypertensive rats. We also examined GLP-1-induced vasodilation in the renal vasculature in wild-type (WT) and GLP-1 receptor knockout mice using wire and pressure myography and the isolated perfused juxtamedullary nephron preparation. We investigated whether GLP-1 and the metabolite GLP-1(9-36)amide had renal vascular effects independent of the known GLP-1 receptor. We hypothesized that hypertension decreased expression of renal GLP-1 receptors. We also hypothesized that GLP-1-induced renal vasodilatation depended on expression of the known GLP-1 receptor. In contrast to normotensive rats, no immunohistochemical staining or vasodilatory function of GLP-1 receptors was found in kidneys from prehypertensive rats. In WT mice, GLP-1 induced renal vasodilation and reduced the renal autoregulatory response. The GLP-1 receptor antagonist exendin 9-39 inhibited relaxation, and GLP-1(9-36)amide had no vasodilatory effect. In GLP-1 receptor knockout mice, no relaxation induced by GLP-1 or GLP-1(9-36)amide was found, the autoregulatory response in afferent arterioles was normal, and no GLP-1-induced reduction of autoregulation was found. We conclude that in prehypertensive kidneys, expression and function of GLP-1 receptors is lost. The renal vasodilatory effect of GLP-1 is mediated exclusively by the known GLP-1 receptor. GLP-1(9-36)amide has no renal vasodilatory effect. GLP-1 attenuates renal autoregulation by reducing the myogenic response.

    Topics: Animals; Arterioles; Blood Pressure; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Kidney; Male; Mice, Inbred C57BL; Mice, Knockout; Prehypertension; Rats, Inbred SHR; Renal Artery; Vasodilation; Vasodilator Agents

2020
A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility.
    EBioMedicine, 2020, Volume: 55

    The composition of the bile acid (BA) pool is closely associated with obesity and is modified by gut microbiota. Perturbations of gut microbiota shape the BA composition, which, in turn, may alter important BA signaling and affect host metabolism.. We investigated BA composition of high BMI subjects from a human cohort study and a high fat diet (HFD) obesity prone (HF-OP) / HFD obesity resistant (HF-OR) mice model. Gut microbiota was analysed by metagenomics sequencing. GLP-1 secretion and gene regulation studies involved ELISA, qPCR, Western blot, Immunohistochemistry, and Immunofluorescence staining.. We found that the proportion of non-12-OH BAs was significantly decreased in the unhealthy high BMI subjects. The HF-OR mice had an enhanced level of non-12-OH BAs. Non-12-OH BAs including ursodeoxycholate (UDCA), chenodeoxycholate (CDCA), and lithocholate (LCA) were decreased in the HF-OP mice and associated with altered gut microbiota. Clostridium scindens was decreased in HF-OP mice and had a positive correlation with UDCA and LCA. Gavage of Clostridium scindens in mice increased the levels of hepatic non-12-OH BAs, accompanied by elevated serum 7α-hydroxy-4-cholesten-3-one (C4) levels. In HF-OP mice, altered BA composition was associated with significantly downregulated expression of GLP-1 in ileum and PGC1α, UCP1 in brown adipose tissue. In addition, we identified that UDCA attenuated the high fat diet-induced obesity via enhancing levels of non-12-OH BAs.. Our study highlights that dysregulated BA signaling mediated by gut microbiota contributes to obesity susceptibility, suggesting modulation of BAs could be a promising strategy for obesity therapy.

    Topics: Adipose Tissue, Brown; Animals; Body Mass Index; Chenodeoxycholic Acid; Cholestenones; Clostridiales; Cohort Studies; Diet, High-Fat; Disease Models, Animal; Disease Susceptibility; Gastrointestinal Microbiome; Gene Expression Regulation; Glucagon-Like Peptide 1; Humans; Ileum; Lithocholic Acid; Male; Metagenomics; Mice; Mice, Inbred C57BL; Obesity; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Uncoupling Protein 1; Ursodeoxycholic Acid

2020
Zwitterionic Polymer Conjugated Glucagon-like Peptide-1 for Prolonged Glycemic Control.
    Bioconjugate chemistry, 2020, 07-15, Volume: 31, Issue:7

    Glucagon-like peptide-1 (GLP-1) is of particular interest for treating type 2 diabetes mellitus (T2DM), as it induces insulin secretion in a glucose-dependent fashion and has the potential to facilitate weight control. However, native GLP-1 is a short incretin peptide that is susceptible to fast proteolytic inactivation and rapid clearance from the circulation. Various GLP-1 analogs and bioconjugation of GLP-1 analogs have been developed to counter these issues, but these modifications are frequently accompanied by the sacrifice of potency and the induction of immunogenicity. Here, we demonstrated that with the conjugation of a zwitterionic polymer, poly(carboxybetaine) (pCB), the pharmacokinetic properties of native GLP-1 were greatly enhanced without serious negative effects on its potency and secondary structure. The pCB conjugated GLP-1 further provided glycemic control for up to 6 days in a mouse study. These results illustrate that the conjugation of pCB could realize the potential of using native GLP-1 for prolonged glycemic control in treating T2DM.

    Topics: Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon-Like Peptide 1; Glycemic Control; Half-Life; Hypoglycemic Agents; Mice; Polymers; Protein Structure, Secondary

2020
Exogenous supplement of glucagon like peptide-1 protects the heart against aortic banding induced myocardial fibrosis and dysfunction through inhibiting mTOR/p70S6K signaling and promoting autophagy.
    European journal of pharmacology, 2020, Sep-15, Volume: 883

    Mammalian target of rapamycin (mTOR) and a ribosomal protein S6 kinase (p70S6K) mediate tissue fibrosis and negatively regulate autophagy. This study aims to investigate whether glucagon-like peptide-1 (GLP-1) analog liraglutide protects the heart against aortic banding-induced cardiac fibrosis and dysfunction through inhibiting mTOR/p70S6K signaling and promoting autophagy activity. Male SD rats were randomly divided into four groups (n = 6/each group): sham operated control; abdominal aortic constriction (AAC); liraglutide treatment during AAC (0.3 mg/kg, injected subcutaneously twice daily); rapamycin treatment during AAC (0.2 mg/kg/day, administered by gastric gavage). Relative to the animals with AAC on week 16, liraglutide treatment significantly reduced heart/body weight ratio, inhibited cardiomyocyte hypertrophy, and augmented plasma GLP-1 level and tissue GLP-1 receptor expression. Phosphorylation of mTOR/p70S6K, populations of myofibroblasts and synthesis of collagen I/III in the myocardium were simultaneously inhibited. Furthermore, autophagy regulating proteins: LC3-II/LC3-I ratio and Beclin-1 were upregulated, and p62 was downregulated by liraglutide. Compared with liraglutide group, treatment with rapamycin, a specific inhibitor of mTOR, compatibly augmented GLP-1 receptor level, inhibited phosphorylation of mTOR/p70S6K and expression of p62 as well as increased level of LC3-II/LC3-I ratio and Beclin-1, suggesting that there is an interaction between GLP-1 and mTOR/p70S6K signaling in the regulation of autophagy. In line with these modifications, treatment with liraglutide and rapamycin significantly reduced perivascular/interstitial fibrosis, and preserved systolic/diastolic function. These results suggest that the inhibitory effects of liraglutide on cardiac fibrosis and dysfunction are potentially mediated by inhibiting mTOR/p70S6K signaling and enhancing autophagy activity.

    Topics: Animals; Aorta, Abdominal; Autophagy; Autophagy-Related Proteins; Disease Models, Animal; Fibrosis; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hypertrophy, Left Ventricular; Incretins; Ligation; Male; Myocytes, Cardiac; Myofibroblasts; Phosphorylation; Protein Kinase Inhibitors; Rats, Sprague-Dawley; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; TOR Serine-Threonine Kinases; Ventricular Function, Left; Ventricular Remodeling

2020
Propofol Improved Glucose Tolerance Associated with Increased FGF-21 and GLP-1 Production in Male Sprague-Dawley Rats.
    Molecules (Basel, Switzerland), 2020, Jul-15, Volume: 25, Issue:14

    Anesthetics, particularly volatile anesthetics, have been shown to impair glucose metabolism and cause hyperglycemia, closely linking them with mortality and morbidity as related to surgery. Beyond being an anesthetic used for general anesthesia and sedation, intravenous hypnotic propofol displays an effect on glucose metabolism. To extend the scope of propofol studies, its effects on glucose metabolism were evaluated in male Sprague-Dawley rats of various ages. Unlike chloral hydrate and isoflurane, propofol had little effect on basal glucose levels in rats at 2 months of age, although it did reduce chloral hydrate- and isoflurane-induced hyperglycemia. Propofol reduced postload glucose levels after either intraperitoneal or oral administration of glucose in both 7- and 12-month-old rats, but not those at 2 months of age. These improved effects regarding propofol on glucose metabolism were accompanied by an increase in insulin, fibroblast growth factor-21 (FGF-21), and glucagon-like peptide-1 (GLP-1) secretion. Additionally, an increase in hepatic FGF-21 expression, GLP-1 signaling, and FGF-21 signaling, along with a decrease in endoplasmic reticulum (ER) stress, were noted in propofol-treated rats at 7 months of age. Current findings imply that propofol may turn into insulin-sensitizing molecules during situations of existing insulin resistance, which involve FGF-21, GLP-1, and ER stress.

    Topics: Animals; Blood Glucose; Disease Models, Animal; Fibroblast Growth Factors; Glucagon-Like Peptide 1; Glucose; Glucose Tolerance Test; Hyperglycemia; Insulin; Liver; Male; Propofol; Rats; Rats, Sprague-Dawley; Signal Transduction

2020
Dapagliflozin promotes beta cell regeneration by inducing pancreatic endocrine cell phenotype conversion in type 2 diabetic mice.
    Metabolism: clinical and experimental, 2020, Volume: 111

    Clinical trials and animal studies have shown that sodium-glucose co-transporter type 2 (SGLT2) inhibitors improve pancreatic beta cell function. Our study aimed to investigate the effect of dapagliflozin on islet morphology and cell phenotype, and explore the origin and possible reason of the regenerated beta cells.. Two diabetic mouse models, db/db mice and pancreatic alpha cell lineage-tracing (glucagon-β-gal) mice whose diabetes was induced by high fat diet combined with streptozotocin, were used. Mice were treated by daily intragastric administration of dapagliflozin (1 mg/kg) or vehicle for 6 weeks. The plasma insulin, glucagon and glucagon-like peptide-1 (GLP-1) were determined by using ELISA. The evaluation of islet morphology and cell phenotype was performed with immunofluorescence. Primary rodent islets and αTC1.9, a mouse alpha cell line, were incubated with dapagliflozin (0.25-25 μmol/L) or vehicle in the presence or absence of GLP-1 receptor antagonist for 24 h in regular or high glucose medium. The expression of specific markers and hormone levels were determined.. Treatment with dapagliflozin significantly decreased blood glucose in the two diabetic models and upregulated plasma insulin and GLP-1 levels in db/db mice. The dapagliflozin treatment increased islet and beta cell numbers in the two diabetic mice. The beta cell proliferation as indicated by C-peptide and BrdU double-positive cells was boosted by dapagliflozin. The alpha to beta cell conversion, as evaluated by glucagon and insulin double-positive cells and confirmed by using alpha cell lineage-tracing, was facilitated by dapagliflozin. After the dapagliflozin treatment, some insulin-positive cells were located in the duct compartment or even co-localized with duct cell markers, suggestive of duct-derived beta cell neogenesis. In cultured primary rodent islets and αTC1.9 cells, dapagliflozin upregulated the expression of pancreatic endocrine progenitor and beta cell specific markers (including Pdx1) under high glucose condition. Moreover, dapagliflozin upregulated the expression of Pcsk1 (which encodes prohormone convertase 1/3, an important enzyme for processing proglucagon to GLP-1), and increased GLP-1 content and secretion in αTC1.9 cells. Importantly, the dapagliflozin-induced upregulation of Pdx1 expression was attenuated by GLP-1 receptor antagonist.. Except for glucose-lowering effect, dapagliflozin has extra protective effects on beta cells in type 2 diabetes. Dapagliflozin enhances beta cell self-replication, induces alpha to beta cell conversion, and promotes duct-derived beta cell neogenesis. The promoting effects of dapagliflozin on beta cell regeneration may be partially mediated via GLP-1 secreted from alpha cells.

    Topics: Animals; Benzhydryl Compounds; Blood Glucose; C-Peptide; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Endocrine Cells; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Secreting Cells; Glucose; Glucosides; Insulin; Insulin-Secreting Cells; Male; Mice; Proprotein Convertase 1; Regeneration; Sodium-Glucose Transporter 2 Inhibitors

2020
The GPR40 Full Agonist SCO-267 Improves Liver Parameters in a Mouse Model of Nonalcoholic Fatty Liver Disease without Affecting Glucose or Body Weight.
    The Journal of pharmacology and experimental therapeutics, 2020, Volume: 375, Issue:1

    Topics: Administration, Oral; Animals; Body Weight; Disease Models, Animal; Dose-Response Relationship, Drug; Glucagon; Glucagon-Like Peptide 1; Glucose; Liver; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Receptors, G-Protein-Coupled; Triglycerides

2020
A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice.
    EBioMedicine, 2020, Volume: 58

    Bariatric surgery is an effective treatment for type 2 diabetes. Early post-surgical enhancement of insulin secretion is key for diabetes remission. The full complement of mechanisms responsible for improved pancreatic beta cell functionality after bariatric surgery is still unclear. Our aim was to identify pathways, evident in the islet transcriptome, that characterize the adaptive response to bariatric surgery independently of body weight changes.. We performed entero-gastro-anastomosis (EGA) with pyloric ligature in leptin-deficient ob/ob mice as a surrogate of Roux-en-Y gastric bypass (RYGB) in humans. Multiple approaches such as determination of glucose tolerance, GLP-1 and insulin secretion, whole body insulin sensitivity, ex vivo glucose-stimulated insulin secretion (GSIS) and functional multicellular Ca. Taken together, our data highlight novel miRNA-gene interactions in the pancreatic islet during the resolution of diabetes after bariatric surgery that form part of a blood signature of diabetes reversal.. European Union's Horizon 2020 research and innovation programme via the Innovative Medicines Initiative 2 Joint Undertaking (RHAPSODY), INSERM, Société Francophone du Diabète, Institut Benjamin Delessert, Wellcome Trust Investigator Award (212625/Z/18/Z), MRC Programme grants (MR/R022259/1, MR/J0003042/1, MR/L020149/1), Diabetes UK (BDA/11/0004210, BDA/15/0005275, BDA 16/0005485) project grants, National Science Foundation (310030-188447), Fondation de l'Avenir.

    Topics: Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Bypass; Gene Expression Profiling; Gene Expression Regulation; Gene Regulatory Networks; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Insulin; Insulin-Secreting Cells; Male; Mice; Mice, Obese; MicroRNAs; Obesity

2020
Deficiency of glucagon gene-derived peptides induces peripheral polyneuropathy in mice.
    Biochemical and biophysical research communications, 2020, 10-29, Volume: 532, Issue:1

    Although diabetic polyneuropathy (DPN) is the commonest diabetic complication, its pathology remains to be clarified. As previous papers have suggested the neuroprotective effects of glucagon-like peptide-1 in DPN, the current study investigated the physiological indispensability of glucagon gene-derived peptides (GCGDPs) including glucagon-like peptide-1 in the peripheral nervous system (PNS). Neurological functions and neuropathological changes of GCGDP deficient (gcg-/-) mice were examined. The gcg-/- mice showed tactile allodynia and thermal hyperalgesia at 12-18 weeks old, followed by tactile and thermal hypoalgesia at 36 weeks old. Nerve conduction studies revealed a decrease in sensory nerve conduction velocity at 36 weeks old. Pathological findings showed a decrease in intraepidermal nerve fiber densities. Electron microscopy revealed a decrease in circularity and an increase in g-ratio of myelinated fibers and a decrease of unmyelinated fibers in the sural nerves of the gcg-/- mice. Effects of glucagon on neurite outgrowth were examined using an ex vivo culture of dorsal root ganglia. A supraphysiological concentration of glucagon promoted neurite outgrowth. In conclusion, the mice with deficiency of GCGDPs developed peripheral neuropathy with age. Furthermore, glucagon might have neuroprotective effects on the PNS of mice. GCGDPs might be involved in the pathology of DPN.

    Topics: Animals; Diabetic Neuropathies; Disease Models, Animal; Ganglia, Spinal; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nerve Fibers, Myelinated; Neural Conduction; Neuronal Outgrowth; Receptors, Glucagon; RNA, Messenger

2020
GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes.
    Pharmacological research, 2020, Volume: 161

    Methylglyoxal was shown to impair adipose tissue capillarization and insulin sensitivity in obese models. We hypothesized that glyoxalase-1 (GLO-1) activity could be diminished in the adipose tissue of type 2 diabetic obese patients. Moreover, we assessed whether such activity could be increased by GLP-1-based therapies in order to improve adipose tissue capillarization and insulin sensitivity. GLO-1 activity was assessed in visceral adipose tissue of a cohort of obese patients. The role of GLP-1 in modulating GLO-1 was assessed in type 2 diabetic GK rats submitted to sleeve gastrectomy or Liraglutide treatment, in the adipose tissue angiogenesis assay and in the HUVEC cell line. Glyoxalase-1 activity was decreased in visceral adipose tissue of pre-diabetic and diabetic obese patients, together with other markers of adipose tissue dysfunction and correlated with increased HbA1c levels. Decreased adipose tissue GLO-1 levels in GK rats were increased by sleeve gastrectomy and Liraglutide, being associated with overexpression of angiogenic and vasoactive factors, as well as insulin receptor phosphorylation (Tyr1161). Moreover, GLP-1 increased adipose tissue capillarization and HUVEC proliferation in a glyoxalase-dependent manner. Lower adipose tissue GLO-1 activity was observed in dysmetabolic patients, being a target for GLP-1 in improving adipose tissue capillarization and insulin sensitivity.

    Topics: Adipose Tissue; Adult; Aged; Animals; Capillaries; Cells, Cultured; Diabetes Mellitus, Type 2; Disease Models, Animal; Female; Gastrectomy; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Human Umbilical Vein Endothelial Cells; Humans; Hypoglycemic Agents; Incretins; Insulin Resistance; Lactoylglutathione Lyase; Liraglutide; Male; Middle Aged; Neovascularization, Physiologic; Obesity; Rats, Wistar; Signal Transduction

2020
A Preclinical Animal Study of Combined Intragastric Balloon and Duodenal-Jejunal Bypass Liner for Obesity and Metabolic Disease.
    Clinical and translational gastroenterology, 2020, Volume: 11, Issue:9

    Endoscopic bariatric and metabolic therapies can potentially reproduce similar gastric and small intestinal anatomic and physiologic manipulations as Roux-en-Y gastric bypass. This proof of concept animal study was aimed to assess the feasibility, safety, efficacy, and impact on gastrointestinal physiology of combined intragastric balloons (IGB) and duodenal-jejunal bypass liner (DJBL) for the treatment of obesity.. Five Ossabaw pigs were fed a high-calorie diet to develop obesity and were randomly assigned to receive IGB or DJBL in sequence. The weight gain rate was calculated. Fasting and postprandial blood samples were drawn before any intervention (serving as the baseline group) and 1 month after second device insertion (serving as the combination group) to measure gut neurohormonal changes and metabolic parameters.. Four pigs successfully received a sequential device insertion. One pig developed duodenal sleeve prolapse that was spontaneously resolved. One pig was early terminated because of developing a central line infection. The rate of weight gain in the combination group (0.63 ± 1.3 kg/wk) was significantly lower than the baseline group (1.96 ± 2.17 kg/wk) and numerically lower than after insertion of the IGB (1.00 ± 1.40 kg/wk) or the DJBL (0.75 ± 2.27 kg/wk) alone. A trend of higher postprandial glucagon-like peptide-1 was observed in the combination group compared with the baseline group.. A combination of IGB and DJBL is feasible and well tolerated. A strategy of sequential use of these devices might offer a synergistic approach that can enhance weight loss and metabolic outcomes.

    Topics: Anastomosis, Roux-en-Y; Animals; Bariatric Surgery; Combined Modality Therapy; Diet, Atherogenic; Diet, High-Fat; Disease Models, Animal; Duodenum; Feasibility Studies; Gastric Balloon; Glucagon-Like Peptide 1; Jejunum; Obesity, Morbid; Postprandial Period; Proof of Concept Study; Swine; Swine, Miniature; Weight Loss

2020
Downregulation of CTRP-3 by Weight Loss In Vivo and by Bile Acids and Incretins in Adipocytes In Vitro.
    International journal of molecular sciences, 2020, Oct-31, Volume: 21, Issue:21

    The adipokine CTRP-3 (C1q/TNF-related protein-3) exerts anti-inflammatory and anti-diabetic effects. Its regulation in obesity and during weight loss is unknown. Serum and adipose tissue (AT) samples were obtained from patients (

    Topics: Adipocytes; Adipokines; Adult; Animals; Bariatric Surgery; Bile Acids and Salts; Cells, Cultured; Disease Models, Animal; Down-Regulation; Female; Gastrointestinal Agents; Glucagon-Like Peptide 1; Humans; Incretins; Male; Mice; Mice, Inbred BALB C; Mice, Knockout; Obesity; Tumor Necrosis Factors; Weight Loss

2020
The Unconventional Role for Gastric Volume in the Response to Bariatric Surgery for Both Weight Loss and Glucose Lowering.
    Annals of surgery, 2020, Volume: 271, Issue:6

    To study the relationship between the amount of surgery-induced gastric volume reduction and long-term weight loss and glucose tolerance.. Vertical sleeve gastrectomy (VSG) has recently surpassed gastric bypass to become the most popular surgical intervention to induce sustained weight loss. Besides inducing significant weight loss, VSG also improves glucose tolerance. Although no clear correlation has been observed between the size of the residual stomach and sustained weight loss, this begs the question whether less aggressive gastric volume reduction may provide sufficient efficacy when weight loss is not the major goal of the surgical intervention.. A series of strategies to reduce gastric volume were developed and tested in Long Evans male rats, namely: VSG, Fundal (F)-Resection, Gastric Sleeve Plication (GSP), Fundal-Plication, and Fundal-Constrained.. All surgical interventions resulted in a reduction of gastric volume relative to sham, but none of the interventions were as effective as the VSG. Gastric volume was linearly correlated to increased gastric emptying rate as well as increased GLP-1 response. Overall, cumulative food intake was the strongest correlate to weight loss and was logarithmically related to gastric volume. Regression modeling revealed a nonlinear inverse relation between body weight reduction and gastric volume, confirming that VSG is the only effective long-term weight loss strategy among the experimental operations tested.. The data suggest a minimum threshold volume of the residual stomach that is necessary to induce sustained weight loss. Although all gastric volume interventions increased the GLP-1 response, none of the interventions, except VSG, significantly improved glucose tolerance. In conclusion, if weight loss is the primary goal of surgical intervention, significant volume reduction is required, and this most likely requires excising gastric tissue.

    Topics: Animals; Bariatric Surgery; Blood Glucose; Disease Models, Animal; Gastric Emptying; Glucagon-Like Peptide 1; Glucose Tolerance Test; Incretins; Male; Obesity; Organ Size; Rats; Rats, Long-Evans; Stomach; Weight Loss

2020
Novel repair mechanisms in a renal ischaemia/reperfusion model: Subsequent saxagliptin treatment modulates the pro-angiogenic GLP-1/cAMP/VEGF, ANP/eNOS/NO, SDF-1α/CXCR4, and Kim-1/STAT3/HIF-1α/VEGF/eNOS pathways.
    European journal of pharmacology, 2019, Oct-15, Volume: 861

    The reno-protective effects of antidiabetic dipeptidyl peptidase (DPP)-4 inhibitors have been studied regarding their antioxidant and anti-inflammatory properties. However, the potential ability of saxagliptin to ameliorate renal injury by enhancing neovascularization has not been elucidated. To address this issue, saxagliptin (10 and 30 mg/kg) was administered to Wistar rats after the induction of renal ischaemia/reperfusion (I/R). Our results showed that saxagliptin operated through different axes to ameliorate I/R injury. By inhibiting DPP-4, saxagliptin maintained stromal cell-derived factor-1α expression and upregulated its chemokine receptor CXCR4 to trigger vasculogenesis through the enhanced migration of endothelial progenitor cells (EPCs). Additionally, this compound rescued the levels of glucagon-like peptide-1 and its downstream mediator cAMP to increase vascular endothelial growth factor (VEGF) and CXCR4 levels. Moreover, saxagliptin stimulated atrial natriuretic peptide/endothelial nitric oxide synthase to increase nitric oxide levels and provoke angiogenesis and renal vasodilation. In addition to inhibiting DPP-4, saxagliptin increased the renal kidney injury molecule-1/pY705-STAT3/hypoxia-inducible factor-1α/VEGF pathway to enhance angiogenesis. Similar to other gliptins, saxagliptin exerted its anti-inflammatory and antioxidant effects by suppressing the renal contents of p (S536)-nuclear factor-κB p65, tumour necrosis factor-α, monocyte chemoattractant protein-1, myeloperoxidase, and malondialdehyde while boosting the glutathione content. These events improved the histological structure and function of the kidney, as evidenced by decreased serum creatinine, blood urea nitrogen, and cystatin C and increased serum albumin. Accordingly, in addition to its anti-inflammatory and antioxidant activities, saxagliptin dose-dependently ameliorated I/R-induced renal damage by enhancing neovascularization through improved tissue perfusion and homing of bone marrow-derived EPCs to mediate repair processes.

    Topics: Adamantane; Animals; Atrial Natriuretic Factor; Cell Adhesion Molecules; Chemokine CXCL12; Cyclic AMP; Dipeptides; Disease Models, Animal; Glucagon-Like Peptide 1; Glutathione; Hypoxia-Inducible Factor 1, alpha Subunit; Kidney; Male; Malondialdehyde; Neovascularization, Physiologic; Nitric Oxide; Nitric Oxide Synthase Type III; Oxidative Stress; Peroxidase; Rats; Rats, Wistar; Receptors, CXCR4; Reperfusion Injury; Signal Transduction; STAT3 Transcription Factor; Vascular Endothelial Growth Factor A

2019
The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke.
    Neuropharmacology, 2019, 11-01, Volume: 158

    Stroke is a condition with few medical treatments available. Semaglutide, a novel Glucagon-like peptide-1 (GLP-1) analogue, has been brought to the market as a treatment for diabetes. We tested the protective effects of semaglutide against middle cerebral artery occlusion injury in rats. Animals were treated with 10 nmol/kg bw ip. starting 2 h after surgery and every second day for either 1, 7, 14 or 21 days. Semaglutide-treated animals showed significantly reduced scores of neurological impairments in several motor and grip strength tasks. The cerebral infarction size was also reduced, and the loss of neurons in the hippocampal areas CA1, CA3 and the dentate gyrus was much reduced. Chronic inflammation as seen in levels of activated microglia and in the activity of the p38 MAPK - MKK - c-Jun- NF-κB p65 inflammation signaling pathway was reduced. In addition, improved growth factor signaling as shown in levels of activated ERK1 and IRS-1, and a reduction in the apoptosis signaling pathway C-raf, ERK2, Bcl-2/BAX and Caspase-3 was observed. Neurogenesis had also been normalized by the drug treatment as seen in increased neurogenesis (DCX-positive cells) in the dentate gyrus and a normalization of biomarkers for neurogenesis. In conclusion, semaglutide is a promising candidate for re-purposing as a stroke treatment.

    Topics: Animals; Apoptosis; Brain; Disease Models, Animal; Doublecortin Protein; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Hippocampus; Hypoglycemic Agents; Infarction, Middle Cerebral Artery; Inflammation; Insulin Receptor Substrate Proteins; Microglia; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Motor Activity; Neurogenesis; Neurons; p38 Mitogen-Activated Protein Kinases; Proto-Oncogene Proteins c-jun; Rats; Stroke; Transcription Factor RelA

2019
GLP-1 and PYY
    Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery, 2019, Volume: 15, Issue:9

    Roux-en-Y gastric bypass (RYGB) modifies various aspects of eating behavior in morbidly obese individuals to cause marked and lasting weight loss and improvements in metabolic health, but the underlying mechanisms remain poorly understood.. To assess the relative contributions of the gut hormones glucagon-like peptide 1 (GLP-1) and peptide tyrosine tyrosine 3-36 (PYY. University hospital, Würzburg, Germany.. HF diet-induced obese male Wistar rats underwent RYGB (n = 11) or sham (n = 7) surgeries and were subsequently maintained on a choice of low-fat (10% calories from fat) and HF (60% calories from fat) diets. From postoperative weeks 4 to 6, acute feeding studies were performed in which the selective GLP-1 receptor antagonist exendin-9 (30 μg/kg), the second-generation selective Y2 receptor antagonist JNJ-31020028 (10 mg/kg), or a combination of both drugs was administered intraperitoneally.. During the observational period weight, adiposity and total food intake were lower while postprandial plasma GLP-1 and peptide tyrosine tyrosine levels were higher for RYGB-operated compared with sham-operated rats. There was a gradual shift in preference from HF to low-fat food in RYGB-operated rats by postoperative week 3. Single antagonist treatments had a relatively modest impact on HF food preference in rats from both surgical groups. However, dual antagonist treatment caused a striking increase in HF food preference specifically in RYGB-operated rats.. GLP-1 and peptide tyrosine tyrosine 3-36 reduce HF food preference additively after RYGB supporting the use of gut hormone combination strategies for healthier feeding behavior.

    Topics: Animals; Diet, High-Fat; Disease Models, Animal; Feeding Behavior; Food Preferences; Gastric Bypass; Glucagon-Like Peptide 1; Male; Obesity, Morbid; Peptide Fragments; Peptide YY; Rats; Rats, Wistar

2019
Glycemic effect of pancreatic preproglucagon in mouse sleeve gastrectomy.
    JCI insight, 2019, 10-17, Volume: 4, Issue:20

    Intestinally derived glucagon-like peptide-1 (GLP-1), encoded by the preproglucagon (Gcg) gene, is believed to function as an incretin. However, our previous work questioned this dogma and demonstrated that pancreatic peptides rather than intestinal Gcg peptides, including GLP-1, are a primary regulator of glucose homeostasis in normal mice. The objective of these experiments was to determine whether changes in nutrition or alteration of gut hormone secretion by bariatric surgery would result in a larger role for intestinal GLP-1 in the regulation of insulin secretion and glucose homeostasis. Multiple transgenic models, including mouse models with intestine- or pancreas tissue-specific Gcg expression and a whole-body Gcg-null mouse model, were generated to study the role of organ-specific GLP-1 production on glucose homeostasis under dietary-induced obesity and after weight loss from bariatric surgery (vertical sleeve gastrectomy; VSG). Our findings indicated that the intestine is a major source of circulating GLP-1 after various nutrient and surgical stimuli. However, even with the 4-fold increase in intestinally derived GLP-1 with VSG, it is pancreatic peptides, not intestinal Gcg peptides, that are necessary for surgery-induced improvements in glucose homeostasis.

    Topics: Animals; Bariatric Surgery; Blood Glucose; Diet, High-Fat; Disease Models, Animal; Gastrectomy; Gene Expression Profiling; Glucagon-Like Peptide 1; Humans; Insulin; Intestinal Mucosa; Male; Mice; Mice, Transgenic; Obesity; Pancreas; Weight Loss

2019
Dipeptidyl-peptidase-4 (DPP-4) inhibitor ameliorates 5-flurouracil induced intestinal mucositis.
    BMC cancer, 2019, Oct-29, Volume: 19, Issue:1

    Chemotherapy-induced alimentary mucositis (AM) is difficult to prevent and treatment is rarely effective. Recent study have been showed that glucagon-like peptide (GLP)-1 and GLP-2 has protective in chemotherapy-induced AM. While the DPP-4 enzyme degrades this GLP-1, the DPP-4 inhibitor blocks the degradation process and raises the concentration of GLP-1. This study aimed to assess the role of DPP-4 inhibitor, a well-known hypoglycemic agent, on chemotherapy-induced AM.. Twenty-four 6-week-old male C57BL/6 mice were divided into 4 groups: control, 5-fluorouracil (5-FU), DPP-4 inhibitor, and saline (DPP-4i), and DPP-4 inhibitor and 5-FU (DPP-4i + 5-FU). Mucositis was induced by intraperitoneal injection of 5-FU (400 mg/kg). DPP-4 inhibitor (50 mg/kg) was administered orally for four days starting the day before 5-FU administration. Post 72 h of 5-FU injection, mice were sacrificed and body weight change, diarrhea score, villus height, villus/crypt ratio, histologic characteristics including goblet cell count, and mRNA expression of inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6, were assessed.. Daily body weight change was not statistically significant between the 5-FU and the DPP-4i + 5-FU group (P = 0.571). Diarrhea score was significantly different between these two groups (P = 0.033). In the 5-FU group, the villus height was not maintained well, the epithelial lining was irregular, and inflammatory cell infiltration was observed. Goblet cell count in the DPP-4i + 5-FU group was significantly higher than in the 5-FU group (P = 0.007). However, in the DPP-4i + 5-FU group, the villus height, epithelial lining, and crypt structure were better maintained than in the 5-FU group. Compared with the control group, mRNA expression of TNF-α was significantly up-regulated in the 5-FU group. Moreover, mRNA expression of TNF-α in the DPP-4i + 5-FU group was down-regulated compared to the 5-FU group. However, IL-6 in the 5-FU group was significantly down-regulated compared to the control, there was no significant difference in expression of IL-6 between the 5-FU and DPP4i + 5-FU group.. DPP-4 inhibitor can improve 5-FU induced AM and, therefore, has potential as an alternative treatment for chemotherapy-induced AM.

    Topics: Administration, Oral; Animals; Antimetabolites, Antineoplastic; Body Weight; Diarrhea; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Fluorouracil; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Goblet Cells; Injections, Intraperitoneal; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Mucositis; Protective Agents; Tumor Necrosis Factor-alpha

2019
    Proceedings of the National Academy of Sciences of the United States of America, 2019, 12-03, Volume: 116, Issue:49

    Fatty acid amide hydrolase (FAAH) degrades 2 major classes of bioactive fatty acid amides, the

    Topics: Amidohydrolases; Amino Acid Substitution; Animals; Blood Glucose; Disease Models, Animal; Eating; Ethanolamines; Female; Glucagon; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Injections, Intravenous; Insulin; Islets of Langerhans; Male; Metabolic Syndrome; Mice; Mice, Transgenic; Middle Aged; Oleic Acids; Postprandial Period; Receptors, G-Protein-Coupled; Taurine

2019
Cocaine and cocaine expectancy increase growth hormone, ghrelin, GLP-1, IGF-1, adiponectin, and corticosterone while decreasing leptin, insulin, GIP, and prolactin.
    Pharmacology, biochemistry, and behavior, 2019, Volume: 176

    The dopamine system-essential for mood and movement-can be activated in two ways: by excitatory inputs that cause burst firing and stamp-in learning or by slow excitatory or inhibitory inputs-like leptin, insulin, ghrelin, or corticosterone-that decrease or increase single-spike (pacemaker) firing rate and that modulate motivation. In the present study we monitored blood samples taken prior to and during intravenous cocaine or saline self-administration in rats. During cocaine-taking, growth hormone and acetylated ghrelin increased 10-fold; glucagon-like peptide-1 (GLP-1) doubled; non-acetylated ghrelin, insulin-like growth factor-1 (IGF-1), and corticosterone increased by 50% and adiponectin increased by 17%. In the same blood samples, leptin, insulin, gastric inhibitory polypeptide (GIP), and prolactin decreased by 40-70%. On the first day of testing under extinction conditions-where the animals earned unexpected saline instead of cocaine-5-fold increases were seen for growth hormone and acetylated ghrelin and equal changes-in amplitude and latency-were seen in each of the other cases except for IGF-1 (which increased at a slower rate). Single-spike firing affects the tonic activation level of the dopamine system, involving very different controls than those that drive burst firing; thus, the present data suggest interesting new targets for medications that might be used in the early stages of drug abstinence.

    Topics: Adiponectin; Animals; Cocaine; Cocaine-Related Disorders; Corticosterone; Disease Models, Animal; Drug Substitution; Gastric Inhibitory Polypeptide; Ghrelin; Glucagon-Like Peptide 1; Growth Hormone; Injections, Intravenous; Insulin; Leptin; Prolactin; Rats; Reward; Saline Solution; Self Administration; Signal Transduction

2019
SGLT1 in pancreatic α cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels.
    Molecular metabolism, 2019, Volume: 19

    It is controversial whether sodium glucose transporter (SGLT) 2 inhibitors increase glucagon secretion via direct inhibition of SGLT2 in pancreatic α cells. The role of SGLT1 in α cells is also unclear. We aimed to elucidate these points that are important not only for basic research but also for clinical insight.. Plasma glucagon levels were assessed in the high-fat, high-sucrose diet (HFHSD) fed C57BL/6J mice treated with dapagliflozin or canagliflozin. RT-PCR, RNA sequence, and immunohistochemistry were conducted to test the expression of SGLT1 and SGLT2 in α cells. We also used αTC1 cells and mouse islets to investigate the molecular mechanism by which SGLT1 modulates glucagon secretion.. Dapagliflozin, but not canagliflozin, increased plasma glucagon levels in HFHSD fed mice. SGLT1 and glucose transporter 1 (GLUT1), but not SGLT2, were expressed in αTC1 cells, mouse islets and human islets. A glucose clamp study revealed that the plasma glucagon increase associated with dapagliflozin could be explained as a response to acute declines in blood glucose. Canagliflozin suppressed glucagon secretion by inhibiting SGLT1 in α cells; consequently, plasma glucagon did not increase with canagliflozin, even though blood glucose declined. SGLT1 effect on glucagon secretion depended on glucose transport, but not glucose metabolism. Islets from HFHSD and db/db mice displayed higher SGLT1 mRNA levels and lower GLUT1 mRNA levels than the islets from control mice. These expression levels were associated with higher glucagon secretion. Furthermore, SGLT1 inhibitor and siRNA against SGLT1 suppressed glucagon secretion in isolated islets.. These data suggested that a novel mechanism regulated glucagon secretion through SGLT1 in α cells. This finding possibly explained the distinct effects of dapagliflozin and canagliflozin on plasma glucagon levels in mice.

    Topics: Animals; Benzhydryl Compounds; Blood Glucose; Canagliflozin; Diabetes Mellitus; Diet, High-Fat; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucose; Glucosides; Glycosuria; Hypoglycemic Agents; Insulin; Male; Mice; Mice, Inbred C57BL; Sodium-Glucose Transporter 1; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors

2019
Alogliptin improves endothelial function by promoting autophagy in perivascular adipose tissue of obese mice through a GLP-1-dependent mechanism.
    Vascular pharmacology, 2019, Volume: 115

    Perivascular adipose tissue (PVAT) regulates vascular function in a paracrine manner and the vasodilatory effect of PVAT on vessels is completely abolished in obesity. In addition, autophagy is required for maintaining biological function of PVAT and has been shown to be inhibited in obesity. The aim of this study was to explore whether alogliptin improves endothelial function by promoting autophagy in PVAT in obese mice.. C57BL/6 mice were maintained on high fat diet with or without alogliptin intervention for 3 months. Vasorelaxation function of thoracic aorta with or without PVAT was determined. Autophagy related protein level of p62 and LC3B, along with phosphorylated mTOR (p-mTOR) were evaluated. In addition, the effects of alogliptin on autophagy were also investigated in cultured adipocytes.. The presence of PVAT significantly impaired endothelium-dependent vasodilation in obese mice and alogliptin intervention corrected this defect. Autophagy in PVAT was decreased in obese mice and alogliptin intervention activated autophagy. Activating autophagy in PVAT improved endothelium-dependent vasodilation while blocking it in PVAT impaired vasodilation function. Further, addition of glucagon-like peptide-1 (GLP-1) but not alogliptin alone activated autophagy. Moreover, GLP-1 and alogliptin co-treatment did not show additive effect on activating autophagy.. These results revealed that promoting autophagy in PVAT improved endothelial function in response to alogliptin intervention. Additionally, the beneficial effect of alogliptin intervention on PVAT was GLP-1 dependent.

    Topics: Adipokines; Adipose Tissue; Animals; Aorta, Thoracic; Autophagy; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Endothelium, Vascular; Glucagon-Like Peptide 1; Male; Mice, Inbred C57BL; Nitric Oxide; Nitric Oxide Synthase Type III; Obesity; Paracrine Communication; Piperidines; Proto-Oncogene Proteins c-akt; Signal Transduction; Uracil; Vasodilation

2019
Sitagliptin protects the cognition function of the Alzheimer's disease mice through activating glucagon-like peptide-1 and BDNF-TrkB signalings.
    Neuroscience letters, 2019, 03-23, Volume: 696

    Sitagliptin is an anti-diabetic drug and its effects on Alzheimer's disease (AD) remain controversial. This study aimed to investigate the protective effect of sitagliptin on the cognition in AD and its underlying molecular mechanism.. The APP/PS1 (a model of AD) mice received daily gastric gavage administration of sitagliptin (20 mg/kg) for 8 weeks. Then animals were subjected to behavioral experiment or sacrificed to histological staining and protein level analysis.. The MWM test showed that sitagliptin treatment significantly reduced the escape latency times in APP/PS1 mice in the learning phase (day 3-5) and elongated the time spent in the target quadrant in the probe test. Sitagliptin significantly reduced amyloid plaque deposition and elevated the spine density and the protein levels of synaptoneurosome GluA1- and GluA2-containing AMPA receptor (GluA1R and GluA2R) in the brain of the APP/PS1 mice. Sitagliptin treatment significantly up-regulated the brain BNDF protein and phosphorylation of tyrosine receptor kinase B (TrkB). Furthermore, exendin-(9-39) (a glucagon-like peptide-1 [GLP-1] receptor antagonist) and K252a (a Trk tyrosine kinase inhibitor) treatment significantly abolished the cognitive protective effect of sitagliptin in the MWM test.. Sitagliptin treatment effectively protected the cognition function of the AD mice by regulating synaptic plasticity, at least partially, through activating GLP-1 and BDNF-TrkB signalings.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Brain; Brain-Derived Neurotrophic Factor; Cognition; Disease Models, Animal; Glucagon-Like Peptide 1; Mice; Receptors, AMPA; Sitagliptin Phosphate

2019
Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice.
    American journal of physiology. Gastrointestinal and liver physiology, 2019, 03-01, Volume: 316, Issue:3

    Takeda G protein-coupled receptor 5 (TGR5) agonists induce systemic release of glucagon-like peptides (GLPs) from intestinal L cells, a potentially therapeutic action against metabolic diseases such as nonalcoholic steatohepatitis (NASH), nonalcoholic fatty liver disease (NAFLD), and Type 2 diabetes. Historically, TGR5 agonist use has been hindered by side effects, including inhibition of gallbladder emptying. Here, we characterize RDX8940, a novel, orally administered TGR5 agonist designed to have minimal systemic effects and investigate its activity in mice fed a Western diet, a model of NAFLD and mild insulin resistance. Agonist activity, binding selectivity, toxicity, solubility, and permeability of RDX8940 were characterized in standard in vitro models. RDX8940 pharmacokinetics and effects on GLP secretion, insulin sensitivity, and liver steatosis were assessed in C57BL/6 mice fed normal or Western diet chow and given single or repeated doses of RDX8940 or vehicle, with or without dipeptidyl peptidase-4 (DPP4) inhibitors. Gallbladder effects were assessed in CD-1 mice fed normal chow and given RDX8940 or a systemic TGR5 agonist or vehicle. Our results showed that RDX8940 is minimally systemic, potent, and selective, and induces incretin (GLP-1, GLP-2, and peptide YY) secretion. RDX8940-induced increases in plasma active GLP-1 (aGLP-1) levels were enhanced by repeated dosing and by coadministration of DPP4 inhibitors. RDX8940 increased hepatic exposure to aGLP-1 without requiring coadministration of a DPP4 inhibitor. In mice fed a Western diet, RDX8940 improved liver steatosis and insulin sensitivity. Unlike systemic TGR5 agonists, RDX8940 did not inhibit gallbladder emptying. These results indicate that RDX8940 may have therapeutic potential in patients with NAFLD/NASH. NEW & NOTEWORTHY Takeda G protein-coupled receptor 5 (TGR5) agonists have potential as a treatment for nonalcoholic steatohepatitis and nonalcoholic fatty liver disease (NAFLD) but have until now been associated with undesirable side effects associated with systemic TGR5 agonism, including blockade of gallbladder emptying. We demonstrate that RDX8940, a potent, selective, minimally systemic oral TGR5 agonist, improves liver steatosis and insulin sensitivity in a mouse model of NAFLD and does not inhibit gallbladder emptying in mice.

    Topics: Animals; Diet, Western; Disease Models, Animal; Glucagon-Like Peptide 1; Hypoglycemic Agents; Insulin Resistance; Intestines; Liver; Male; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Receptors, G-Protein-Coupled

2019
The intestine responds to heart failure by enhanced mitochondrial fusion through glucagon-like peptide-1 signalling.
    Cardiovascular research, 2019, Nov-01, Volume: 115, Issue:13

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone secreted by the intestine. Its receptor (GLP-1R) is expressed in various organs, including the heart. However, the dynamics and function of the GLP-1 signal in heart failure remains unclear. We investigated the impact of the cardio-intestinal association on hypertensive heart failure using miglitol, an α-glucosidase inhibitor known to stimulate intestinal GLP-1 production.. Dahl salt-sensitive (DS) rats fed a high-salt diet were assigned to miglitol, exendin (9-39) (GLP-1R blocker) and untreated control groups and treated for 11 weeks. Control DS rats showed marked hypertension and cardiac dysfunction with left ventricular dilatation accompanied by elevated plasma GLP-1 levels and increased cardiac GLP-1R expression as compared with age-matched Dahl salt-resistant (DR) rats. Miglitol further increased plasma GLP-1 levels, suppressed adverse cardiac remodelling, and mitigated cardiac dysfunction. In cardiomyocytes from miglitol-treated DS hearts, mitochondrial size was significantly larger with denser cristae than in cardiomyocytes from control DS hearts. The change in mitochondrial morphology reflected enhanced mitochondrial fusion mediated by protein kinase A activation leading to phosphorylation of dynamin-related protein 1, expression of mitofusin-1 and OPA-1, and increased myocardial adenosine triphosphate (ATP) content. GLP-1R blockade with exendin (9-39) exacerbated cardiac dysfunction and led to fragmented mitochondria with disarrayed cristae in cardiomyocytes and reduction of myocardial ATP content. In cultured cardiomyocytes, GLP-1 increased expression of mitochondrial fusion-related proteins and ATP content. When GLP-1 and exendin (9-39) were administered together, their effects cancelled out.. Increased intestinal GLP-1 secretion is an adaptive response to heart failure that is enhanced by miglitol. This could be an effective strategy for treating heart failure through regulation of mitochondrial dynamics.

    Topics: 1-Deoxynojirimycin; Animals; Cells, Cultured; Cyclic AMP-Dependent Protein Kinases; Disease Models, Animal; Dynamins; Enteroendocrine Cells; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glycoside Hydrolase Inhibitors; GTP Phosphohydrolases; Heart Failure; Ileum; Incretins; Male; Membrane Proteins; Mitochondria, Heart; Mitochondrial Dynamics; Mitochondrial Proteins; Myocytes, Cardiac; Paracrine Communication; Peptide Fragments; Rats, Inbred Dahl; Rats, Sprague-Dawley; Signal Transduction; Sodium Chloride, Dietary; Ventricular Function, Left

2019
Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease.
    Nature, 2019, Volume: 566, Issue:7742

    The biochemical response to food intake must be precisely regulated. Because ingested sugars and fats can feed into many anabolic and catabolic pathways

    Topics: Animals; Atherosclerosis; Cardiovascular Diseases; Disease Models, Animal; Disease Progression; Eating; Enterocytes; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Integrin beta Chains; Intestine, Small; Intraepithelial Lymphocytes; Male; Metabolic Syndrome; Mice

2019
Impaired adaptation of energy intake induces severe obesity in aged mice on a high-fat diet.
    Physiological reports, 2019, Volume: 7, Issue:3

    High-fat diet (HFD) feeding induces inflammation in various tissues, including the nodose ganglion and hypothalamus, resulting in obesity and metabolic disorders. In this study, we investigated the effect of short-term HFD on aged and young mice. Aged mice easily gained weight during short-term HFD feeding, and required many days to adapt their energy intake. One-day HFD in aged mice induced inflammation in the distal colon, but not in the nodose ganglion or hypothalamus. The anorexic effect of glucagon-like peptide-1 (GLP-1) was attenuated in aged mice. Intraperitoneal administration of GLP-1 did not induce expression of genes that regulate feeding in the hypothalamus of aged mice. mRNA expression of the gene encoding the GLP-1 receptor (Glp1r) in the nodose ganglion was significantly lower in aged mice than in young mice. Our findings suggest that adaptation of energy intake regulation was attenuated in aged mice, causing them to become obese in response to short-term HFD feeding.

    Topics: Adaptation, Physiological; Age Factors; Aging; Animals; Colitis; Diet, High-Fat; Disease Models, Animal; Eating; Energy Intake; Energy Metabolism; Feeding Behavior; Gene Expression Regulation; Glucagon-Like Peptide 1; Hypothalamus; Inflammation Mediators; Male; Mice, Inbred C57BL; Nodose Ganglion; Obesity; Time Factors; Weight Gain

2019
Cacao liquor procyanidins prevent postprandial hyperglycaemia by increasing glucagon-like peptide-1 activity and AMP-activated protein kinase in mice.
    Journal of nutritional science, 2019, Volume: 8

    Procyanidins have been reported to possess potential for the prevention of hyperglycaemia. However, there are very few data for procyanidins about the difference the degree of polymerisation (DP) has on anti-hyperglycaemic effects. Moreover, the underlying molecular mechanisms by which procyanidins suppress hyperglycaemia are not yet fully understood. In the present study, we prepared procyanidin fractions with different DP, namely low-DP (DP≤3) and high-DP (DP≥4) fractions, from a cacao liquor procyanidin-rich extract (CLPr). These fractions were administered orally to Institute of Cancer Research (ICR) mice and their anti-hyperglycaemic effects were examined. We found that CLPr and its fractions prevent postprandial hyperglycaemia accompanied by an increase in the plasma glucagon-like peptide-1 (GLP-1) level with or without glucose load. In the absence of glucose load, both fractions increased the plasma insulin level and activated its downstream signalling pathway in skeletal muscle, resulting in promotion of the translocation of GLUT4. Phosphorylation of AMP-activated protein kinase (AMPK) was also involved in the promotion of GLUT4 translocation. High- and low-DP fractions showed a similar activation of insulin and AMPK pathways. In conclusion, cacao liquor procyanidins prevent hyperglycaemia by promoting GLUT4 translocation in skeletal muscle, and both the GLP-1-activated insulin pathway and the AMPK pathway are involved in the underlying molecular mechanism.

    Topics: AMP-Activated Protein Kinases; Animals; Cacao; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose; Glucose Transporter Type 4; Hyperglycemia; Insulin; Male; Mice; Mice, Inbred ICR; Muscle, Skeletal; Phosphorylation; Plant Extracts; Polyphenols; Proanthocyanidins; Signal Transduction

2019
Fractionated whole body gamma irradiation modulates the hepatic response in type II diabetes of high fat diet model rats.
    Molecular biology reports, 2019, Volume: 46, Issue:2

    HFD animals were exposed to a low rate of different fractionated whole body gamma irradiation doses (0.5, 1 and 2 Gy, three fractions per week for two consecutive months) and the expression of certain genes involved in type 2 diabetes mellitus (T2DM) in livers and brains of HFD Wistar rats was investigated. Additionally, levels of diabetes-related proteins encoded by the studied genes were analyzed. Results indicated that mRNA level of incretin glucagon like peptite-1 receptor (GLP-1R) was augmented in livers and brains exposed to 1 and 2 Gy doses. Moreover, the mitochondrial uncoupling proteins 2 and 3 (UCP2/3) expressions in animals fed on HFD compared to those fed on normal chow diet were significantly increased at all applied doses. GLP-1R and UCP3 protein levels were up regulated in livers. Total protein content increased at 0.5 and 1 Gy gamma irradiation exposure and returned to its normal level at 2 Gy dose. Results could be an indicator of type 2 diabetes delayed development during irradiation exposure and support the importance of GLP-1R as a target gene in radiotherapy against T2DM and its chronic complications. A new hypothesis of brain-liver and intestine interface is speculated by which an increase in the hepatic GLP-1R is influenced by the effect of fractionated whole body gamma irradiation.

    Topics: Animals; Brain; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Gamma Rays; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Liver; Male; Rats; Rats, Wistar; Receptors, Glucagon; RNA, Messenger; Uncoupling Protein 2; Uncoupling Protein 3

2019
Dipeptidyl Peptidase 4 Inhibition Ameliorates Chronic Kidney Disease in a Model of Salt-Dependent Hypertension.
    Oxidative medicine and cellular longevity, 2019, Volume: 2019

    Cardiovascular diseases frequently coexist with chronic kidney disease that constitutes a major determinant of outcome in patients with heart failure. Dysfunction of both organs is related to chronic inflammation, endothelial dysfunction, oxidative stress, and fibrosis. Widespread expression of serine protease DPP4 that degrades varieties of substrates suggests its involvement in numerous physiological processes. In this study, we tested the effects of selective DPP4 inhibition on the progression of renal disease in a nondiabetic model of hypertensive heart disease using Dahl salt-sensitive rats. Chronic DPP4 inhibition positively affected renal function with a significant reduction in albuminuria and serum creatinine. DPP4 inhibition attenuated the inflammatory component by reducing the expression of NF-

    Topics: Animals; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Endothelial Cells; Fibrosis; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hypertension; Inflammation; Kidney; Kidney Function Tests; Models, Biological; Nitrosative Stress; Oxidative Stress; Phenotype; Rats, Inbred Dahl; Renal Insufficiency, Chronic; Signal Transduction; Sodium Chloride, Dietary

2019
Fructooligosaccharides Ameliorating Cognitive Deficits and Neurodegeneration in APP/PS1 Transgenic Mice through Modulating Gut Microbiota.
    Journal of agricultural and food chemistry, 2019, Mar-13, Volume: 67, Issue:10

    Alzheimer's disease (AD) is closely related to gut microbial alteration. Prebiotic fructooligosaccharides (FOS) play major roles by regulating gut microbiota. The present study aimed to explore the effect and mechanism of FOS protection against AD via regulating gut microbiota. Male Apse/PSEN 1dE9 (APP/PS1) transgenic (Tg) mice were administrated with FOS for 6 weeks. Cognitive deficits and amyloid deposition were evaluated. The levels of synaptic plasticity markers including postsynaptic density protein 95 (PSD-95) and synapsin I, as well as phosphorylation of c-Jun N-terminal kinase (JNK), were determined. The intestinal microbial constituent was detected by 16S rRNA sequencing. Moreover, the levels of glucagon-like peptide-1 (GLP-1) in the gut and GLP-1 receptor (GLP-1R) in the brain were measured. The results indicated that FOS treatment ameliorated cognitive deficits and pathological changes in the Tg mice. FOS significantly upregulated the expression levels of synapsin I and PSD-95, as well as decreased phosphorylated level of JNK. The sequencing results showed that FOS reversed the altered microbial composition. Furthermore, FOS increased the level of GLP-1 and decreased the level of GLP-1R in the Tg mice. These findings indicated that FOS exerted beneficial effects against AD via regulating the gut microbiota-GLP-1/GLP-1R pathway.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Brain; Cognition; Disease Models, Animal; Disks Large Homolog 4 Protein; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Humans; Male; Mice; Mice, Transgenic; Neuronal Plasticity; Oligosaccharides; Prebiotics; Presenilin-1; Synapsins

2019
Long-term liraglutide ameliorates nigrostriatal impairment via regulating AMPK/PGC-1a signaling in diabetic mice.
    Brain research, 2019, 07-01, Volume: 1714

    Growing evidence indicates links between type 2 diabetes and Parkinson's disease. The glucagon-like peptide 1 analogue, liraglutide, a commonly used anti-diabetic drug, has protective effects on neurons. The goal of this study was to determine whether long-term liraglutide treatment could reduce the risk of adult type 2 diabetic mice developing Parkinson's disease. Male diabetic db/db mice (12 weeks old) were injected daily with liraglutide (n = 8), or saline (n = 8), and non-diabetic m/m littermates (n = 6) were included as controls. Motor function was assessed every 4 weeks and all mice were sacrificed after 8 weeks of drug intervention for further analysis. The results revealed that long-term treatment of liraglutide protected the db/db mice against the motor function decay and the dopaminergic neuron loss. Liraglutide also restored the impaired AMP kinase (AMPK)/peroxisome proliferator-activated receptor-γ coactivator 1a (PGC-1a) signaling in the striatum of db/db mice. Further experiments in SH-SY5Y cells supported that AMPK is involved in the neuroprotective effect of liraglutide. In summary, long-term liraglutide ameliorated motor dysfunction and dopaminergic neuron impairment in type 2 diabetic mice, probably via enhancing AMPK/PGC-1a signaling.

    Topics: Adenylate Kinase; AMP-Activated Protein Kinases; Animals; Blood Glucose; Diabetes Mellitus; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon-Like Peptide 1; Hypoglycemic Agents; Liraglutide; Male; Mice; Mice, Inbred C57BL; Motor Disorders; Parkinson Disease; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Signal Transduction

2019
Hypothalamic insulin and glucagon-like peptide-1 levels in an animal model of depression and their effect on corticotropin-releasing hormone promoter gene activity in a hypothalamic cell line.
    Pharmacological reports : PR, 2019, Volume: 71, Issue:2

    In depression, excessive glucocorticoid action may cause maladaptive brain changes, including in the pathways controlling energy metabolism. Insulin and glucagon-like peptide-1 (GLP-1), besides regulation of glucose homeostasis, also possess neurotrophic properties. Current study was aimed at investigating the influence of prenatal stress (PS) on insulin, GLP-1 and their receptor (IR and GLP-1R) levels in the hypothalamus. GLP-1 and GLP-1R were assayed also in the hippocampus and frontal cortex - brain regions mainly affected in depression. The second objective was to determine the influence of exendin-4 and insulin on CRH promoter gene activity in in vitro conditions.. Adult male PS rats were subjected to acute stress and/or received orally glucose. Levels of hormones and their receptors were assayed with ELISA method. In vitro studies were performed on mHypoA-2/12 hypothalamic cell line, stably transfected with CRH promoter coupled with luciferase.. PS has reduced GLP-1 and GLP-1R levels, attenuated glucose-induced increase in insulin concentration and increased the amount of phosphorylated IR in the hypothalamus of animals subjected to additional stress stimuli, and also decreased the GLP-1R level in the hippocampus. In vitro studies demonstrated that insulin is capable of increasing CRH promoter activity in the condition of stimulation of the cAMP/PKA pathway in the applied cellular model.. Prenatal stress may act as a preconditioning factor, affecting the concentrations of hormones such as insulin and GLP-1 in the hypothalamus in response to adverse stimuli. The decreased GLP-1R level in the hippocampus could be linked with the disturbances in neuronal plasticity.

    Topics: Animals; Cell Line; Corticotropin-Releasing Hormone; Depression; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Exenatide; Female; Glucagon-Like Peptide 1; Glucose; Hypothalamus; Insulin; Male; Mice; Neuronal Plasticity; Pregnancy; Prenatal Exposure Delayed Effects; Promoter Regions, Genetic; Rats; Rats, Sprague-Dawley; Stress, Psychological

2019
Endothelial Progenitor Cells as Pathogenetic and Diagnostic Factors, and Potential Targets for GLP-1 in Combination with Metabolic Syndrome and Chronic Obstructive Pulmonary Disease.
    International journal of molecular sciences, 2019, Mar-04, Volume: 20, Issue:5

    In clinical practice, there are patients with a combination of metabolic syndrome (MS) and chronic obstructive pulmonary disease (COPD). The pathological mechanisms linking MS and COPD are largely unknown. It remains unclear whether the effect of MS (possible obesity) has a major impact on the progression of COPD. This complicates the development of effective approaches for the treatment of patients with a diagnosis of MS and COPD. Experiments were performed on female C57BL/6 mice. Introduction of monosodium glutamate and extract of cigarette smoke was modeled to simulate the combined pathology of lipid disorders and emphysema. Biological effects of glucagon-like peptide 1 (GLP-1) and GLP-1 on endothelial progenitor cells (EPC) in vitro and in vivo were evaluated. Histological, immunohistochemical methods, biochemical methods, cytometric analysis of markers identifying EPC were used in the study. The CD31⁺ endothelial cells in vitro evaluation was produced by Flow Cytometry and Image Processing of each well with a Cytation™ 3. GLP-1 reduces the area of emphysema and increases the number of CD31⁺ endothelial cells in the lungs of mice in conditions of dyslipidemia and damage to alveolar tissue of cigarette smoke extract. The regenerative effects of GLP-1 are caused by a decrease in inflammation, a positive effect on lipid metabolism and glucose metabolism. EPC are proposed as pathogenetic and diagnostic markers of endothelial disorders in combination of MS with COPD. Based on GLP-1, it is proposed to create a drug to stimulate the regeneration of endothelium damaged in MS and COPD.

    Topics: Animals; Cigarette Smoking; Disease Models, Animal; Disease Progression; Endothelial Progenitor Cells; Flow Cytometry; Glucagon-Like Peptide 1; Glucose; Humans; Lipid Metabolism; Lung; Metabolic Syndrome; Mice; Platelet Endothelial Cell Adhesion Molecule-1; Pulmonary Disease, Chronic Obstructive; Pulmonary Emphysema; Sodium Glutamate

2019
Construction of a dietary-cure
    Journal of biosciences, 2019, Volume: 44, Issue:1

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Gene Expression Regulation; Genetic Vectors; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Mice; Peptides; Saccharomyces cerevisiae; Tandem Repeat Sequences

2019
Biochemical and histological characterisation of an experimental rodent model of non-alcoholic steatohepatitis - Effects of a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist and a glucagon-like peptide-1 analogue.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2019, Volume: 111

    Non-alcoholic steatohepatitis (NASH) is a prevalent disease that is highly associated with the metabolic syndrome and type II diabetes. The development of in vivo models that reflect all nuances of the human NASH pathology is essential for drug discovery and development. We aimed to further characterise a dietary induced model of NASH both biochemically and histologically. In addition, we also investigated whether pioglitazone and liraglutide, drugs that have both been investigated as potential NASH treatments, could modulate the pathological changes induced by the NASH diet. Furthermore, to aid the translation of data from pre-clinical in vivo models, we aimed to adapt the NASH Clinical Research Network (CRN) histological score system for use in rodent studies.. Sprague Dawley rats were fed a high-fat diet (HFD) for 9 weeks, after which they were switched to a high fat, high cholesterol and cholate diet (HFCC) for 12 weeks. The rats were divided into treatment groups, receiving either 30 mg/kg pioglitazone p.o. SID or liraglutide s.c. 200 μg/kg BID or the respective vehicles. Serum levels of triglycerides (TG), cholesterol (Chol), LDL, HDL, AST and ALT, as well as body weight were assessed in all subjects. Upon termination, the liver was weighed and evaluated histologically using modified NASH-CRN criteria.. HFCC feeding induced severe hepatic injury and hepatomegaly as indicated by significant increases in AST, ALT and an increased liver weight. Additionally, HFCC feeding induced dyslipidaemia, significant increases in circulating cholesterol and LDL were observed. No obesogenic effect of the HFCC diet was observed, though the diet did induce insulin resistance. Histological analysis showed that the HFCC diet induced several NASH like features, though it did not induce the development of severe fibrosis. However, microgranulomas were often prevalent in addition to lobular inflammatory foci. Pioglitazone showed little efficacy upon both biochemical and histological features. However, liraglutide induced weight loss, improved glycaemic control, reduced ALT and AST and showed some beneficial effects upon steatosis and lobular inflammation.. Similar to previous reports we have shown that the atherogenic diet, HFCC, induces a phenotype akin to that seen in human NASH patients. Despite inducing all histological features of NASH, HFCC feeding does not promote the development of significant fibrosis within rodents. Pioglitazone and liraglutide have been investigated as potential NASH treatments. Within this model of NASH we have shown that pioglitazone has little efficacy, whereas liraglutide reduced the levels of circulating aminotransferases and had some beneficial effects upon NASH histological parameters.

    Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Blood Glucose; Cholesterol; Diet, High-Fat; Disease Models, Animal; Fatty Liver; Glucagon-Like Peptide 1; Inflammation; Liraglutide; Liver; Male; Non-alcoholic Fatty Liver Disease; Pioglitazone; PPAR gamma; Rats; Rats, Sprague-Dawley; Rodentia; Triglycerides

2019
Neuroprotective effects of an engineered commensal bacterium in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine Parkinson disease mouse model via producing glucagon-like peptide-1.
    Journal of neurochemistry, 2019, Volume: 150, Issue:4

    While glucagon-like peptide-1 (GLP-1) was reported to have a positive impact on Parkinson disease, it is extremely short half-life greatly hindered its clinical use. In this study, the mouse strain MG1363-pMG36e-GLP-1 was engineered to continuously express GLP-1 to treat Parkinson disease in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated Parkinson disease model. In our study, oral supplementation with MG1363-pMG36e-GLP-1 significantly (p < 0.05) reduced MPTP-induced locomotor impairments, increased tyrosine hydroxylase-positive neurons, suppressed microglia and astrocyte activation, and down-regulated expression of several inflammation-related molecules. In addition, MG1363-pMG36e-GLP-1 significantly (p < 0.01) reduced intestinal pathogen Enterobacteriaceae and markedly enhanced the number of probiotic Lactobacillus and Akkermansia. These data suggest that MG1363-pMG36e-GLP-1 could be a novel therapeutic means for Parkinson disease.

    Topics: Animals; Disease Models, Animal; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Parkinsonian Disorders

2019
Continuous feeding of a combined high-fat and high-sucrose diet, rather than an individual high-fat or high-sucrose diet, rapidly enhances the glucagon-like peptide-1 secretory response to meal ingestion in diet-induced obese rats.
    Nutrition (Burbank, Los Angeles County, Calif.), 2019, Volume: 62

    Glucagon-like peptide-1 (GLP-1) is secreted by enteroendocrine L-cells in response to nutrient ingestion. To date, GLP-1 secretion in diet-induced obesity is not well characterized. We aimed to examine GLP-1 secretion in response to meal ingestion during the progression of diet-induced obesity and determinewhether a combined high-fat and high-sucrose (HFS) diet, an individual high-fat (HiFat), or a high-sucrose (HiSuc) diet affect adaptive changes in the postprandial GLP-1 response.. Rats were fed a control, HiFat diet (30% weight), HiSuc diet (40% weight), or HFS (30% fat and 40% sucrose) diet for 5 wk. Meal tolerance tests were conducted to determine postprandial glucose, insulin, and GLP-1 responses to standard (control) diet ingestion every 2 wk.. After 5 wk, body weight gain of the HiFat (232.3 ± 7.8 g; P = 0.021) and HFS groups (228.0 ± 7.8; P = 0.039), but not the HiSuc group (220.3 ± 7.9; P = 0.244), were significantly higher than that of the control group (200.7 ± 5.4 g). In meal tolerance tests after 2 wk, GLP-1 concentration was significantly elevated in the HFS group only (17.2 ± 2.6 pM; P < 0.001) in response to meal ingestions, but the HiFat group (16.6 ± 3.7 pM; P = 0.156) had a similar response as the HFS group. After 4 wk, GLP-1 concentrations were similarly elevated at 15min in the HFS (14.1 ± 4.4; P = 0.010), HiFat (13.2 ± 2.0; P < 0.001), and HiSuc (13.0 ± 3.3; P = 0.016) groups, but the HFS (9.8 ± 1.0; P = 0.019) and HiFat (8.3 ± 1.5; P = 0.010) groups also had significant elevation at 30min.. These results demonstrate that the continuous ingestion of excessive fat and sucrose rapidly enhances the GLP-1 secretory response to luminal nutrients, and the HiFat diet may have a potent effect compared with the HiSuc diet on GLP-1 secretory responses. The increment of postprandial GLP-1 and insulinsecretion may have a role in normalizing postprandial glycaemia and slowing the establishment of glucose intolerance.

    Topics: Animals; Blood Glucose; Diet; Diet, High-Fat; Dietary Fats; Dietary Sucrose; Disease Models, Animal; Energy Intake; Glucagon-Like Peptide 1; Insulin; Male; Meals; Obesity; Postprandial Period; Rats; Rats, Sprague-Dawley

2019
Therapeutic Effects of Sleeve Gastrectomy and Ileal Transposition on Type 2 Diabetes in a Non-Obese Rat Model by Regulating Blood Glucose and Reducing Ghrelin Levels.
    Medical science monitor : international medical journal of experimental and clinical research, 2019, May-09, Volume: 25

    BACKGROUND Nowadays, more than 170 million patients suffer from diabetes mellitus worldwide. This study aimed to investigate the effects of sleeve gastrectomy (SG) and ileal transposition (IT) surgery on the control of diabetes. MATERIAL AND METHODS Goto-Kakizaki rats were used to establish type 2 diabetes models and undergo SG or IT surgery. At 2 months post-surgery, insulin, glucose, triglycerides (TG), total cholesterol (TC), glucose tolerance, glucagon-like peptide-1 (GLP-1) levels, and insulin sensitivity were evaluated. RESULTS SG significantly shortened operative time and post-operative recovery time compared to IT surgery (P<0.05). SG and IT surgery resulted in significantly induced weight loss, significantly decreased levels of glucose, and significantly enhanced levels of Ghrelin compared the Sham surgery group (P<0.001). SG and IT surgery resulted in significantly increased GLP-1 levels compared to Sham surgery (P<0.001). SG resulted in better reduction of oral glucose tolerance test (OGTT) glucose compared to IT surgery (P<0.05). SG and IT surgery significantly upregulated insulin tolerance test (ITT) levels compared to Sham surgery (P<0.001). SG induced better reductions in TC and TG compared to IT surgery (P<0.05). CONCLUSIONS In non-obese rats with spontaneous diabetes, both SG and IT surgery were found to control diabetes by regulating body weight and levels of glucose, Ghrelin, GLP-1, OGTT glucose, insulin, TC, and TG. Moreover, SG demonstrated advantages of shorter operative time, shorter post-operative recovery time, and better control of diabetes compared to IT surgery.

    Topics: Anastomosis, Surgical; Animals; Blood Glucose; Body Weight; Cholesterol; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastrectomy; Ghrelin; Glucagon-Like Peptide 1; Glucose; Glucose Tolerance Test; Ileum; Insulin; Insulin Resistance; Male; Rats; Rats, Inbred Strains; Weight Loss

2019
Exenatide alleviates mitochondrial dysfunction and cognitive impairment in the 5×FAD mouse model of Alzheimer's disease.
    Behavioural brain research, 2019, 09-16, Volume: 370

    The role of mitochondrial dysfunction has been well-documented in Alzheimer's disease (AD). Glucagon-like peptide 1 (GLP-1) receptor agonists are being utilized as neuroprotectants in the treatment of various neurological disorders, including AD. We conducted this study to explore the effects of exenatide (a GLP-1 receptor agonist) on β-amyloid plaque (Aβ)-induced cognitive impairment and mitochondrial dysfunction in 5xFAD transgenic mice. Spatial memory test showed that exenatide administration (100 μg/kg twice per day) prevented cognitive decline after 16 weeks of treatment. Aβ

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Brain; Cognitive Dysfunction; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hippocampus; Male; Memory; Mice; Mice, Inbred Strains; Mice, Transgenic; Mitochondria; Neuroprotective Agents; Plaque, Amyloid; Synapses

2019
Important Endpoints and Proliferative Markers to Assess Small Intestinal Injury and Adaptation using a Mouse Model of Chemotherapy-Induced Mucositis.
    Journal of visualized experiments : JoVE, 2019, 05-12, Issue:147

    Intestinal adaptation is the natural compensatory mechanism that occurs when the bowel is lost due to trauma. The adaptive responses, such as crypt cell proliferation and increased nutrient absorption, are critical in recovery, yet poorly understood. Understanding the molecular mechanism behind the adaptive responses is crucial to facilitate the identification of nutrients or drugs to enhance adaptation. Different approaches and models have been described throughout the literature, but a detailed descriptive way to essentially perform the procedures is needed to obtain reproducible data. Here, we describe a method to estimate important endpoints and proliferative markers of small intestinal injury and compensatory hyperproliferation using a model of chemotherapy-induced mucositis in mice. We demonstrate the detection of proliferating cells using a cell cycle specific marker, as well as using small intestinal weight, crypt depth, and villus height as endpoints. Some of the critical steps within the described method are the removal and weighing of the small intestine and the rather complex software system suggested for the measurement of this technique. These methods have the advantages that they are not time-consuming, and that they are cost-effective and easy to carry out and measure.

    Topics: Acute Disease; Adaptation, Physiological; Animals; Antineoplastic Agents; Biomarkers; Body Weight; Bromodeoxyuridine; Cell Proliferation; Disease Models, Animal; Endpoint Determination; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Intestinal Mucosa; Intestine, Small; Mice, Inbred C57BL; Mucositis

2019
SCO-267, a GPR40 Full Agonist, Improves Glycemic and Body Weight Control in Rat Models of Diabetes and Obesity.
    The Journal of pharmacology and experimental therapeutics, 2019, Volume: 370, Issue:2

    The GPR40/FFA1 receptor is a G-protein-coupled receptor expressed in the pancreatic islets and enteroendocrine cells. Here, we report the pharmacological profiles of (3

    Topics: Animals; Blood Glucose; Body Weight; CHO Cells; Cricetulus; Cyclopropanes; Diabetes Mellitus, Experimental; Disease Models, Animal; Dogs; Eating; Glucagon-Like Peptide 1; Humans; Insulin Secretion; Islets of Langerhans; Male; Mice; Obesity; Piperidines; Propionates; Pyridines; Rats; Receptors, G-Protein-Coupled

2019
The neuroprotection of liraglutide on diabetic cognitive deficits is associated with improved hippocampal synapses and inhibited neuronal apoptosis.
    Life sciences, 2019, Aug-15, Volume: 231

    Diabetes mellitus can cause cognitive impairments, a state between normal aging and dementia. Effective clinical interventions are urgently needed to prevent or treat this complication. Liraglutide as a glucagon-like peptide 1 analog has been shown to exert memory-enhancing and neuroprotective effects on neurodegenerative diseases. This study aims to investigate the neuroprotective effects of liraglutide in streptozotocin (STZ)-induced diabetic mice with cognitive deficits.. Male C57BL/6J mice were intraperitoneal injected with STZ (65 mg/kg body weight daily for 5 days) to induce type 1 diabetes model. Then the mice were treated with liraglutide (250 mg/kg/day, for 6 weeks) or saline. Weekly changes of body weight and fasting blood glucose were measured. Cognitive performance was evaluated by Morris water maze test. The ultrastructure of hippocampus was observed by transmission electron microscope. The superoxide dismutase activities and malondialdehyde levels in the hippocampus were detected by biochemistry assay. Apoptosis-related proteins and phosphoinositide 3-kinase (PI3K)/protein kinase-B (Akt) signaling were detected by Western blotting.. We found that STZ-induced diabetic mice exhibited impaired learning and memory, ultrastructure damage of hippocampal neurons and synapses, exacerbated oxidative stress and neuronal apoptosis, as compared to the control mice. These effects were attenuated by the treatment with liraglutide. Furthermore, liraglutide reversed diabetes-induced alterations in PI3K/Akt signaling pathway that plays an essential role in modulating neuronal survival, apoptosis and plasticity.. These data suggest that the neuroprotective effects of liraglutide on diabetes-induced cognitive impairments are associated with the improvements of hippocampal synapses and inhibition of neuronal apoptosis.

    Topics: Animals; Apoptosis; Blood Glucose; Cognition; Cognitive Dysfunction; Diabetes Complications; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon-Like Peptide 1; Hippocampus; Hypoglycemic Agents; Liraglutide; Male; Memory; Mice; Mice, Inbred C57BL; Neurons; Neuroprotection; Neuroprotective Agents; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; Streptozocin; Synapses

2019
Antihyperglycemic effect of a chicken feet hydrolysate via the incretin system: DPP-IV-inhibitory activity and GLP-1 release stimulation.
    Food & function, 2019, Jul-17, Volume: 10, Issue:7

    Herein, the potential of hydrolysates of chicken feet proteins as natural dipeptidyl-peptidase IV (DPP-IV) inhibitors was investigated; moreover, three hydrolysates were selected due to their high DPP-IV inhibitory capacity (>80% inhibition), showing the IC50 values of around 300 μg estimated protein per mL; one of them (named p4H) was selected for the posterior analysis. In addition, its effect on glucose tolerance was investigated in two rat models (diet and age-induced) of glucose-intolerance and healthy animals; the amount of 300 mg estimated peptide per kg body weight improved the plasma glucose profile in both glucose-intolerance models. Moreover, it stimulated active GLP-1 release in the enteroendocrine STC-1 cells and rat ileum tissue. In conclusion, our results indicate that chicken feet proteins are a good source of bioactive peptides as DPP-IV inhibitors. Moreover, our results highlight the potential of the selected hydrolysate p4H in the management of type 2 diabetes due to its dual function of inhibition of the DPP-IV activity and induction of the GLP-1 release.

    Topics: Animals; Blood Glucose; Body Weight; Cell Line; Chickens; Diabetes Mellitus, Type 2; Diet; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Drug Delivery Systems; Female; Foot; Glucagon-Like Peptide 1; Glucose Intolerance; Hypoglycemic Agents; Incretins; Inhibitory Concentration 50; Male; Protein Hydrolysates; Rats; Rats, Wistar

2019
Exenatide Reverts the High-Fat-Diet-Induced Impairment of BDNF Signaling and Inflammatory Response in an Animal Model of Alzheimer's Disease.
    Journal of Alzheimer's disease : JAD, 2019, Volume: 70, Issue:3

    Alzheimer's disease (AD) is a multifactorial condition in which, along with amyloid-β (Aβ) and tau-related pathology, the synergistic activity of co-morbidity factors promote the onset and progression of the disease. Epidemiological evidence indicates that glucose intolerance, deficits in insulin secretion, or type-2 diabetes mellitus (T2DM) participate in increasing cognitive impairment or dementia risk. Insulin plays a pivotal role in the process as the hormone critically regulates brain functioning. GLP-1, the glucagon-like peptide 1, facilitates insulin signaling, regulates glucose homeostasis, and modulates synaptic plasticity. Exenatide is a synthetic GLP-1 analog employed in T2DM. However, exenatide has also been shown to affect the signaling of the brain-derived neurotrophic factor (BDNF), synaptic plasticity, and cognitive performances in animal models. In this study, we tested whether exenatide exerts neuroprotection in a preclinical AD model set to mimic the clinical complexity of the human disease. We investigated the effects of exenatide treatment in 3xTg-AD mice challenged with a high-fat diet (HFD). Endpoints of the study were variations in systemic metabolism, insulin and neurotrophic signaling, neuroinflammation, Aβ and tau pathology, and cognitive performances. Results of the study indicate that exenatide reverts the adverse changes of BDNF signaling and the neuroinflammation status of 3xTg-AD mice undergoing HFD without affecting systemic metabolism or promoting changes in cognitive performances.

    Topics: Alzheimer Disease; Animals; Brain; Brain-Derived Neurotrophic Factor; Cognitive Dysfunction; Disease Models, Animal; Exenatide; Female; Glucagon-Like Peptide 1; Glucose Tolerance Test; Hypoglycemic Agents; Insulin; Insulin Resistance; Male; Mice; Neuroimmunomodulation; Neuronal Plasticity; Neuroprotective Agents; Signal Transduction

2019
The glucagon-like peptide-1 analogue liraglutide promotes autophagy through the modulation of 5'-AMP-activated protein kinase in INS-1 β-cells under high glucose conditions.
    Peptides, 2018, Volume: 100

    Glucagon-like peptide-1 (GLP-1) is a potent therapeutic agent for the treatment of diabetes and has been proven to protect pancreatic β-cells from glucotoxicity; however, its mechanisms of action are not entirely understood. Autophagy is a dynamic lysosomal degradation process that can protect organisms against metabolic stress. Studies have shown that autophagy plays a protective role in the survival of pancreatic β-cells under high glucose conditions. In the present study, we explored the role of autophagy in GLP-1-induced protection of pancreatic β-cells exposed to high glucose. We demonstrated that the GLP-1 analogue liraglutide increased autophagy in rat INS-1 β-cells, and inhibition of autophagy abated the anti-apoptosis effect of liraglutide under high glucose conditions. Our results also showed that activation of 5'-AMP-activated protein kinase (AMPK) reduced liraglutide-induced autophagy enhancement and inhibited liraglutide-induced protection of INS-1 β-cells from high glucose. These data suggest that GLP-1 may protect β-cells from glucotoxicity through promoting autophagy by the modulation of AMPK. Deeper insight into the molecular mechanisms linking autophagy and GLP-1-induced β-cell protection may reveal novel therapeutic targets to preserve β-cell mass.

    Topics: AMP-Activated Protein Kinases; Animals; Autophagy; Cell Proliferation; Diabetes Mellitus; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose; Humans; Insulin-Secreting Cells; Liraglutide; Rats; Stress, Physiological

2018
Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats.
    Neuropharmacology, 2018, Volume: 128

    Neuronal apoptosis is considered to be a crucial therapeutic target against early brain injury (EBI) after subarachnoid hemorrhage (SAH). Emerging evidence indicates that Exendin-4 (Ex-4), a glucagon-like peptide 1 receptor (GLP-1R) agonist, plays a neuroprotective role in cerebrovascular disease. This study was conducted in order to verify the neuroprotective role of EX-4 in EBI after SAH in rats. The endovascular perforation model of SAH was performed in Sprague-Dawley rats (n = 153). Ex-4 was intraperitoneally injected 1 h after SAH induction in the rats (SAH + Ex-4). To elucidate the underlying molecular mechanism, small interfering ribonucleic acid (siRNA) for GLP-1R and a specific inhibitor of PI3K, LY294002, were injected intracerebroventricularly into SAH + Ex-4 rats before induction of SAH (n = 6 per group). SAH grading evaluation, immunohistochemistry, Western blots, neurobehavioral assessment, and Fluoro-Jade C (FJC) staining experiments were performed. Expression of GLP-1R was significantly increased and mainly expressed in neurons at 24 h after SAH induction. Administration of Ex-4 significantly improved both short- and long-term neurobehavior in SAH + Ex-4 group compared to SAH + Vehicle group after SAH. Ex-4 treatment significantly increased the expression of GLP-1R, PI3K, p-Akt, Bcl-xl, and Bcl-2, while at the same time was found to decrease expression of Bax in the brain. Effects of Ex-4 were reversed by the intervention of GLP-1R siRNA and LY294002 in SAH + Ex-4+GLP-1R siRNA and SAH + Ex-4+LY294002 groups, respectively. In conclusion, the neuroprotective effect of Ex-4 in EBI after SAH was mediated by attenuation of neuronal apoptosis via GLP-1R/PI3K/Akt signaling pathway, therefore EX-4 should be further investigated as a potential therapeutic agent in stroke patients.

    Topics: Animals; Apoptosis; Brain Injuries; Calcium-Binding Proteins; Chromones; Disease Models, Animal; Enzyme Inhibitors; Exenatide; Glucagon-Like Peptide 1; Injections, Intraventricular; Male; Microfilament Proteins; Morpholines; Nerve Tissue Proteins; Neuroprotective Agents; Oncogene Protein v-akt; Peptides; Phosphatidylinositol 3-Kinases; Rats; Rats, Sprague-Dawley; RNA, Small Interfering; Signal Transduction; Subarachnoid Hemorrhage; Venoms

2018
Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer's disease.
    Brain research, 2018, Jan-01, Volume: 1678

    Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer disease (AD). Previous studies have shown that the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) that have anti-diabetic properties show very promising effects in animal models of AD. Glucagon (Gcg) is a hormone and growth-factor, and the Gcg receptor is expressed in the brain. Here we test the effects of a triple receptor agonist (TA), which activates GIP-1, GIP and glucagon receptors at the same time. In the present study, the effects of the TA were evaluated in the APP/PS1 transgenic mouse model of AD. The TA was injected once-daily (10 nmol/kg i.p.) for two months. The results showed that treatment with TA significantly reversed the memory deficit in the APP/PS1 mice in a spatial water maze test. Moreover, the drug reduced levels of the mitochondrial pro-apoptotic signaling molecule BAX, increased the anti-apoptotic signaling molecule Bcl-2 and enhanced the levels of BDNF, a key growth factor that protects synaptic function. Levels of synaptophysin were enhanced, demonstrating protection from synaptic loss that is observed in AD. Neurogenesis in the dentate gyrus was furthermore enhanced as shown in the increase of doublecortin positive cells. Furthermore, TA treatment reduced the total amount of β-amyloid, reduced neuroinflammation (activated microglia and astrocytes), and oxidative stress in the cortex and hippocampus. Thus, these findings show that novel TAs are a promising lead for the design of future treatment strategies in AD.

    Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hippocampus; Memory Disorders; Mice; Mice, Transgenic; Neuroprotective Agents; Plaque, Amyloid; Presenilin-1; Receptors, Gastrointestinal Hormone; Receptors, Glucagon

2018
Glucagon-like peptide-1 analog prevents obesity-related glomerulopathy by inhibiting excessive autophagy in podocytes.
    American journal of physiology. Renal physiology, 2018, 02-01, Volume: 314, Issue:2

    To investigate the role of glucagon-like peptide-1 analog (GLP-1) in high-fat diet-induced obesity-related glomerulopathy (ORG). Male C57BL/6 mice fed a high-fat diet for 12 wk were treated with GLP-1 (200 μg/kg) or 0.9% saline for 4 wk. Fasting blood glucose and insulin and the expression of podocin, nephrin, phosphoinositide 3-kinase (PI3K), glucose transporter type (Glut4), and microtubule-associated protein 1A/1B-light chain 3 (LC3) were assayed. Glomerular morphology and podocyte foot structure were evaluated by periodic acid-Schiff staining and electron microscopy. Podocytes were treated with 150 nM GLP-1 and incubated with 400 μM palmitic acid (PA) for 12 h. The effect on autophagy was assessed by podocyte-specific Glut4 siRNA. Insulin resistance and autophagy were assayed by immunofluorescence and Western blotting. The high-fat diet resulted in weight gain, ectopic glomerular lipid accumulation, increased insulin resistance, and fusion of podophyte foot processes. The decreased translocation of Glut4 to the plasma membrane and excess autophagy seen in mice fed a high-fat diet and in PA-treated cultured podocytes were attenuated by GLP-1. Podocyte-specific Glut4 siRNA promoted autophagy, and rapamycin-enhanced autophagy worsened the podocyte injury caused by PA. Excess autophagy in podocytes was induced by inhibition of Glut4 translocation to the plasma membrane and was involved in the pathology of ORG. GLP-1 restored insulin sensitivity and ameliorated renal injury by decreasing the level of autophagy.

    Topics: Animals; Autophagy; Blood Glucose; Cell Line; Cytoprotection; Diet, High-Fat; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose Transporter Type 4; Insulin; Insulin Resistance; Kidney Diseases; Male; Mice, Inbred C57BL; Obesity; Palmitic Acid; Podocytes; Protein Transport; Signal Transduction; Sirolimus

2018
Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis.
    Neurogastroenterology and motility, 2018, Volume: 30, Issue:5

    Traumatic brain injury (TBI) is a common occurrence following gastrointestinal dysfunction. Recently, more and more attentions are being focused on gut microbiota in brain and behavior. Glucagon-like peptide-1 (GLP-1) is considered as a mediator that links the gut-brain axis. The aim of this study was to explore the neuroprotective effects of Clostridium butyricum (Cb) on brain damage in a mouse model of TBI.. Male C57BL/6 mice were subjected to a model of TBI-induced by weight-drop impact head injury and were treated intragastrically with Cb. The cognitive deficits, brain water content, neuronal death, and blood-brain barrier (BBB) permeability were evaluated. The expression of tight junction (TJ) proteins, Bcl-2, Bax, GLP-1 receptor (GLP-1R), and phosphorylation of Akt (p-Akt) in the brain were also measured. Moreover, the intestinal barrier permeability, the expression of TJ protein and GLP-1, and IL-6 level in the intestine were detected.. Cb treatment significantly improved neurological dysfunction, brain edema, neurodegeneration, and BBB impairment. Meanwhile, Cb treatment also significantly increased the expression of TJ proteins (occludin and zonula occluden-1), p-Akt and Bcl-2, but decreased expression of Bax. Moreover, Cb treatment exhibited more prominent effects on decreasing the levels of plasma d-lactate and colonic IL-6, upregulating expression of Occludin, and protecting intestinal barrier integrity. Furthermore, Cb-treated mice showed increased the secretion of intestinal GLP-1 and upregulated expression of cerebral GLP-1R.. Our findings demonstrated the neuroprotective effect of Cb in TBI mice and the involved mechanisms were partially attributed to the elevating GLP-1 secretion through the gut-brain axis.

    Topics: Animals; Apoptosis; Brain; Brain Injuries, Traumatic; Clostridium butyricum; Colon; Disease Models, Animal; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Neurons; Neuroprotective Agents; Recovery of Function

2018
Sitagliptin improved glucose assimilation in detriment of fatty-acid utilization in experimental type-II diabetes: role of GLP-1 isoforms in Glut4 receptor trafficking.
    Cardiovascular diabetology, 2018, 01-11, Volume: 17, Issue:1

    The distribution of glucose and fatty-acid transporters in the heart is crucial for energy consecution and myocardial function. In this sense, the glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, improves glucose homeostasis but it could also trigger direct cardioprotective actions, including regulation of energy substrate utilization.. Type-II diabetic GK (Goto-Kakizaki), sitagliptin-treated GK (10 mg/kg/day) and wistar rats (n = 10, each) underwent echocardiographic evaluation, and positron emission tomography scanning for [. Besides of its anti-hyperglycemic effect, sitagliptin-enhanced GLP-1 may ameliorate diastolic dysfunction in type-II diabetes by shifting fatty acid to glucose utilization in the cardiomyocyte, and thus, improving cardiac efficiency and reducing lipolysis.

    Topics: Animals; Blood Glucose; Cells, Cultured; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Energy Metabolism; Fatty Acids; Glucagon-Like Peptide 1; Glucose Transporter Type 4; Incretins; Male; Mice; Myocytes, Cardiac; Protein Transport; Rats, Wistar; Signal Transduction; Sitagliptin Phosphate

2018
Diet switch and omega-3 hydroxy-fatty acids display differential hepatoprotective effects in an obesity/nonalcoholic fatty liver disease model in mice.
    World journal of gastroenterology, 2018, Jan-28, Volume: 24, Issue:4

    To study the effect of 18-hydroxy-eicosapentaenoic acid (18-HEPE) and 17-hydroxy-docosahexaenoic acid (17-HDHA) in a murine model of obesity/nonalcoholic fatty liver disease.. C57BL/6 mice were fed with standard chow diet (CD) or high-fat, fructose-enriched diet (HFD) for 16 wk. Then, three groups were treated for 14 d with either, diet switch (HFD for CD), 18-HEPE, or 17-HDHA. Weight and fasting glucose were recorded on a weekly basis. Insulin tolerance test was performed at the end of treatment. Histological analysis (HE and Masson's trichrome stain) and determination of serum insulin, glucagon, glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide, adiponectin and resistin were carried out as well as liver proteins by western blot.. Mice treated with hydroxy-fatty acids 18-HEPE and 17-HDHA displayed no weight loss or improved insulin sensitivity. However, these mice groups showed a significant amelioration on serum GLP-1, adiponectin and resistin levels. Also, a significant reduction on inflammatory infiltrate was observed at both portal and lobular zones. Furthermore, up-regulation of PPARα/γ protein levels was observed in liver tissue and it was associated with decreased levels of NF-κB also determined by western blot analysis. On the other hand, diet switch regimen resulted in a marked improvement in most parameters including: weight loss, increased insulin sensitivity, decreased steatosis, restored levels of insulin, glucagon, leptin, adiponectin and resistin. However, no significant changes were observed regarding inflammatory infiltrate in this last group.. 18-HEPE and 17-HDHA differentially exert hepatoprotective effects through up-regulation of nuclear receptors PPARα/γ and amelioration of serum adipokines profile.

    Topics: Animals; Blood Glucose; Diet, High-Fat; Dietary Carbohydrates; Disease Models, Animal; Docosahexaenoic Acids; Eicosapentaenoic Acid; Fructose; Glucagon-Like Peptide 1; Humans; Liver; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Obesity; Protective Agents; Weight Loss

2018
Therapeutic Potential of Lentivirus-Mediated Glucagon-Like Peptide-1 Gene Therapy for Diabetes.
    Human gene therapy, 2018, Volume: 29, Issue:7

    Postprandial glucose-induced insulin secretion from the islets of Langerhans is facilitated by glucagon-like peptide-1 (GLP-1)-a metabolic hormone with insulinotropic properties. Among the variety of effects it mediates, GLP-1 induces delta cell secretion of somatostatin, inhibits alpha cell release of glucagon, reduces gastric emptying, and slows food intake. These events collectively contribute to weight loss over time. During type 2 diabetes (T2DM), however, the incretin response to glucose is reduced and accompanied by a moderate reduction in GLP-1 secretion. To compensate for the reduced incretin effect, a human immunodeficiency virus-based lentiviral vector was generated to deliver DNA encoding human GLP-1 (LentiGLP-1), and the anti-diabetic efficacy of LentiGLP-1 was tested in a high-fat diet/streptozotocin-induced model of T2DM. Therapeutic administration of LentiGLP-1 reduced blood glucose levels in obese diabetic Sprague Dawley rats, along with improving insulin sensitivity and glucose tolerance. Normoglycemia was correlated with increased blood GLP-1 and pancreatic beta cell regeneration in LentiGLP-1-treated rats. Plasma triglyceride levels were also normalized after LentiGLP-1 injection. Collectively, these data suggest the clinical potential of GLP-1 gene transfer therapy for the treatment of T2DM.

    Topics: Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Genetic Therapy; Glucagon-Like Peptide 1; Glucose; Humans; Incretins; Insulin; Islets of Langerhans; Lentivirus; Obesity; Rats

2018
Linagliptin potentiates the effect of l-dopa on the behavioural, biochemical and immunohistochemical changes in experimentally-induced Parkinsonism: Role of toll-like receptor 4, TGF-β1, NF-κB and glucagon-like peptide 1.
    Physiology & behavior, 2018, 05-01, Volume: 188

    Our aim was to assess the effect of different doses of linagliptin with or without l-dopa/Carbidopa on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in mice.. Eighty Balb/c mice were divided into 8 equal groups: Control; MPTP; MPTP + l-dopa/Carbidopa; MPTP + linagliptin 3 mg/kg/day; MPTP + linagliptin 10 mg/kg/day; MPTP + Carboxymethyl cellulose; MPTP + l-dopa/Carbidopa + linagliptin 3 mg/kg/day and MPTP + l-dopa/Carbidopa + linagliptin 10 mg/kg/day. Striatal dopamine, tumor necrosis factor alpha (TNF-α), interleukin 10 (IL-10), transforming growth factor beta 1 (TGF-β1), toll-like receptor 4 (TLR4), antioxidant enzymes, adenosine triphosphate (ATP), glucagon-like peptide-1 (GLP-1), receptors of advanced glycation end products (RAGE), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), mitochondrial complex I activity, catalepsy and total swim scores were measured. Also, the substantia nigra was subjected to immunohistochemical examination.. The combination of l-dopa/Carbidopa and linagliptin in a dose-dependent manner resulted in significant improvement of the behavioural changes, striatal dopamine, antioxidant parameters, Nrf2/HO-1 content, GLP-1, ATP and mitochondrial complex I activity with significant decrease in striatal RAGE, TGF-β1, TNF-α, IL-10, TLR4 and alleviated the immunohistochemical changes better than the groups that received either l-dopa/Carbidopa or linagliptin alone.. The combination of l-dopa/Carbidopa and linagliptin might represent a promising therapeutic modality for management of parkinsonism.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Antiparkinson Agents; Carbidopa; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Combinations; Drug Synergism; Glucagon-Like Peptide 1; Levodopa; Linagliptin; Mice; Mice, Inbred BALB C; NF-kappa B; Parkinsonian Disorders; Toll-Like Receptor 4; Transforming Growth Factor beta1

2018
GLP-1 Improves Diastolic Function and Survival in Heart Failure with Preserved Ejection Fraction.
    Journal of cardiovascular translational research, 2018, Volume: 11, Issue:3

    Heart failure with preserved ejection fraction (HFpEF) has emerged as a public health burden with currently no effective medication. We assessed the treatment effects of the incretin hormone glucagon-like peptide-1 (GLP-1) on cardiac metabolism and function in a model of HFpEF. Following aortic banding, rats developed HFpEF characterized by diastolic dysfunction, pulmonary congestion, and poor survival (38%). A 4-week GLP-1 treatment via osmotic pumps significantly improved survival (70%) and reduced left ventricular stiffness, diastolic dysfunction, and pulmonary congestion. Isolated heart perfusion revealed preserved cardiac glucose oxidation (GO) and a shift in cardiac substrate utilization towards GO. While GLP-1 may boost insulin secretion and responsiveness, the protective effects were not related to cardiac insulin action. GLP-1 improves diastolic function and survival in rats with HFpEF, which was associated with a cardiac substrate switch towards GO. The therapeutic role of GLP-1 in HFpEF is new and warrants further investigation.

    Topics: Animals; Cardiotonic Agents; Diastole; Disease Models, Animal; Energy Metabolism; Glucagon-Like Peptide 1; Glucose; Heart Failure; Isolated Heart Preparation; Male; Myocardium; Oxidation-Reduction; Peptide Fragments; Pulmonary Edema; Rats, Sprague-Dawley; Recovery of Function; Stroke Volume; Ventricular Function, Left

2018
A novel GLP-1/GIP/Gcg triagonist reduces cognitive deficits and pathology in the 3xTg mouse model of Alzheimer's disease.
    Hippocampus, 2018, Volume: 28, Issue:5

    Topics: Alzheimer Disease; Animals; Blood Glucose; Body Weight; Cognition Disorders; Disease Models, Animal; Female; Gene Expression; Glucagon-Like Peptide 1; Hippocampus; Long-Term Potentiation; Male; Memory; Mice, Inbred C57BL; Mice, Transgenic; Neuroprotective Agents; Nootropic Agents; Receptors, Gastrointestinal Hormone; Receptors, Glucagon

2018
Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism.
    Hepatology (Baltimore, Md.), 2018, Volume: 68, Issue:4

    Bile acids activate farnesoid X receptor (FXR) and G protein-coupled bile acid receptor-1 (aka Takeda G protein-coupled receptor-5 [TGR5]) to regulate bile acid metabolism and glucose and insulin sensitivity. FXR and TGR5 are coexpressed in the enteroendocrine L cells, but their roles in integrated regulation of metabolism are not completely understood. We reported recently that activation of FXR induces TGR5 to stimulate glucagon-like peptide-1 (GLP-1) secretion to improve insulin sensitivity and hepatic metabolism. In this study, we used the intestine-restricted FXR agonist fexaramine (FEX) to study the effect of activation of intestinal FXR on the gut microbiome, bile acid metabolism, and FXR and TGR5 signaling. The current study revealed that FEX markedly increased taurolithocholic acid, increased secretion of fibroblast growth factors 15 and 21 and GLP-1, improved insulin and glucose tolerance, and promoted white adipose tissue browning in mice. Analysis of 16S ribosomal RNA sequences of the gut microbiome identified the FEX-induced and lithocholic acid-producing bacteria Acetatifactor and Bacteroides. Antibiotic treatment completely reversed the FEX-induced metabolic phenotypes and inhibited taurolithocholic acid synthesis, adipose tissue browning, and liver bile acid synthesis gene expression but further increased intestinal FXR target gene expression. FEX treatment effectively improved lipid profiles, increased GLP-1 secretion, improved glucose and insulin tolerance, and promoted adipose tissue browning, while antibiotic treatment reversed the beneficial metabolic effects of FEX in obese and diabetic mice.. This study uncovered a mechanism in which activation of intestinal FXR shaped the gut microbiota to activate TGR5/GLP-1 signaling to improve hepatic glucose and insulin sensitivity and increase adipose tissue browning; the gut microbiota plays a critical role in bile acid metabolism and signaling to regulate metabolic homeostasis in health and disease. (Hepatology 2018).

    Topics: Animals; Bile Acids and Salts; Disease Models, Animal; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; GTP-Binding Proteins; Lipid Metabolism; Male; Mice; Mice, Inbred C57BL; Random Allocation; Receptors, Cytoplasmic and Nuclear; Receptors, G-Protein-Coupled; Sensitivity and Specificity; Signal Transduction

2018
Endogenous GLP-1 in lateral septum contributes to stress-induced hypophagia.
    Physiology & behavior, 2018, 08-01, Volume: 192

    Glucagon-like peptide 1 (GLP-1) neurons of the caudal brainstem project to many brain areas, including the lateral septum (LS), which has a known role in stress responses. Previously, we showed that endogenous GLP-1 in the LS plays a physiologic role in the control of feeding under non-stressed conditions, however, central GLP-1 is also involved in behavioral and endocrine responses to stress. Here, we asked whether LS GLP-1 receptors (GLP-1R) contribute to stress-induced hypophagia. Male rats were implanted with bilateral cannulas targeting the dorsal subregion of the LS (dLS). In a within-subjects design, shortly before the onset of the dark phase, rats received dLS injections of saline or the GLP-1R antagonist Exendin (9-39) (Ex9) prior to 30 min restraint stress. Food intake was measured continuously for the next 20 h. The stress-induced hypophagia observed within the first 30 min of dark was not influenced by Ex9 pretreatment, but Ex9 tended to blunt the effect of stress as early as 1 and 2 h into the dark phase. By 4-6 h, there were significant stress X drug interactions, and Ex9 pretreatment blocked the stress-induced suppression of feeding. These effects were mediated entirely through changes in average meal size; stress suppressed meal size while dLS Ex9 attenuated this effect. Using a similar design, we examined the role of dLS GLP-1R in the neuroendocrine response to acute restraint stress. As expected, stress potently increased serum corticosterone, but blockade of dLS GLP-1Rs did not affect this response. Together, these data show that endogenous GLP-1 action in the dLS plays a role in some but not all of the physiologic responses to acute stress.

    Topics: Animals; Anorexia; Central Nervous System Agents; Corticosterone; Cross-Over Studies; Disease Models, Animal; Eating; Feeding Behavior; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Male; Peptide Fragments; Rats, Wistar; Restraint, Physical; Septum of Brain; Stress, Psychological

2018
DA5-CH, a novel GLP-1/GIP dual agonist, effectively ameliorates the cognitive impairments and pathology in the APP/PS1 mouse model of Alzheimer's disease.
    European journal of pharmacology, 2018, May-15, Volume: 827

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which there is no cure. The early primary symptom of AD is the decline of memory ability, which gradually develops into complete dementia. Type 2 diabetes mellitus (T2DM) is an important risk factor of AD; and mimetics of the incretin hormone GLP-1 developed to treat diabetes are being tested as a novel therapeutic strategy for AD. In the present study, we reported for the first time the neuroprotective effects of a novel GLP-1/GIP dual agonist DA5-CH that activates the incretin hormone GLP-1 and GIP receptors in the APP/PS1 transgenic AD mouse model. We found that: (1) DA5-CH administration effectively improved working-memory and long-term spatial memory of 9-month-old AD mice in Y-maze and Morris water maze tests; (2) DA5-CH also reduced hippocampal amyloid senile plaques and phosphorylated tau protein levels; (3) DA5-CH basically reversed the deficits in hippocampal late-phase long-term potentiation; (4) DA5-CH up-regulated the levels of p-PI3K and p-AKT growth factor kinases and prevented excessive activation of p-GSK3β in the hippocampus of APP/PS1 mice. Therefore, the neuroprotection of DA5-CH in alleviating cognitive impairments and pathological damages might be associated with the improvement of hippocampal synaptic plasticity and activation of the PI3K/AKT signaling pathway. We propose that DA5-CH may be beneficial for the treatment of AD patients, especially those with T2DM or hyperglycemia.

    Topics: Alzheimer Disease; Animals; Cognition; Cognitive Dysfunction; Disease Models, Animal; Female; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Male; Maze Learning; Memory, Short-Term; Mice; Mice, Transgenic; Peptides; Phosphorylation; Signal Transduction; tau Proteins

2018
Colesevelam attenuates cholestatic liver and bile duct injury in
    Gut, 2018, Volume: 67, Issue:9

    Interruption of the enterohepatic circulation of bile acids (BAs) may protect against BA-mediated cholestatic liver and bile duct injury. BA sequestrants are established to treat cholestatic pruritus, but their impact on the underlying cholestasis is still unclear. We aimed to explore the therapeutic effects and mechanisms of the BA sequestrant colesevelam in a mouse model of sclerosing cholangitis.. Colesevelam reduced serum liver enzymes, BAs and expression of proinflammatory and profibrogenic markers. Faecal BA profiling revealed increased levels of secondary BAs after resin treatment, while hepatic and biliary BA composition showed a shift towards more hydrophilic BAs. Colonic GLP-1 secretion, portal venous GLP-1 levels and intestinal messenger RNA expression of gut hormone. Colesevelam increases faecal BA excretion and enhances BA conversion towards secondary BAs, thereby stimulating secretion of GLP-1 from enteroendocrine L-cells and attenuates liver and bile duct injury in

    Topics: Animals; Anticholesteremic Agents; Bile Ducts; Cholangitis, Sclerosing; Cholestasis; Colesevelam Hydrochloride; Disease Models, Animal; Glucagon-Like Peptide 1; Homeostasis; Liver; Mice; Mice, Knockout; Treatment Outcome

2018
Enhanced Glucose Control Following Vertical Sleeve Gastrectomy Does Not Require a β-Cell Glucagon-Like Peptide 1 Receptor.
    Diabetes, 2018, Volume: 67, Issue:8

    Bariatric surgeries, including vertical sleeve gastrectomy (VSG), resolve diabetes in 40-50% of patients. Studies examining the molecular mechanisms underlying this effect have centered on the role of the insulinotropic glucagon-like peptide 1 (GLP-1), in great part because of the ∼10-fold rise in its circulating levels after surgery. However, there is currently debate over the role of direct β-cell signaling by GLP-1 to mediate improved glucose tolerance following surgery. In order to assess the importance of β-cell GLP-1 receptor (GLP-1R) for improving glucose control after VSG, a mouse model of this procedure was developed and combined with a genetically modified mouse line allowing an inducible, β-cell-specific

    Topics: Animals; Diet, High-Fat; Disease Models, Animal; Gastroplasty; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose Intolerance; Hypoglycemic Agents; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Male; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Obesity; Organ Specificity; Signal Transduction; Tissue Culture Techniques; Weight Loss

2018
The Impacts of Gastroileostomy Rat Model on Glucagon-like Peptide-1: a Promising Model to Control Type 2 Diabetes Mellitus.
    Obesity surgery, 2018, Volume: 28, Issue:10

    One of the new current treatment options for Diabetes Mellitus is about increasing glucagon-like peptide-1 (GLP-1) activity. GLP-1 with its incretin effect showed major role in glucose homeostasis. Gastroileostomy can increase GLP-1 secretion by rapid delivery of undigested food to the terminal ileum. We studied the early effects of a gastroileostomy on serum levels of GLP-1, glucose, and insulin in rats.. Gastroileostomies with side-to-side anastomosis were performed on 15 male New Zealand rats. Blood samples were obtained before and 1 week after the gastroileostomy.. Our results showed that the rats lost a lot of weight from start (330 ± 15 g) to the end (240 ± 25 g) of the experiment (p = 0.048). The data analysis showed that the gastroileostomy surgery elevates the level of GLP-1in plasma significantly (89.1852 vs. 177.440 respectively; p < 0.001) and caused a significant decrease in plasma glucose as well (92.00 and 66.29 mg/dL respectively; p < 0.001). However, the insulin state elevated after the surgery significantly (8.03 vs. 9.89; p < 0.001).. In this study, we showed the effectiveness of gastroileostomy treatment to decrease body weight and plasma glucose with increased GLP-1 in rats. This small rat model suggests the potential of this surgery to treat type 2 diabetes mellitus.

    Topics: Animals; Blood Glucose; Combined Modality Therapy; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Bypass; Glucagon-Like Peptide 1; Ileostomy; Incretins; Insulin; Male; Rats

2018
Inhibiting RHOA Signaling in Mice Increases Glucose Tolerance and Numbers of Enteroendocrine and Other Secretory Cells in the Intestine.
    Gastroenterology, 2018, Volume: 155, Issue:4

    Glucagon-like peptide 1 (GLP1) is produced by L cells in the intestine, and agonists of the GLP1 receptor are effective in the treatment of diabetes. Levels of GLP1 increase with numbers of L cells. Therefore, agents that increase numbers of L cell might be developed for treatment of diabetes. Ras homologue family member A (RhoA) signaling through Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and ROCK2) controls cell differentiation, but it is not clear whether this pathway regulates enteroendocrine differentiation in the intestinal epithelium. We investigated the effects of Y-27632, an inhibitor of ROCK1 and ROCK2, on L-cell differentiation.. We collected intestinal tissues from GLU-Venus, GPR41-RFP, and Neurog3-RFP mice, in which the endocrine lineage is fluorescently labeled, for in vitro culture and histologic analysis. Small intestine organoids derived from these mice were cultured with Y-27632 and we measured percentages of L cells, expression of intestinal cell-specific markers, and secretion of GLP1 in medium. Mice were fed a normal chow or a high-fat diet and given Y-27632 or saline (control) and blood samples were collected for measurement of GLP1, insulin, and glucose.. Incubation of intestinal organoids with Y-27632 increased numbers of L cells and secretion of GLP1. These increases were associated with upregulated expression of genes encoding intestinal hormones, neurogenin 3, neurogenic differentiation factor 1, forkhead box A1 and A2, and additional markers of secretory cells. Mice fed the normal chow diet and given Y-27632 had increased numbers of L cells in intestinal tissues, increased plasma levels of GLP1 and insulin, and lower blood levels of glucose compared with mice fed the normal chow diet and given saline. In mice with insulin resistance induced by the high-fat diet, administration of Y-27632 increased secretion of GLP1 and glucose tolerance compared with administration of saline.. In mouse intestinal organoids, an inhibitor of RhoA signaling increased the differentiation of the secretory lineage and the development of enteroendocrine cells. Inhibitors of RhoA signaling or other strategies to increase numbers of L cells might be developed for treatment of patients with type 2 diabetes or for increasing glucose tolerance.

    Topics: Amides; Animals; Biomarkers; Blood Glucose; Cell Differentiation; Cell Lineage; Cell Proliferation; Diet, High-Fat; Disease Models, Animal; Enteroendocrine Cells; Glucagon-Like Peptide 1; Glucose Intolerance; Hypoglycemic Agents; Ileum; Insulin; Insulin Resistance; Male; Mice, Inbred C57BL; Mice, Transgenic; Organoids; Phenotype; Protein Kinase Inhibitors; Pyridines; rho GTP-Binding Proteins; rho-Associated Kinases; rhoA GTP-Binding Protein; Signal Transduction; Stem Cells; Time Factors; Tissue Culture Techniques

2018
Clostridium butyricum Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-Like Behavior in Mice via the Gut-Brain Axis.
    Journal of agricultural and food chemistry, 2018, Aug-08, Volume: 66, Issue:31

    Abnormal gut microbiome has been associated with depression. The mechanism of probiotics against depression remains unclear. This study aimed to determine whether Clostridium butyricum (Cb) could attenuate chronic unpredictable mild stress-induced depressive-like behavior and its possible mechanisms. Male C57BL/6 mice were subjected to chronic unpredictable mild stress (CUMS) and were treated with Cb. Depressive-like behavior was evaluated by a series of behavioral tests. The levels of cerebral 5-hydroxytryptamine (5-HT), brain derived neurotrophic factor (BDNF), glucagon-like peptide-1 (GLP-1) receptor and intestinal were measured. Cb treatment significantly improved CUMS-induced depressive-like behavior in mice. Meanwhile, Cb treatment exhibited prominent effects, increasing 5-HT and GLP-1 and upregulating BDNF expression. Furthermore, Cb-treated mice showed increased secretion of GLP-1 and upregulated GLP-1R expression. Taken together, our results demonstrate an antidepressive effect of Cb in CUMS mice partially attributed to stimulation of intestinal GLP-1 secretion and activation of cerebral GLP-1R.

    Topics: Animals; Behavior, Animal; Brain; Brain Chemistry; Brain-Derived Neurotrophic Factor; Clostridium butyricum; Depression; Disease Models, Animal; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Intestinal Mucosa; Male; Mice; Mice, Inbred C57BL; Probiotics; Serotonin; Stress, Psychological

2018
Anti-angiogenic effects of the DPP-4 inhibitor linagliptin via inhibition of VEGFR signalling in the mouse model of oxygen-induced retinopathy.
    Diabetologia, 2018, Volume: 61, Issue:11

    Linagliptin has protective effects on the retinal neurovascular unit but, in proliferative retinopathy, dipeptidyl peptidase 4 (DPP-4) inhibition could be detrimental. The aim of this study was to assess the effect of linagliptin on ischaemia-induced neovascularisation of the retina.. Systemic treatment with linagliptin demonstrated GLP-1R-independent anti-angiogenic effects mediated by an inhibition of VEGF receptor downstream signalling. The specific effects of linagliptin on diabetic retinopathy are of potential benefit for individuals with diabetes, independent of metabolic effects.

    Topics: Animals; Diabetic Retinopathy; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Human Umbilical Vein Endothelial Cells; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Linagliptin; Male; Mice; Mice, Inbred C57BL; Oxygen; Retina; Retinal Neovascularization; Signal Transduction; Vascular Endothelial Growth Factor A

2018
Sitagliptin attenuates myocardial apoptosis via activating LKB-1/AMPK/Akt pathway and suppressing the activity of GSK-3β and p38α/MAPK in a rat model of diabetic cardiomyopathy.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2018, Volume: 107

    The present study aimed to investigate the protective effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on diabetic cardiomyopathy (DCM)-associated apoptosis and if this effect is mediated via modulating the activity of the survival kinases; AMP-activated protein kinase (AMPK) and Akt & the apoptotic kinases; glycogen synthase kinase-3 β (GSK-3β) and p38 mitogen-activated protein kinase (p38MAPK). Diabetes was induced by a single intraperitoneal injection of streptozotocin (55 mg/kg). Diabetic rats were treated with sitagliptin (10 mg/kg/day, p.o.) and metformin (200 mg/kg/day, p.o. as positive control) for six weeks. Chronic hyperglycemia resulted in elevation of serum cardiac biomarkers reflecting cardiac damage which was supported by H&E stain. The mRNA levels of collagen types I and III were augmented reflecting cardiac fibrosis and hypertrophy which was supported by Masson trichome stain and enhanced phosphorylation of p38MAPK. Cardiac protein levels of cleaved casapse-3, BAX were elevated, whereas, the levels of Bcl-2 and p-BAD were reduced indicating cardiac apoptosis which could be attributed to the diabetes-induced reduced phosphorylation of Akt and AMPK with concomitant augmented activation of GSK-3β and p38MAPK. Protein levels of liver kinase B-1, the upstream kinase of AMPK were also supressed. Sitagliptin administration alleviated the decreased phosphorylation of AMPK and Akt, inactivated the GSK-3β and p38 AMPK, therefore, attenuating the apoptosis and hypertrophy induced by hyperglycemia in the diabetic heart. In conclusion, sitagliptin exhibits valuable therapeutic potential in the management of DCM by attenuating apoptosis. The underlying mechanism may involve the modulating activity of AMPK, Akt, GSK-3β and p38MAPK.

    Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Animals; Apoptosis; Biomarkers; Blood Glucose; Body Weight; Collagen; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Disease Models, Animal; Fatty Acids; Glucagon-Like Peptide 1; Glycogen Synthase Kinase 3 beta; Male; Metformin; Mitogen-Activated Protein Kinase 14; Myocardium; Organ Size; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-akt; Rats, Wistar; RNA, Messenger; Signal Transduction; Sitagliptin Phosphate

2018
Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits.
    Molecular metabolism, 2018, Volume: 16

    Extracts of the hops plant have been shown to reduce weight and insulin resistance in rodents and humans, but elucidation of the mechanisms responsible for these benefits has been hindered by the use of heterogeneous hops-derived mixtures. Because hop extracts are used as flavoring agents for their bitter properties, we hypothesized that bitter taste receptors (Tas2rs) could be mediating their beneficial effects in metabolic disease. Studies have shown that exposure of cultured enteroendocrine cells to bitter tastants can stimulate release of hormones, including glucagon-like peptide 1 (GLP-1). These findings have led to the suggestion that activation of Tas2rs may be of benefit in diabetes, but this tenet has not been tested. Here, we have assessed the ability of a pure derivative of a hops isohumulone with anti-diabetic properties, KDT501, to signal through Tas2rs. We have further used this compound as a tool to systematically assess the impact of bitter taste receptor activation in obesity-diabetes.. KDT501 was tested in a panel of bitter taste receptor signaling assays. Diet-induced obese mice (DIO) were dosed orally with KDT501 and acute effects on glucose homeostasis determined. A wide range of metabolic parameters were evaluated in DIO mice chronically treated with KDT501 to establish the full impact of activating gut bitter taste signaling.. We show that KDT501 signals through Tas2r108, one of 35 mouse Tas2rs. In DIO mice, acute treatment stimulated GLP-1 secretion and enhanced glucose tolerance. Chronic treatment caused weight and fat mass loss, increased energy expenditure, enhanced glucose tolerance and insulin sensitivity, normalized plasma lipids, and induced broad suppression of inflammatory markers. Chronic KDT501 treatment altered enteroendocrine hormone levels and bile acid homeostasis and stimulated sustained GLP-1 release. Combined treatment with a dipeptidyl peptidase IV inhibitor amplified the incretin-based benefits of this pure isohumulone.. Activation of Tas2r108 in the gut results in a remodeling of enteroendocrine hormone release and bile acid metabolism that ameliorates multiple features of metabolic syndrome. Targeting extraoral bitter taste receptors may be useful in metabolic disease.

    Topics: Animals; Body Weight; Cyclopentanes; Diabetes Mellitus, Type 2; Disease Models, Animal; Enteroendocrine Cells; Glucagon-Like Peptide 1; Humulus; Hypoglycemic Agents; Insulin Resistance; Intestinal Mucosa; Intestines; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Receptors, G-Protein-Coupled; Signal Transduction

2018
Novel Potentials of the DPP-4 Inhibitor Sitagliptin against Ischemia-Reperfusion (I/R) Injury in Rat Ex-Vivo Heart Model.
    International journal of molecular sciences, 2018, Oct-18, Volume: 19, Issue:10

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral anti-diabetic drugs, implicated in pleiotropic secondary cardioprotective effects. The aim of the study was to unveil the unknown and possible cardioprotective targets that can be exerted by sitagliptin (Sitg) against ischemia-reperfusion (I/R) injury. Male wistar rats received 2 weeks' Sitg oral treatment of different doses (25, 50, 100, and 150 mg/kg/day), or saline as a Control. Hearts were then isolated and subjected to two different I/R injury protocols: 10 min perfusion, 45 min regional ischemia, and 120 min reperfusion for infarct size (IS) measurement, or: 10 min perfusion, 45 min regional ischemia and 10 min reperfusion for biochemical analysis: nitric oxide synthases (NOSs) and DPP-4 activity, glucagon-like peptide-1 (GLP-1), Calcium, transient receptor potential vanilloid (TRPV)-1 and calcitonin gene-related peptide (CGRP) levels, transient receptor potential canonical (TRPC)-1 and e-NOS protein expression. NOS inhibitor (L-NAME) and TRPV-1 inhibitor (Capsazepine) were utilized to confirm the implication of both signaling mechanisms in DPP-4 inhibition-induced at the level of IS. Findings show that Sitg (50 mg) resulted in significant decrease in IS and DPP-4 activity, and significant increase in GLP-1, NOS activity, e-NOS expression, TRPV-1 level and TRPC-1 expression, compared to controls. Results of CGRP are in line with TRPV-1, as a downstream regulatory effect. NOS system and transient receptor potential (TRP) channels can contribute to DPP-4 inhibition-mediated cardioprotection against I/R injury using Sitagliptin.

    Topics: Animals; Biomarkers; Calcium; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Male; Myocardial Reperfusion Injury; Myocardium; Nitric Oxide Synthase Type III; Protective Agents; Rats; Receptors, Calcitonin Gene-Related Peptide; Sitagliptin Phosphate; TRPV Cation Channels

2018
Differential Effects of a Glucagon-Like Peptide 1 Receptor Agonist in Non-Alcoholic Fatty Liver Disease and in Response to Hepatectomy.
    Scientific reports, 2018, 11-07, Volume: 8, Issue:1

    Non-alcoholic fatty liver disease (NAFLD) is associated with post-operative liver failure (PLF) and impaired liver regeneration. We investigated the effects of a glucagon-like peptide-1 (GLP-1) receptor agonist on NAFLD, PLF and liver regeneration in mice fed chow diet or methionine/choline-deficient diet (MCD) or high fat diet (HFD). Fc-GLP-1 decreased transaminases, reduced intrahepatic triglycerides (TG) and improved MCD-induced liver dysfuction. Macrophage/Kupffer cell-related markers were also reduced although Fc-GLP-1 increased expression of genes related to natural killer (NK), cytotoxic T lymphocytes and hepatic stellate cell (HSC) activation. After partial hepatectomy (PH), survival rates increased in mice receiving Fc-GLP-1 on chow or MCD diet. However, the benefit of Fc-GLP-1 on NASH-like features was attenuated 2 weeks post-PH and liver mass restoration was not improved. At this time-period, markers of NK cells and cytotoxic T lymphocytes were further elevated in Fc-GLP-1 treated mice. Increased HSC related gene expression in livers was observed together with decreased retinyl ester content and increased retinal and retinoic acid, reflecting HSC activation. Similar effects were found in mice fed HFD receiving Fc-GLP-1. Our results shed light on the differential effects of a long-acting GLP-1R agonist in improving NAFLD and PLF, but not enhancing liver regeneration in mice.

    Topics: Animals; Biomarkers; Biopsy; Disease Models, Animal; Gene Expression; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hepatectomy; Hepatic Stellate Cells; Immunohistochemistry; Inflammation Mediators; Liver; Liver Regeneration; Mice; Non-alcoholic Fatty Liver Disease

2018
Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression.
    Experimental & molecular medicine, 2018, 12-03, Volume: 50, Issue:12

    Glucagon-like peptide-1 (GLP-1) has a broad spectrum of biological activity by regulating metabolic processes via both the direct activation of the class B family of G protein-coupled receptors and indirect nonreceptor-mediated pathways. GLP-1 receptor (GLP-1R) agonists have significant therapeutic effects on non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. However, clinical studies indicated that GLP-1 treatment had little effect on hepatic steatosis in some NAFLD patients, suggesting that GLP-1 resistance may occur in these patients. It is well-known that the gut metabolite sodium butyrate (NaB) could promote GLP-1 secretion from intestinal L cells. However, it is unclear whether NaB improves hepatic GLP-1 responsiveness in NAFLD. In the current study, we showed that the serum GLP-1 levels of NAFLD patients were similar to those of normal controls, but hepatic GLP-1R expression was significantly downregulated in NAFLD patients. Similarly, in the NAFLD mouse model, mice fed with a high-fat diet showed reduced hepatic GLP-1R expression, which was reversed by NaB treatment and accompanied by markedly alleviated liver steatosis. In addition, NaB treatment also upregulated the hepatic p-AMPK/p-ACC and insulin receptor/insulin receptor substrate-1 expression levels. Furthermore, NaB-enhanced GLP-1R expression in HepG2 cells by inhibiting histone deacetylase-2 independent of GPR43/GPR109a. These results indicate that NaB is able to prevent the progression of NAFL to NASH via promoting hepatic GLP-1R expression. NaB is a GLP-1 sensitizer and represents a potential therapeutic adjuvant to prevent NAFL progression to NASH.

    Topics: Adult; Animals; Butyric Acid; Diet, High-Fat; Disease Models, Animal; Disease Progression; Down-Regulation; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hep G2 Cells; Humans; Intestines; Liver; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease

2018
Effect of miglitol on the suppression of nonalcoholic steatohepatitis development and improvement of the gut environment in a rodent model.
    Journal of gastroenterology, 2017, Volume: 52, Issue:11

    The gut environment has been considered to play a role in the development of nonalcoholic steatohepatitis (NASH). α-glucosidase inhibitors (α-GIs) delay carbohydrate absorption and may change the gut environment. We considered that the protective effect of α-GIs against NASH development is related to changes in the gut environment and thus investigated the effects of miglitol, an α-GI, on NASH development and the gut environment.. Mice were divided into three groups and fed a normal chow diet (NCD), a high-fat high-sucrose diet (HFHSD), or HFHSD plus 0.04% miglitol (HFHSD plus M) for 12 weeks.. Insulin resistance developed more in the HFHSD group than in the NCD group, whereas it was suppressed in the HFHSD plus M group. NASH was evaluated histologically, biochemically, and on the basis of messenger RNA expression levels. Miglitol treatment suppressed HFHSD-induced NASH development with the suppression of hepatic Toll-like receptor 4 expression, increased glucagon-like peptide 1 (GLP-1) concentration, and reduced lipopolysaccharide concentration in portal plasma. Regarding the gut environment, the intestinal transit time was shortened and colon inflammation was suppressed in the HFHSD plus M group compared with the HFHSD group. Regarding the gut microbiota, the abundances of Erysipelotrichaceae and Coriobacteriaceae were increased in the HFHSD group compared with the NCD group, whereas the increase was suppressed in the HFHSD plus M group.. We demonstrated that miglitol has a protective effect against HFHSD-induced NASH development. The increased GLP-1 secretion and the suppression of endotoxemia, associated with the changes in the gut environment, including the gut microbiota, could contribute to the underlying mechanisms.

    Topics: 1-Deoxynojirimycin; Animals; Diet, High-Fat; Disease Models, Animal; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glycoside Hydrolase Inhibitors; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease

2017
Pancreas and liver uptake of new radiolabeled incretins (GLP-1 and Exendin-4) in models of diet-induced and diet-restricted obesity.
    Nuclear medicine and biology, 2017, Volume: 49

    Radiolabeled GLP-1 and its analog Exendin-4, have been employed in diabetes and insulinoma. No protocol in conventional Diet-Induced Obesity (DIO), and Diet-Restricted Obesity (DRO), has been identified. Aiming to assess pancreatic beta cell uptake in DIO and DRO, a protocol was designed.. GLP-1-βAla-HYNIC and HYNIC-βAla-Exendin-4 were labeled with technetium-99m. Four Swiss mouse models were adopted: Controls (C), Alloxan Diabetes Controls (ADC), DIO and DRO. Biodistribution and ex-vivo planar imaging were documented.. Radiolabeling yield was in the range of 97% and both agents were hydrophilic. Fasting Blood Glucose (FBG) was 79.2±8.2mg/dl in C, 590.4±23.3mg/dl in ADC, 234.3±66.7mg/dl in DIO, and 96.6±9.3 in DRO (p=0.010). Biodistribution confirmed predominantly urinary excretion. DIO mice exhibited depressed uptake in liver and pancreas, for both radiomarkers, in the range of ADC. DRO only partially restored such values.. 1) Diet-induced obesity remarkably depressed beta cell uptake; 2) Restriction of obesity failed to normalize uptake, despite robust improvement of FBG; 3) HYNIC-βAla-Exendin-4 was the most useful marker; 4) Further studies are recommended in obesity and dieting, including bariatric surgery.

    Topics: Amino Acid Sequence; Animals; Biological Transport; Diet; Disease Models, Animal; Exenatide; Female; Glucagon-Like Peptide 1; Isotope Labeling; Liver; Mice; Obesity; Pancreas; Peptides; Tissue Distribution; Venoms

2017
Daily supplementation of dietary protein improves the metabolic effects of GLP-1-based pharmacotherapy in lean and obese rats.
    Physiology & behavior, 2017, Aug-01, Volume: 177

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone released from intestinal L-cells in response to food entering into the gastrointestinal tract. GLP-1-based pharmaceuticals improve blood glucose regulation and reduce feeding. Specific macronutrients, when ingested, may trigger GLP-1 secretion and enhance the effects of systemic sitagliptin, a pharmacological inhibitor of DPP-IV (an enzyme that rapidly degrades GLP-1). In particular, macronutrient constituents found in dairy foods may act as potent secretagogues for GLP-1, and acute preclinical trials show that ingestion of dairy protein may represent a promising adjunct behavioral therapy in combination with sitagliptin. To test this hypothesis further, chow-maintained or high-fat diet (HFD)-induced obese rats received daily IP injections of sitagliptin (6mg/kg) or saline in combination with a twice-daily 8ml oral gavage of milk protein concentrate (MPC; 80/20% casein/whey; 0.5kcal/ml), soy protein (non-dairy control; 0.5kcal/ml) or 0.9% NaCl for two months. Food intake and body weight were recorded every 24-48h; blood glucose regulation was examined at baseline and at 3 and 6.5weeks via a 2h oral glucose tolerance test (OGTT; 25% glucose; 2g/kg). MPC and soy protein significantly suppressed cumulative caloric intake in HFD but not chow-maintained rats. AUC analyses for OGTT show suppression in glycemia by sitagliptin with MPC or soy in chow- and HFD-maintained rats, suggesting that chronic ingestion of dairy or soy proteins may augment endogenous GLP-1 signaling and the glycemic- and food intake-suppressive effects of DPP-IV inhibition.

    Topics: Animal Feed; Animals; Anti-Obesity Agents; Diet, High-Fat; Dietary Proteins; Dietary Supplements; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Energy Intake; Glucagon-Like Peptide 1; Glucose Tolerance Test; Male; Obesity; Rats, Sprague-Dawley; Sitagliptin Phosphate

2017
Increased β-Cell Mass in Obese Rats after Gastric Bypass: A Potential Mechanism for Improving Glycemic Control.
    Medical science monitor : international medical journal of experimental and clinical research, 2017, May-06, Volume: 23

    BACKGROUND Over the past few decades, bariatric surgery, especially Roux-en-Y gastric bypass (RYGB), has become widely considered the most effective treatment for morbid obesity. In most cases, it results in enhanced glucose management in patients with obesity and type 2 diabetes (T2D), which is observed before significant weight loss. However, what accounts for this effect remains controversial. To gain insight into the benefits of RYGB in T2D, we investigated changes in the β-cell mass of obese rats following RYGB. MATERIAL AND METHODS RYGB or a sham operation was performed on obese rats that had been fed a high-fat diet (HFD) for 16 weeks. Then, the HFD was continued for 8 weeks in both groups. Additional normal chow diet (NCD) and obese groups were used as controls. RESULTS In the present study, RYGB induced improved glycemic control and enhanced β-cell function, which was reflected in a better glucose tolerance and a rapidly increased secretion of insulin and C-peptide after glucose administration. Consistently, rats in the RYGB group displayed increased β-cell mass and islet numbers, which were attributed in part to increased glucagon-like peptide 1 levels following RYGB. CONCLUSIONS Our data indicate that RYGB can improve b-cell function via increasing β-cell mass, which plays a key role in improved glycemic control after RYGB.

    Topics: Animals; Bariatric Surgery; Blood Glucose; Body Mass Index; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Gastric Bypass; Glucagon-Like Peptide 1; Glucose; Glucose Tolerance Test; Insulin; Insulin Resistance; Insulin-Secreting Cells; Islets of Langerhans; Male; Obesity; Obesity, Morbid; Rats; Rats, Sprague-Dawley; Weight Loss

2017
Role of aquaporin-7 in ghrelin- and GLP-1-induced improvement of pancreatic β-cell function after sleeve gastrectomy in obese rats.
    International journal of obesity (2005), 2017, Volume: 41, Issue:9

    Glycerol is a key metabolite for lipid accumulation in insulin-sensitive tissues as well as for pancreatic insulin secretion. We examined the role of aquaporin-7 (AQP7), the main glycerol channel in β-cells, and AQP12, an aquaporin related to pancreatic damage, in the improvement of pancreatic function and steatosis after sleeve gastrectomy in diet-induced obese rats.. Male Wistar obese rats (n=125) were subjected to surgical (sham operation and sleeve gastrectomy) or dietary (pair-fed to the amount of food eaten by sleeve-gastrectomized animals) interventions. The tissue distribution and expression of AQPs in the rat pancreas were analyzed by real-time PCR, western blotting and immunohistochemistry. The effect of ghrelin isoforms and glucagon-like peptide 1 (GLP-1) on insulin secretion, triacylglycerol (TG) accumulation and AQP expression was determined in vitro in RIN-m5F β-cells.. Sleeve gastrectomy reduced pancreatic β-cell apoptosis, steatosis and insulin secretion. Lower ghrelin and higher GLP-1 concentrations were also found after bariatric surgery. Acylated and desacyl ghrelin increased TG content, whereas GLP-1 increased insulin release in RIN-m5F β-cells. Sleeve gastrectomy was associated with an upregulation of AQP7 together with a normalization of the increased AQP12 levels in the rat pancreas. Interestingly, ghrelin and GLP-1 repressed AQP7 and AQP12 expression in RIN-m5F β-cells. AQP7 protein was negatively correlated with intracellular lipid accumulation in acylated ghrelin-treated cells and with insulin release in GLP-1-stimulated β-cells.. AQP7 upregulation in β-cells after sleeve gastrectomy contributes, in part, to the improvement of pancreatic steatosis and insulin secretion by increasing intracellular glycerol used for insulin release triggered by GLP-1 rather than for ghrelin-induced TG biosynthesis.

    Topics: Animals; Aquaporins; Blotting, Western; Disease Models, Animal; Gastric Bypass; Ghrelin; Glucagon-Like Peptide 1; Immunohistochemistry; Insulin Resistance; Insulin-Secreting Cells; Male; Obesity; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Up-Regulation; Weight Loss

2017
Aripiprazole-induced adverse metabolic alterations in polyI:C neurodevelopmental model of schizophrenia in rats.
    Neuropharmacology, 2017, Sep-01, Volume: 123

    Schizophrenia appears to be linked to higher incidence of metabolic syndrome even in the absence of antipsychotic treatment. Atypical antipsychotics substantially differ in their propensity to induce metabolic alterations. Aripiprazole is considered to represent an antipsychotic drug with low risk of metabolic syndrome development. The aim of this study was to evaluate metabolic phenotype of neurodevelopmental polyI:C rat model and assess metabolic effects of chronic aripiprazole treatment with regard to complex neuroendocrine regulations of energy homeostasis. Polyinosinic:polycytidylic acid (polyI:C) was administered subcutaneously at a dose of 8 mg/kg in 10 ml on gestational day 15 to female Wistar rats. For this study 20 polyI:C and 20 control adult male offspring were used, randomly divided into 2 groups per 10 animals for chronic aripiprazole treatment and vehicle. Aripiprazole (5 mg/kg, dissolved tablets, ABILIFY

    Topics: Administration, Oral; Animals; Antipsychotic Agents; Aripiprazole; Body Weight; Cytokines; Disease Models, Animal; Ghrelin; Glucagon-Like Peptide 1; Leptin; Male; Metabolic Syndrome; Poly I-C; Random Allocation; Rats, Wistar; Schizophrenia

2017
Exogenous glucagon-like peptide-1 reduces body weight and cholecystokinin-8 enhances this reduction in diet-induced obese male rats.
    Physiology & behavior, 2017, Oct-01, Volume: 179

    The sites of action regulating meal size (MS) and intermeal interval (IMI) length by glucagon like peptide-1 (7-36) (GLP-1 (7-36)) and cholecystokinin-8 (CCK-8) reside in the areas supplied by the two major branches of the abdominal aorta, celiac and cranial mesenteric arteries. We hypothesized that infusing GLP-1 near those sites reduces body weight (BW) and adding CCK-8 to this infusion enhances the reduction. Here, we measured BW in diet-induced obese (DIO) male rats maintained and tested on normal rat chow and infused with saline, GLP-1 (0.5nmol/kg) and GLP-1+CCK-8 (0.5nmol/kg each) in the aorta once daily for 21days. We found that GLP-1 and GLP-1+CCK-8 decrease BW relative to saline vehicle and GLP-1+CCK-8 reduced it more than GLP-1 alone. Reduction of BW by GLP-1 alone was accompanied by decreased 24-h food intake, first MS, duration of first meal and number of meals, and an increase in latency to first meal. Reduction of BW by the combination of the peptides was accompanied by decrease 24-h food intake, first MS, duration of first meal and number of meals, and increase in the IMI length, satiety ratio and latency to first meal. In conclusion, GLP-1 reduces BW and CCK-8 enhances this reduction if the peptides are given near their sites of action.

    Topics: Animals; Anti-Obesity Agents; Aorta; Cholecystokinin; Diet, High-Fat; Disease Models, Animal; Drug Therapy, Combination; Eating; Feeding Behavior; Glucagon-Like Peptide 1; Male; Obesity; Peptide Fragments; Rats, Sprague-Dawley; Satiation; Time Factors; Weight Loss

2017
Dipeptidyl Peptidase-4 Regulates Hematopoietic Stem Cell Activation in Response to Chronic Stress.
    Journal of the American Heart Association, 2017, Jul-14, Volume: 6, Issue:7

    DPP4 (Dipeptidyl peptidase-4)-GLP-1 (glucagon-like peptide-1) and its receptor (GLP-1R) axis has been involved in several intracellular signaling pathways. The Adrβ3 (β3-adrenergic receptor)/CXCL12 (C-X-C motif chemokine 12) signal was required for the hematopoiesis. We investigated the novel molecular requirements between DPP4-GLP-1/GLP-1 and Adrβ3/CXCL12 signals in bone marrow (BM) hematopoietic stem cell (HSC) activation in response to chronic stress.. Male 8-week-old mice were subjected to 4-week intermittent restrain stress and orally treated with vehicle or the DPP4 inhibitor anagliptin (30 mg/kg per day). Control mice were left undisturbed. The stress increased the blood and brain DPP4 levels, the plasma epinephrine and norepinephrine levels, and the BM niche cell Adrβ3 expression, and it decreased the plasma GLP-1 levels and the brain GLP-1R and BM CXCL12 expressions. These changes were reversed by DPP4 inhibition. The stress activated BM sca-1. These findings suggest that DPP4 can regulate chronic stress-induced BM HSC activation and inflammatory cell production via an Adrβ3/CXCL12-dependent mechanism that is mediated by the GLP-1/GLP-1R axis, suggesting that the DPP4 inhibition or the GLP-1R stimulation may have applications for treating inflammatory diseases.

    Topics: Adrenergic beta-3 Receptor Antagonists; Animals; Brain; Cell Differentiation; Cell Proliferation; Chemokine CXCL12; Chronic Disease; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hematopoietic Stem Cells; Male; Mice, Inbred C57BL; Rats, Inbred F344; Rats, Transgenic; Receptors, Adrenergic, beta-3; Restraint, Physical; Signal Transduction; Stress, Psychological; Time Factors

2017
Exenatide mitigated diet-induced vascular aging and atherosclerotic plaque growth in ApoE-deficient mice under chronic stress.
    Atherosclerosis, 2017, Volume: 264

    Exposure to psychosocial stress is a risk factor for cardiovascular disorders. Because the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonist prevents cardiovascular injury, we investigated the beneficial effects and mechanism of the GLP-1 analogue exenatide on stress-related vascular senescence and atherosclerosis in apolipoprotein E-deficient (ApoE. ApoE. Chronic stress enhanced vascular endothelial senescence and atherosclerotic plaque growth. The stress increased the levels of plasma depeptidyl peptidase-4 activity and decreased the levels of plasma GLP-1 and both plasma and adipose adiponectin (APN). As compared with the mice subjected to stress alone, the exenatide-treated mice had decreased plaque microvessel density, macrophage accumulation, broken elastin, and enhanced plaque collagen volume, and lowered levels of peroxisome proliferator-activated receptor-α, gp91phox osteopontin, C-X-C chemokine receptor-4, toll-like receptor-2 (TLR2), TLR4, and cathepsins K, L, and S mRNAs and/or proteins. Exenatide reduced aortic matrix metalloproteinase-9 (MMP-9) and MMP-2 gene expression and activities. Exenatide also stimulated APN expression of preadipocytes and inhibited ox-low density lipoprotein-induced foam cell formation of monocytes in stressed mice.. These results indicate that the exenatide-mediated beneficial vascular actions are likely attributable, at least in part, to the enhancement of APN production and the attenuation of plaque oxidative stress, inflammation, and proteolysis in ApoE

    Topics: Adiponectin; Age Factors; Animals; Aorta; Aortic Diseases; Atherosclerosis; Cells, Cultured; Cellular Senescence; Chronic Disease; Diet, High-Fat; Dipeptidyl Peptidase 4; Disease Models, Animal; Endothelial Cells; Exenatide; Foam Cells; Genetic Predisposition to Disease; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Incretins; Inflammation Mediators; Male; Mice, Knockout, ApoE; Oxidative Stress; Peptide Hydrolases; Peptides; Phenotype; Plaque, Atherosclerotic; Proteolysis; Signal Transduction; Stress, Psychological; Venoms

2017
Modified human glucagon-like peptide-1 (GLP-1) produced in E. coli has a long-acting therapeutic effect in type 2 diabetic mice.
    PloS one, 2017, Volume: 12, Issue:7

    Glucagon-like peptide 1 (GLP-1) is a very potent insulinotropic hormone secreted into the blood stream after eating. Thus, it has potential to be used in therapeutic treatment of diabetes. The half-life of GLP-1, however, is very short due to its rapid cleavage by dipeptidyl peptidase IV (DPP-IV). This presents a great challenge if it is to be used as a therapeutic drug. GLP-1, like many other small peptides, is commonly produced through chemical synthesis, but is limited by cost and product quantity. In order to overcome these problems, a sequence encoding a six codon-optimized tandem repeats of modified GLP-1 was constructed and expressed in the E. coli to produce a protease-resistant protein, 6×mGLP-1. The purified recombinant 6×mGLP-1, with a yield of approximately 20 mg/L, could be digested with trypsin to obtain single peptides. The single mGLP-1 peptides significantly stimulated the proliferation of a mouse pancreatic β cell line, MIN6. The recombinant peptide also greatly improved the oral glucose tolerance test of mice, exerted a positive glucoregulatory effect, and most notably had a glucose lowering effect for as long as 16.7 hours in mice altered to create a type 2 diabetic condition and exerted a positive glucoregulatory effect in db/db mice. These results indicate that recombinant 6×mGLP-1 has great potential to be used as an effective and cost-efficient drug for the treatment of type 2 diabetes.

    Topics: Animals; Blood Glucose; Cell Proliferation; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Escherichia coli; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Insulin-Secreting Cells; Mice; Peptide Hydrolases; Recombinant Proteins

2017
Expression of sweet taste receptor and gut hormone secretion in modelled type 2 diabetes.
    General and comparative endocrinology, 2017, 10-01, Volume: 252

    Sweet taste receptors (STRs) are expressed in L cells which secret glucagon-like peptide-1 (GLP-1) in the gut. The STR blocker lactisole reduces GLP-1 secretion and increases blood glucose levels. Therefore, we investigated the expression of sweet taste molecules in the proximal and distal small intestine, and gut hormone secretion, in healthy control and type 2 diabetic rats. Two groups of rats (Sprague Dawley (SD), and Zucker diabetic fatty (ZDF)) were involved in the study. Each group (n=10) received an intragastric glucose infusion (50% glucose solution, 2g/kg body weight). Blood samples were taken for measurement of blood glucose, plasma insulin, and GLP-1 concentrations. One week later, we obtained small intestinal tissue and detected the expression of STRs and glucose transporters (GTs) by real time polymerase chain reaction (Real Time-PCR). Sweet taste molecules of T1R2, T1R3, α-gustducin and TRPM5 in ileum were dramatically higher than those in duodenum (P<0.01 for each). T1R3, α-gustducin and TRPM5 expression were less in the ileum of ZDF than those in SD (P<0.05 for each), while expression of glucose transporter 2 (GLUT-2) in ileum was significantly higher in ZDF rats. Plasma GLP-1 levels were higher in ZDF rats than SD rats at t=0, 15, 30, 60 and 120min (P<0.01). In conclusion, transcript levels of ileal T1R3 and GLUT-2 are disordered in ZDF rats suggesting that intestinal sweet taste receptor expression is associated with altered glucose metabolism. The mechanism needs further investigation, but might provide a potential therapy in the treatment of type 2 diabetes.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Duodenum; Glucagon-Like Peptide 1; Glucose Transporter Type 2; Ileum; Insulin; Intestinal Mucosa; Male; Rats, Sprague-Dawley; Rats, Zucker; Receptors, G-Protein-Coupled; RNA, Messenger; Taste; Transducin

2017
Glucagon-Like Peptide-1 (GLP-1) Treatment Ameliorates Cognitive Impairment by Attenuating Arc Expression in Type 2 Diabetic Rats.
    Medical science monitor : international medical journal of experimental and clinical research, 2017, Sep-08, Volume: 23

    BACKGROUND Glucagon-like peptide-1 (GLP-1) has been reported to exert some beneficial effects on the central nervous system (CNS). However, the effect of GLP-1 on cognitive impairment associated with type 2 diabetes is not well known. This study investigated the effect of GLP-1 on ameliorating memory deficits in type 2 diabetic rats. MATERIAL AND METHODS Type 2 diabetic rats were induced by a high-sugar, high-fat diet, followed by streptozotocin (STZ) injection and then tested in the Morris Water Maze (MWM) 1 week after the induction of diabetes. The mRNA expression of Arc, APP, BACE1, and PS1 were determined by real-time quantitative PCR, and the Arc protein was analyzed by immunoblotting and immunohistochemistry. RESULTS Type 2 diabetic rats exhibited a significant decline in learning and memory in the MWM tests, but GLP-1 treatment was able to protect this decline and significantly improved learning ability and memory. The mRNA expression assays showed that GLP-1 treatment markedly reduced Arc, APP, BACE1, and PS1 expressions, which were elevated in the diabetic rats. Immunoblotting and immunohistochemistry results also confirmed that Arc protein increased in the hippocampus of diabetic rats, but was reduced after GLP-1 treatment. CONCLUSIONS Our findings suggest that GLP-1 treatment improves learning and memory deficits in type 2 diabetic rats, and this effect is likely through the reduction of Arc expression in the hippocampus.

    Topics: Animals; Blood Glucose; Cognitive Dysfunction; Cytoskeletal Proteins; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Glucagon-Like Peptide 1; Hippocampus; Male; Maze Learning; Memory Disorders; Nerve Tissue Proteins; Rats; Rats, Sprague-Dawley

2017
Balanced Coagonist of GLP-1 and Glucagon Receptors Corrects Dyslipidemia by Improving FGF21 Sensitivity in Hamster Model.
    Drug research, 2017, Volume: 67, Issue:12

    Topics: Adipose Tissue; Aminoisobutyric Acids; Animals; Bile; Cholesterol; Cricetinae; Diet, High-Fat; Dipeptides; Disease Models, Animal; Fibroblast Growth Factors; Glucagon; Glucagon-Like Peptide 1; Homeostasis; Hyperlipidemias; Lipolysis; Liver; Male; Peptide Fragments; Polyethylene Glycols; Receptors, Fibroblast Growth Factor; Receptors, Glucagon; Triglycerides

2017
Gut satiety hormones cholecystokinin and glucagon-like Peptide-1
    Toxicology and applied pharmacology, 2017, 11-15, Volume: 335

    Topics: Animals; Anorexia; Appetite Regulation; Behavior, Animal; Cholecystokinin; Disease Models, Animal; Feeding Behavior; Female; Glucagon-Like Peptide 1; Mice; Peptide Fragments; Satiety Response; Signal Transduction; T-2 Toxin; Time Factors; Trichothecenes; Up-Regulation

2017
The effect of anagliptin on intimal hyperplasia of rat carotid artery after balloon injury.
    Molecular medicine reports, 2017, Volume: 16, Issue:6

    The present study evaluated the effect of anagliptin on intimal hyperplasia following carotid artery injury in Sprague‑Dawley rats. Sprague‑Dawley rats weighing 280‑300 g were injured using a 2F Fogarty balloon embolectomy catheter. The rats were divided into injury‑(saline) and anagliptin‑(10 mg/kg/day) treated groups. vascular injuries were induced in the left carotid artery, followed by evaluation of neointima formation at 28 days. The right and left carotid arteries were harvested and evaluated with histological evaluation, and the plasma activity of glucagon‑like peptide 1 receptor (GLP‑1), stromal cell‑derived factor (SDF)‑1α, interleukin (IL)‑6, IL‑1β and tumor necrosis factor (TNF)‑α were detected by ELISA analysis. Treatment with anagliptin decreased balloon injury‑induced neointima formation, compared with the injury group (P<0.01). Body weight and food consumption did not alter following treatment with anagliptin. Anagliptin caused an increase in the serum active GLP‑1 concentration, compared with the injury group. In addition, serum SDF‑1α was significantly decreased by treatment with anagliptin (P<0.001). Anagliptin altered the serum activity of IL‑6, IL‑1β and TNF‑α (P<0.01). The results of the present study demonstrated that anagliptin appeared to attenuate neointimal formation by inhibiting inflammatory cytokines and chemokines following balloon injury, and that treatment with a dipeptidyl peptidase 4 inhibitor may be useful for future preclinical studies and potentially for the inhibition of thrombosis formation following percutaneous coronary intervention.

    Topics: Angioplasty, Balloon; Animal Feed; Animals; Body Weight; Carotid Arteries; Carotid Artery Injuries; Chemokine CXCL12; Cytokines; Disease Models, Animal; Glucagon-Like Peptide 1; Inflammation Mediators; Male; Pyrimidines; Rats; Risk Factors; Tunica Intima

2017
Recombinant Incretin-Secreting Microbe Improves Metabolic Dysfunction in High-Fat Diet Fed Rodents.
    Scientific reports, 2017, 10-19, Volume: 7, Issue:1

    The gut hormone glucagon-like peptide (GLP)-1 and its analogues represent a new generation of anti-diabetic drugs, which have also demonstrated propensity to modulate host lipid metabolism. Despite this, drugs of this nature are currently limited to intramuscular administration routes due to intestinal degradation. The aim of this study was to design a recombinant microbial delivery vector for a GLP-1 analogue and assess the efficacy of the therapeutic in improving host glucose, lipid and cholesterol metabolism in diet induced obese rodents. Diet-induced obese animals received either Lactobacillus paracasei NFBC 338 transformed to express a long-acting analogue of GLP-1 or the isogenic control microbe which solely harbored the pNZ44 plasmid. Short-term GLP-1 microbe intervention in rats reduced serum low-density lipoprotein cholesterol, triglycerides and triglyceride-rich lipoprotein cholesterol substantially. Conversely, extended GLP-1 microbe intervention improved glucose-dependent insulin secretion, glucose metabolism and cholesterol metabolism, compared to the high-fat control group. Interestingly, the microbe significantly attenuated the adiposity associated with the model and altered the serum lipidome, independently of GLP-1 secretion. These data indicate that recombinant incretin-secreting microbes may offer a novel and safe means of managing cholesterol metabolism and diet induced dyslipidaemia, as well as insulin sensitivity in metabolic dysfunction.

    Topics: Animals; Cholesterol, LDL; Diet, High-Fat; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose; Glucose Tolerance Test; Insulin; Insulin-Secreting Cells; Lactobacillus; Metabolome; Mice; Mice, Inbred C57BL; Obesity; Plasmids; Rats; Rats, Long-Evans; Triglycerides

2017
GLP-1 Elicits an Intrinsic Gut-Liver Metabolic Signal to Ameliorate Diet-Induced VLDL Overproduction and Insulin Resistance.
    Arteriosclerosis, thrombosis, and vascular biology, 2017, Volume: 37, Issue:12

    Perturbations in hepatic lipid and very-low-density lipoprotein (VLDL) metabolism are involved in the pathogenesis of obesity and hepatic insulin resistance. The objective of this study is to delineate the mechanism of subdiaphragmatic vagotomy in preventing obesity, hyperlipidemia, and insulin resistance.. By subjecting the complete subdiaphragmatic vagotomized mice to various nutritional conditions and investigating hepatic de novo lipogenesis pathway, we found that complete disruption of subdiaphragmatic vagal signaling resulted in a significant decrease of circulating VLDL-triglyceride compared with the mice obtained sham procedure. Vagotomy further prevented overproduction of VLDL-triglyceride induced by an acute fat load and a high-fat diet-induced obesity, hyperlipidemia, hepatic steatosis, and glucose intolerance. Mechanistic studies revealed that plasma glucagon-like peptide-1 was significantly raised in the vagotomized mice, which was associated with significant reductions in mRNA and protein expression of SREBP-1c (sterol regulatory element-binding protein 1c), SCD-1 (stearoyl-CoA desaturase-1), and FASN (fatty acid synthase), as well as enhanced hepatic insulin sensitivity. In vitro, treating mouse primary hepatocytes with a glucagon-like peptide-1 receptor agonist, exendin-4, for 48 hours inhibited free fatty acid, palmitic acid treatment induced de novo lipid synthesis, and VLDL secretion from hepatocytes.. Elevation of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. These novel findings, for the first time, delineate an intrinsic gut-liver regulatory circuit that is mediated by glucagon-like peptide-1 in regulating hepatic energy metabolism.

    Topics: Animals; Biomarkers; Blood Glucose; Cells, Cultured; Diet, High-Fat; Disease Models, Animal; Exenatide; Fatty Acid Synthase, Type I; Fatty Liver; Gene Expression Regulation; Glucagon-Like Peptide 1; Hepatocytes; Hyperlipidemias; Incretins; Insulin; Insulin Resistance; Intestinal Mucosa; Intestines; Lipoproteins, VLDL; Liver; Male; Mice, Inbred C57BL; Obesity; Peptides; RNA, Messenger; Signal Transduction; Stearoyl-CoA Desaturase; Sterol Regulatory Element Binding Protein 1; Time Factors; Triglycerides; Up-Regulation; Vagotomy; Vagus Nerve; Venoms

2017
Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist Liraglutide Alters Bone Marrow Exosome-Mediated miRNA Signal Pathways in Ovariectomized Rats with Type 2 Diabetes.
    Medical science monitor : international medical journal of experimental and clinical research, 2017, Nov-14, Volume: 23

    BACKGROUND Compared with normal postmenopausal women, estrogen deficiency and hyperglycemia in postmenopausal women with type 2 diabetes (T2DM) lead to more severe bone property degradation. Liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, has been reported to improve bone condition among people with T2DM but the precise mechanisms remain unclear. Exosomes work as mediators in cell-to-cell communication, delivering functional miRNAs between cells. We aimed to explore the role of exosomes in T2DM-related bone metabolic disorders and the bone protective mechanisms of liraglutide. MATERIAL AND METHODS We made comparative analyses of bone marrow-derived exosomal miRNAs from ovariectomized (OVX) control rats, OVX + T2DM rats, and OVX + T2DM + liraglutide-treated rats. miRNA profiles were generated using high-throughput sequencing. Target gene prediction and pathway analysis were performed to investigate the signal pathway alterations. Three miRNAs were randomly chosen to validate their absolute expression levels by real-time quantitative PCR. RESULTS Bone marrow-derived exosomal miRNAs were different with respect to miRNA numbers, species, and expression levels. miRNA spectra varied under T2DM condition and after liraglutide treatment. By bioinformatics analysis, we found T2DM and liraglutide administration lead to significant changes in exosomal miRNAs which targeted to insulin secretion and insulin-signaling pathway. Wnt signaling pathway alteration was the critical point regarding bone metabolism. CONCLUSIONS Our findings show the selective packaging of functional miRNA cargoes into exosomes due to T2DM and liraglutide treatment. Bone marrow exosome-mediated Wnt signaling pathway alteration may play a part in the bone protective effect of liraglutide.

    Topics: Animals; Blood Glucose; Bone Marrow; Diabetes Mellitus, Type 2; Disease Models, Animal; Exosomes; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hyperglycemia; Hypoglycemic Agents; Insulin; Liraglutide; MicroRNAs; Ovariectomy; Rats; Rats, Sprague-Dawley; Signal Transduction; Transcriptome

2017
Pulse Width-Dependent Effects of Intestinal Electrical Stimulation for Obesity: Role of Gastrointestinal Motility and Hormones.
    Obesity surgery, 2017, Volume: 27, Issue:1

    The goals of this experiment were to study therapeutic potential of intestinal electrical stimulation (IES) for obesity, its mechanisms involving gastrointestinal motility and hormones, and role of pulse width in diet-induced obese rats.. In a 4-week study, rats equipped with one pair of electrodes at the duodenum were assigned to receive either a sham or IES of varied pulse widths in a sequential way. Food intake was measured daily and body weight measured weekly. Blood samples were collected for the measurement of glucagon-like peptide-1 (GLP-1). Solid gastric emptying (GE) and small bowel transit (SIT) tests were performed at the end of the experiment.. The results of the study were as follows: (1) Daily food intake, not affected by IES of 0.3 ms, was pulse width-dependently reduced by 1.9 g with 1 ms and by 5.7 g with 3 ms. Accordingly, body weight was pulse width-dependently reduced by 2.4 g with 1 ms and by 12.8 g with 3 ms compared to a gain of 5.6 g in sham. (2) GLP-1 level was elevated by both 0.3 and 3 ms at 15 min, but was elevated only with 3 ms at 60 min. (3) GE was delayed to 52.3 % by IES of 3 ms but not 0.3 ms, compared to that at 64.4 % with sham IES. (4) Compared to the geometric center of 7.0 with sham IES, SIT was accelerated by 3 ms to 7.8 but not by 0.3 ms.. IES pulse width-dependently reduces food intake and body weight, attributed to the delay of gastric emptying and the acceleration of small bowel transit, as well as the enhancement of GLP-1 secretion.

    Topics: Animals; Body Weight; Disease Models, Animal; Duodenum; Eating; Electric Stimulation; Electric Stimulation Therapy; Gastric Emptying; Gastrointestinal Hormones; Gastrointestinal Motility; Gastrointestinal Transit; Glucagon-Like Peptide 1; Male; Obesity; Rats; Rats, Sprague-Dawley

2017
GLP-1 nanomedicine alleviates gut inflammation.
    Nanomedicine : nanotechnology, biology, and medicine, 2017, Volume: 13, Issue:2

    The gut hormone, glucagon like peptide-1 (GLP-1) exerts anti-inflammatory effects. However, its clinical use is limited by its short half-life. Previously, we have shown that GLP-1 as a nanomedicine (GLP-1 in sterically stabilized phospholipid micelles, GLP-1-SSM) has increased in vivo stability. The current study was aimed at testing the efficacy of this GLP-1 nanomedicine in alleviating colonic inflammation and associated diarrhea in dextran sodium sulfate (DSS) induced mouse colitis model. Our results show that GLP-1-SSM treatment markedly alleviated the colitis phenotype by reducing the expression of pro-inflammatory cytokine IL-1β, increasing goblet cells and preserving intestinal epithelial architecture in colitis model. Further, GLP-1-SSM alleviated diarrhea (as assessed by luminal fluid) by increasing protein expression of intestinal chloride transporter DRA (down regulated in adenoma). Our results indicate that GLP-1 nanomedicine may act as a novel therapeutic tool in alleviating gut inflammation and associated diarrhea in inflammatory bowel disease (IBD).

    Topics: Animals; Colitis; Dextran Sulfate; Diarrhea; Disease Models, Animal; Glucagon-Like Peptide 1; Inflammation; Mice; Nanomedicine

2017
Linagliptin, a Dipeptidyl Peptidase-4 Inhibitor, Mitigates Cognitive Deficits and Pathology in the 3xTg-AD Mouse Model of Alzheimer's Disease.
    Molecular neurobiology, 2017, Volume: 54, Issue:8

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone shown to be active in the treatment of type-2 diabetes (T2D) and has also been shown as efficacious in Alzheimer's disease (AD). Dipeptidyl peptidase-4 (DPP-4), an enzyme that is expressed in numerous cells, rapidly inactivates endogenous GLP-1. Therefore, DPP-4 inhibition is employed as a therapeutic avenue to increase GLP-1 levels in the management of T2D. The effectiveness of DPP-4 inhibitors in the treatment of AD has been reported in various animal models of AD. With this background, the present study was designed to examine the effectiveness of linagliptin, a DPP-4 inhibitor in the 3xTg-AD mouse model of Alzheimer's disease. Nine-month-old 3xTg-AD mice were administered linagliptin orally (5, 10, and 20 mg/kg) for 8 weeks. At the end of the linagliptin treatment, mice were evaluated for cognitive ability on the Morris Water Maze and Y-maze. Following cognitive evaluation, mice were sacrificed to determine the effect of the linagliptin on brain incretin levels, amyloid burden, tau phosphorylation, and neuroinflammation. We confirm that linagliptin treatment for 8 weeks mitigates the cognitive deficits present in 3xTg-AD mice. Moreover, linagliptin also improves brain incretin levels and attenuates amyloid beta, tau phosphorylation as well as neuroinflammation. In conclusion, linagliptin possesses neuroprotective properties that may be attributed to the improvement of incretin levels in the brain.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood Glucose; Cognition Disorders; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Linagliptin; Maze Learning; Mice; Mice, Transgenic; tau Proteins

2017
Attenuation of carotid neointimal formation after direct delivery of a recombinant adenovirus expressing glucagon-like peptide-1 in diabetic rats.
    Cardiovascular research, 2017, Volume: 113, Issue:2

    Enhancement of glucagon-like peptide-1 (GLP-1) reduces glucose levels and preserves pancreatic β-cell function, but its effect against restenosis is unknown.. We investigated the effect of subcutaneous injection of exenatide or local delivery of a recombinant adenovirus expressing GLP-1 (rAd-GLP-1) into carotid artery, in reducing the occurrence of restenosis following balloon injury. As a control, we inserted β-galactosidase cDNA in the same vector (rAd-βGAL). Otsuka Long-Evans Tokushima rats were assigned to three groups (n = 12 each): (1) normal saline plus rAd-βGAL delivery (NS + rAd-βGAL), (2) exenatide plus rAd-βGAL delivery (Exenatide + rAd-βGAL), and (3) normal saline plus rAd-GLP-1 delivery (NS + rAd-GLP-1). Normal saline or exenatide were administered subcutaneously from 1 week before to 2 weeks after carotid injury. After 3 weeks, the NS + rAd-βGAL group showed the highest intima-media ratio (IMR; 3.73 ± 0.90), the exenatide + rAd-βGAL treatment was the next highest (2.80 ± 0.51), and NS + rAd-GLP-1 treatment showed the lowest IMR (1.58 ± 0.48, P < 0.05 vs. others). The proliferation and migration of vascular smooth muscle cells and monocyte adhesion were decreased significantly after rAd-GLP-1 treatment, showing the same overall patterns as the IMR. In injured vessels, the apoptosis was greater and MMP2 expression was less in the NS + rAd-GLP-1 than in the exenatide or rAd-βGAL groups. In vitro expressions of matrix metalloproteinases-2 and monocyte chemoattractant protein-1 and nuclear factor-kappa-B-p65 translocation were decreased more in the NS + rAd-GLP-1 group than in the other two groups (all P < 0.05).. Direct GLP-1 overexpression showed better protection against restenosis after balloon injury via suppression of vascular smooth muscle cell migration, increased apoptosis, and decreased inflammatory processes than systemic exenatide treatment. This has potential therapeutic implications for treating macrovascular complications in diabetes.

    Topics: Adenoviridae; Animals; Apoptosis; Carotid Artery Injuries; Carotid Artery, External; Cell Adhesion; Cell Movement; Cell Proliferation; Cells, Cultured; Coronary Stenosis; Diabetes Mellitus; Disease Models, Animal; Exenatide; Gene Transfer Techniques; Genetic Therapy; Genetic Vectors; Glucagon-Like Peptide 1; Human Umbilical Vein Endothelial Cells; Hypoglycemic Agents; Incretins; Male; Matrix Metalloproteinase 2; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Neointima; Peptides; Rats, Inbred OLETF; Transcription Factor RelA; Transfection; Venoms

2017
Novel GLP-1R/GIPR co-agonist "twincretin" is neuroprotective in cell and rodent models of mild traumatic brain injury.
    Experimental neurology, 2017, Volume: 288

    Several single incretin receptor agonists that are approved for the treatment of type 2 diabetes mellitus (T2DM) have been shown to be neuroprotective in cell and animal models of neurodegeneration. Recently, a synthetic dual incretin receptor agonist, nicknamed "twincretin," was shown to improve upon the metabolic benefits of single receptor agonists in mouse and monkey models of T2DM. In the current study, the neuroprotective effects of twincretin are probed in cell and mouse models of mild traumatic brain injury (mTBI), a prevalent cause of neurodegeneration in toddlers, teenagers and the elderly. Twincretin is herein shown to have activity at two different receptors, dose-dependently increase levels of intermediates in the neurotrophic CREB pathway and enhance viability of human neuroblastoma cells exposed to toxic concentrations of glutamate and hydrogen peroxide, insults mimicking the inflammatory conditions in the brain post-mTBI. Additionally, twincretin is shown to improve upon the neurotrophic effects of single incretin receptor agonists in these same cells. Finally, a clinically translatable dose of twincretin, when administered post-mTBI, is shown to fully restore the visual and spatial memory deficits induced by mTBI, as evaluated in a mouse model of weight drop close head injury. These results establish twincretin as a novel neuroprotective agent and suggest that it may improve upon the effects of the single incretin receptor agonists via dual agonism.

    Topics: Animals; Body Temperature; Brain Injuries, Traumatic; Cell Line, Tumor; Cells, Cultured; CREB-Binding Protein; Disease Models, Animal; Embryo, Mammalian; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Male; Maze Learning; Memory Disorders; Mice; Mice, Inbred ICR; Neuroblastoma; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Receptors, Gastrointestinal Hormone; Recognition, Psychology; Signal Transduction

2017
A novel glucagon-like peptide 1/glucagon receptor dual agonist improves steatohepatitis and liver regeneration in mice.
    Hepatology (Baltimore, Md.), 2017, Volume: 65, Issue:3

    Because nonalcoholic steatohepatitis (NASH) is associated with impaired liver regeneration, we investigated the effects of G49, a dual glucagon-like peptide-1/glucagon receptor agonist, on NASH and hepatic regeneration. C57Bl/6 mice fed chow or a methionine and choline-deficient (MCD) diet for 1 week were divided into 4 groups: control (chow diet), MCD diet, chow diet plus G49, and M+G49 (MCD diet plus G49). Mice fed a high-fat diet (HFD) for 10 weeks were divided into groups: HFD and H+G49 (HFD plus G49). Following 2 (MCD groups) or 3 (HFD groups) weeks of treatment with G49, partial hepatectomy (PH) was performed, and all mice were maintained on the same treatment schedule for 2 additional weeks. Analysis of liver function, hepatic regeneration, and comprehensive genomic and metabolic profiling were conducted. NASH was ameliorated in the M+G49 group, manifested by reduced inflammation, steatosis, oxidative stress, and apoptosis and increased mitochondrial biogenesis. G49 treatment was also associated with replenishment of intrahepatic glucose due to enhanced gluconeogenesis and reduced glucose use through the pentose phosphate cycle and oxidative metabolism. Following PH, G49 treatment increased survival, restored the cytokine-mediated priming phase, and enhanced the proliferative capacity and hepatic regeneration ratio in mice on the MCD diet. NASH markers remained decreased in M+G49 mice after PH, and glucose use was shifted to the pentose phosphate cycle and oxidative metabolism. G49 administered immediately after PH was also effective at alleviating the pathological changes induced by the MCD diet. Benefits in terms of liver regeneration were also found in mice fed HFD and treated with G49.. Dual-acting glucagon-like peptide-1/glucagon receptor agonists such as G49 represent a novel therapeutic approach for patients with NASH and particularly those requiring PH. (Hepatology 2017;65:950-968).

    Topics: Animals; Biopsy, Needle; Disease Models, Animal; Glucagon-Like Peptide 1; Humans; Immunohistochemistry; Lipid Peroxidation; Liver Regeneration; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Random Allocation; Receptors, Glucagon; Treatment Outcome

2017
A potential contribution of dipeptidyl peptidase-4 by the mediation of monocyte differentiation in the development and progression of abdominal aortic aneurysms.
    Journal of vascular surgery, 2017, Volume: 66, Issue:4

    Abdominal aortic aneurysms (AAAs) are characterized by the destruction of elastin and collagen in the media and adventitia. Dipeptidyl peptidase-4 (DPP-4, an adipokine known as CD26) influences cell signaling, cell-matrix interactions, and the regulation of the functional activity of incretins in metabolic and inflammatory disorders. Although the role of DPP-4 in AAA evolution has been demonstrated, the underlying mechanisms of DPP-4-regulated AAA development remains unknown.. Patients with AAA (n = 93) and healthy controls (CTL, n = 20) were recruited. Based on computed tomography image analyses, 93 patients were divided into two groups: those with a small AAA (SAA, aortic diameter <5 cm, n = 16) and those with a large AAA (LAA, aortic diameter ≥5 cm, n = 77). Plasma DPP-4, glucagon-like peptide-1 levels, and expression of CD26 on mononuclear cells were analyzed. In addition, phorbol 12-myristate 13-acetate (PMA)-induced THP-1 cells and angiotensin II-infused apolipoprotein E. The levels of DPP-4 (μU/μg) increased while active glucagon-like peptide-1 (pM) decreased in patients with AAA in a diameter-dependent manner [CTL: 2.3 ± 1.5 and 3.7 ± 2.4, respectively; SAA: 10.0 ± 10.9 and 2.1 ± 0.9, respectively; LAA: 32.2 ± 15.0 and 1.8 ± 1.1, respectively]. A significant decline in monocyte CD26 expression in patients with AAAs was observed relative to the CTL group. In vitro studies demonstrated that the inhibition of DPP-4 promoted PMA-induced monocytic cells differentiation, with increased CD68 and p21 expression, regulated by extracellular signal-regulated protein kinase 1/2 activation. Furthermore, inhibition of DPP-4 significantly increased the phosphorylation of PYK2 and paxillin in PMA-induced THP-1 cell differentiation. Finally, the animal study was used to confirm the in vitro results that LAA mice showed marked macrophage infiltration in the adventitia with a decreased expression of DPP-4 as compared with SAA mice.. Increased plasma DPP-4 activity may correlate with aneurysmal development. CD26 on monocytes plays a critical role in cell differentiation, possibly mediated by extracellular signal-regulated protein kinase 1/2-p21 axis signaling pathways and cytoskeletal proteins reassembly. Exploring the role of DPP-4 further may yield potential therapeutic insights.

    Topics: Aged; Aged, 80 and over; Animals; Aorta, Abdominal; Aortic Aneurysm, Abdominal; Apolipoproteins E; Case-Control Studies; Cell Differentiation; Cell Line, Tumor; Dilatation, Pathologic; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Extracellular Signal-Regulated MAP Kinases; Female; Focal Adhesion Kinase 2; Glucagon-Like Peptide 1; Humans; Macrophages; Male; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Paxillin; RNA Interference; Transfection

2017
A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes.
    Molecular therapy : the journal of the American Society of Gene Therapy, 2017, 02-01, Volume: 25, Issue:2

    Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics.

    Topics: Animals; Cell Engineering; Cell Line; Diabetes Mellitus, Type 2; Disease Models, Animal; Drug Design; Gene Expression Regulation; Gene Regulatory Networks; Genetic Engineering; Glucagon-Like Peptide 1; Humans; Insulin Resistance; Liver Diseases; Male; Mice; Mice, Transgenic; Oleanolic Acid; Synthetic Biology

2017
Dipeptidyl peptidase 4 inhibitor reduces intimal hyperplasia in rabbit autologous jugular vein graft under poor distal runoff.
    Journal of vascular surgery, 2016, Volume: 63, Issue:5

    Dipeptidyl peptidase 4 inhibitors are widely used in patients with type 2 diabetes mellitus to accomplish glycemic control through an increase in the blood glucagon-like peptide 1 (GLP-1) concentration. These agents also inhibit vascular inflammation (eg, in atherosclerosis). This study was undertaken to determine whether and how vildagliptin (a potent dipeptidyl peptidase 4 inhibitor) might reduce intimal hyperplasia in vein grafts.. Twelve rabbits were randomly divided into two groups; one group received vildagliptin orally (10 mg/kg/d; n = 6), whereas the control group (n = 6) did not. Vildagliptin administration was started 7 days before rabbits underwent interposition reversed autologous jugular vein grafting and ended at graft harvesting (28 days after the operation). Histochemical changes in the vascular wall were examined, as were changes in the acetylcholine-induced effects on the endothelial Ca(2+) concentration ([Ca(2+)]i) and endothelium-dependent relaxation.. Under fasting conditions, vildagliptin increased the plasma GLP-1 concentration, without affecting plasma glucose or insulin. Acetylcholine induced endothelium-dependent relaxation only in the vildagliptin group, and this was blocked by the nitric oxide synthase inhibitor N(ω)-nitro-l-arginine. Acetylcholine did not modify the endothelial [Ca(2+)]i in either the control or vildagliptin group. Intimal hyperplasia was significantly less in the vildagliptin group (0.11 ± 0.02 mm, n = 5) than in the controls (0.31 ± 0.06 mm, n = 4; P < .01).. Vildagliptin increased the plasma GLP-1 concentration. It also enhanced acetylcholine-induced [Ca(2+)]i-independent endothelial nitric oxide release and reduced vein graft intimal hyperplasia, independently of any glycemic control action.

    Topics: Adamantane; Administration, Oral; Animals; Autografts; Calcium; Calcium Signaling; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Glucagon-Like Peptide 1; Hyperplasia; Jugular Veins; Male; Neointima; Nitric Oxide; Nitric Oxide Synthase; Nitriles; Pyrrolidines; Time Factors; Vasodilation; Vasodilator Agents; Vildagliptin

2016
Exclusion of the Distal Ileum Cannot Reverse the Anti-Diabetic Effects of Duodenal-Jejunal Bypass Surgery.
    Obesity surgery, 2016, Volume: 26, Issue:2

    Duodenal-jejunal bypass (DJB) has been proven effective in glycemic control in various type 2 diabetes (T2DM) rat models. "Hindgut hypothesis" and "foregut hypothesis" are two prevailing theories to elucidate the weight-independent anti-diabetic mechanisms of DJB, however, which mechanism plays the dominant role that has not been illuminated.. This paper aims to verify that exclusion of the foregut leads to loss of weight and remission of type 2 diabetes without expedited delivery of nutrients to the distal bowel.. Thirty-five diabetic rats induced by high-fat diet (HFD) and low dose of streptozotocin (STZ) were randomly assigned to the control, sham-DJB (S-DJB), DJB, ileal bypass (ILB), and DJB combined with ILB (DJB-ILB) groups. Effects of surgeries on body weight, food intake, blood glucose, glucose-stimulated insulin, and gastrointestinal hormones secretion were evaluated at indicated time points.. Compared to the control and S-DJB groups, the DJB group had significant and sustained glycemic control independent of weight loss. Excluding part of the distal ileum did not reverse the diabetic control that followed DJB surgery. The glucagon-like peptide 1 (GLP-1) and PYY levels were significantly increased after DJB. Although GLP-1 and PYY are mainly secreted by L cells in the distal ileum, excluding part of the ileum did not decrease the levels of GLP-1 and PYY after DJB.. The beneficial effects of DJB in glycemic control could not be reversed by excluding the distal ileum.

    Topics: Anastomosis, Surgical; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Duodenum; Glucagon-Like Peptide 1; Ileum; Jejunum; Male; Obesity, Morbid; Peptide YY; Rats; Rats, Wistar

2016
Effect of Sleeve Gastrectomy Plus Side-to-Side Jejunoileal Anastomosis for Type 2 Diabetes Control in an Obese Rat Model.
    Obesity surgery, 2016, Volume: 26, Issue:4

    Sleeve gastrectomy plus side-to-side jejunoileal anastomosis (JI-SG), a relatively new approach to bariatric surgeries, has shown promising results for treating obesity and metabolic comorbidities. This study investigated the feasibility and safety of JI-SG in weight loss and diabetes remission compared with sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB).. Forty 10-week-old male Zucker diabetic fatty rats were randomly assigned to four groups: control, SG, JI-SG, and RYGB. Their body weights, food intake, and levels of gut hormones (ghrelin, insulin, and glucagon-like peptide-1 (GLP-1)) and lipids were measured.. Rats in the SG, JI-SG, and RYGB groups demonstrated lower food intake and more weight loss 2 weeks postoperatively compared with control rats. Furthermore, rats in the JI-SG group achieved more weight loss (mean 242.7 ± 11.2 g) compared with those in the SG and RYGB groups (SG, 401.4 ± 15.1 g and RYGB, 298 ± 12 g, both P < 0.01). All surgery groups demonstrated a decreased fasting insulin, serum glucose, lipid levels, and increased GLP-1 postoperatively. The JI-SG group had lower fasting ghrelin levels than the RYGB group (168 ± 19.8 ng/L vs. 182 ± 16.7 ng/L, P < 0.01) and higher fasting GLP-1 levels than the SG group (1.99 ± 0.11 pmol/L vs. 1.71 ± 0.12 pmol/L, P < 0.01) at 12 weeks postoperatively. Over the experimental period, the ghrelin levels slowly increased in all surgical groups but remained lower than the preoperative and control levels.. JI-SG induced higher ghrelin and GLP-1 levels and improved glycemic control in Zucker diabetic fatty rats. Compared with SG and RYGB, JI-SG appeared to be a simple, relatively safe, and more effective procedure for treating type 2 diabetes and obesity in this animal model.

    Topics: Anastomosis, Surgical; Animals; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Eating; Fasting; Gastrectomy; Glucagon-Like Peptide 1; Ileum; Insulin; Jejunum; Lipids; Male; Obesity; Random Allocation; Rats; Rats, Zucker

2016
Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb Lamiophlomis rotata, reduces neuropathic pain by stimulating spinal microglial β-endorphin expression.
    Neuropharmacology, 2016, Volume: 101

    Lamiophlomis rotata (L. rotata, Duyiwei) is an orally available Tibetan analgesic herb widely prescribed in China. Shanzhiside methylester (SM) is a principle effective iridoid glycoside of L. rotata and serves as a small molecule glucagon-like peptide-1 (GLP-1) receptor agonist. This study aims to evaluate the signal mechanisms underlying SM anti-allodynia, determine the ability of SM to induce anti-allodynic tolerance, and illustrate the interactions between SM and morphine, or SM and β-endorphin, in anti-allodynia and anti-allodynic tolerance. Intrathecal SM exerted dose-dependent and long-lasting (>4 h) anti-allodynic effects in spinal nerve injury-induced neuropathic rats, with a maximal inhibition of 49% and a projected ED50 of 40.4 μg. SM and the peptidic GLP-1 receptor agonist exenatide treatments over 7 days did not induce self-tolerance to anti-allodynia or cross-tolerance to morphine or β-endorphin. In contrast, morphine and β-endorphin induced self-tolerance and cross-tolerance to SM and exenatide. In the spinal dorsal horn and primary microglia, SM significantly evoked β-endorphin expression, which was completely prevented by the microglial inhibitor minocycline and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. SM anti-allodynia was totally inhibited by the GLP-1 receptor antagonist exendin(9-39), minocycline, β-endorphin antiserum, μ-opioid receptor antagonist CTAP, and SB203580. SM and exenatide specifically activated spinal p38 MAPK phosphorylation. These results indicate that SM reduces neuropathic pain by activating spinal GLP-1 receptors and subsequently stimulating microglial β-endorphin expression via the p38 MAPK signaling. Stimulation of the endogenous β-endorphin expression may be a novel and effective strategy for the discovery and development of analgesics for the long-term treatment of chronic pain.

    Topics: Analgesics; Animals; Animals, Newborn; beta-Endorphin; Cells, Cultured; Disease Models, Animal; Drugs, Chinese Herbal; Functional Laterality; Gene Expression Regulation; Glucagon-Like Peptide 1; Hyperalgesia; Male; Microglia; Minocycline; Neuralgia; Neurons; Pain Measurement; Plant Preparations; Rats; Rats, Wistar; Spinal Cord; Spinal Nerves

2016
Differences in Alimentary Glucose Absorption and Intestinal Disposal of Blood Glucose After Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy.
    Gastroenterology, 2016, Volume: 150, Issue:2

    Bariatric procedures, such as Roux-en-Y gastric bypass (RYGB) or vertical sleeve gastrectomy (VSG), are the most effective approaches to resolve type 2 diabetes in obese individuals. Alimentary glucose absorption and intestinal disposal of blood glucose have not been directly compared between individuals or animals that underwent RYGB vs VSG. We evaluated in rats and humans how the gut epithelium adapts after surgery and the consequences on alimentary glucose absorption and intestinal disposal of blood glucose.. Obese male rats underwent RYGB, VSG, or sham (control) operations. We collected intestine segments from all rats; we performed histologic analyses and measured levels of messenger RNAs encoding the sugar transporters SGLT1, GLUT1, GLUT2, GLUT3, GLUT4, and GLUT5. Glucose transport and consumption were assayed using ex vivo jejunal loops. Histologic analyses were also performed on Roux limb sections from patients who underwent RYGB 1-5 years after surgery. Roux limb glucose consumption was assayed after surgery by positron emission and computed tomography imaging.. In rats and humans that underwent RYGB, the Roux limb became hyperplasic, with an increased number of incretin-producing cells compared with the corresponding jejunal segment of controls. Furthermore, expression of sugar transporters and hypoxia-related genes increased and the nonintestinal glucose transporter GLUT1 appeared at the basolateral membrane of enterocytes. Ingested and circulating glucose was trapped within the intestinal epithelial cells of rats and humans that underwent RYGB. By contrast, there was no hyperplasia of the intestine after VSG, but the intestinal absorption of alimentary glucose was reduced and density of endocrine cells secreting glucagon-like peptide-1 increased.. The intestine adapts differently to RYGB vs VSG. RYGB increases intestinal glucose disposal and VSG delays glucose absorption; both contribute to observed improvements in glycemia.

    Topics: Adaptation, Physiological; Adult; Animals; Blood Glucose; Disease Models, Animal; Gastrectomy; Gastric Bypass; Glucagon-Like Peptide 1; Glucose Transport Proteins, Facilitative; Humans; Hyperplasia; Intestinal Absorption; Intestinal Mucosa; Jejunum; Male; Middle Aged; Obesity; Positron-Emission Tomography; Rats; Retrospective Studies; RNA, Messenger; Time Factors; Tomography, X-Ray Computed

2016
A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat.
    Neuroreport, 2016, Jan-06, Volume: 27, Issue:1

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have been shown to be neuroprotective in previous studies in animal models of Alzheimer's or Parkinson's disease. Recently, novel dual-GLP-1/GIP receptor agonists that activate both receptors (DA) were developed to treat diabetes. We tested the protective effects of a novel potent DA against middle cerebral artery occlusion injury in rats and compared it with a potent GLP-1 analog, Val(8)-GLP-1(glu-PAL). Animals were evaluated for neurologic deficit score, infarct volume, and immunohistochemical analyses of the brain at several time points after ischemia. The Val(8)-GLP-1(glu-PAL)-treated and DA-treated groups showed significantly reduced scores of neurological dysfunction, cerebral infarction size, and percentage of TUNEL-positive apoptotic neurons. Furthermore, the expression of the apoptosis marker Bax, the inflammation marker iNOS, and the survival marker Bcl-2 was significantly increased. The DA-treated group was better protected against neurodegeneration than the Val(8)-GLP-1(glu-PAL) group, and the scores of neurological dysfunction, cerebral infarction size, and expression of Bcl-2 were higher, whereas the percentage of TUNEL-positive neurons and the levels of Bax and iNOS were lower in the DA group. DA treatment reduced the infarct volume and improved the functional deficit. It also suppressed the inflammatory response and cell apoptosis after reperfusion. In conclusion, the novel GIP and GLP-1 dual-receptor agonist is more neuroprotective than a GLP-1 receptor agonist in key biomarkers of neuronal degeneration.

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Brain; Disease Models, Animal; Drug Evaluation, Preclinical; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Infarction, Middle Cerebral Artery; Ischemic Attack, Transient; Lipopeptides; Male; Motor Activity; Nerve Degeneration; Neurons; Neuroprotective Agents; Nitric Oxide Synthase Type II; Random Allocation; Rats, Sprague-Dawley; Receptors, Gastrointestinal Hormone

2016
Intermittent access to a sucrose solution impairs metabolism in obesity-prone but not obesity-resistant mice.
    Physiology & behavior, 2016, Feb-01, Volume: 154

    Consumption of sugar-sweetened beverages is associated with overweight and obesity. In this study, we hypothesized that obesity-prone (OP) mice fed a high-fat high-sucrose diet (HFHS) are more sensitive to consumption of sucrose-sweetened water (SSW) than obesity-resistant (OR) mice. After 3weeks of ad libitum access to the HFHS diet (7.5h/day), 180 male mice were classified as either OP (upper quartile of body weight gain, 5.2±0.1g, n=45) or OR (lower quartile, 3.2±0.1g, n=45). OP and OR mice were subsequently divided into 3 subgroups that had access to HFHS (7.5h/day) for 16weeks, supplemented with: i) water (OP/water and OR/water); ii) water and SSW (12.6% w/v), available for 2h/day randomly when access to HFHS was available and for 5 randomly-chosen days/week (OP/SSW and OR/SSW); or iii) water and SSW for 8weeks, then only water for 8weeks (OP/SSW-water and OR/SSW-water). OR/SSW mice decreased their food intake compared to OR/water mice, while OP/SSW mice exhibited an increase in food and total energy intake compared to OP/water mice. OP/SSW mice also gained more body weight and fat mass than OP/water mice, showed an increase in liver triglycerides and developed insulin resistance. These effects were fully reversed in OP/SSW-water mice. In the gut, OR/SSW mice, but not OP/SSW mice, had an increase GLP-1 and CCK response to a liquid meal compared to mice drinking only water. OP/SSW mice had a decreased expression of melanocortin receptor 4 in the hypothalamus and increased expression of delta opioid receptor in the nucleus accumbens compared to OP/water mice when fasted that could explain the hyperphagia in these mice. When access to the sucrose solution was removed for 8weeks, OP mice had increased dopaminergic and opioidergic response to a sucrose solution. Thus, intermittent access to a sucrose solution in mice fed a HFHS diet induces changes in the gut and brain signaling, leading to increased energy intake and adverse metabolic consequences only in mice prone to HFHS-induced obesity.

    Topics: Animals; Body Composition; Body Weight; Cholecystokinin; Diet, High-Fat; Disease Models, Animal; Drinking; Eating; Energy Metabolism; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucose Tolerance Test; Hyperphagia; Lipid Peroxidation; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Sucrose; Sweetening Agents

2016
Glucagon-like peptide-1 prevented abdominal aortic aneurysm development in rats.
    Surgery today, 2016, Volume: 46, Issue:9

    To demonstrate the protective effect of glucagon-like peptide 1 (GLP-1) signaling on the cardiovascular system, we conducted this study to show that the GLP-1 receptor analog (lixisenatide) could inhibit abdominal aortic aneurysm (AAA) development in rats.. Lixisenatide was injected subcutaneously 7 days after aneurysm preparation. We evaluated reactive oxygen species (ROS) expression by dihydroethidium staining and 8-hydroxydeoxyguanosine (8-OHdG; the oxidation product of DNA) by immunohistochemical staining. We also analyzed the effect of GLP-1 signaling on the inflammatory response. Histopathological examination was done on day 28, and the AAA dilatation ratio was calculated.. On day 14, ROS expression and 8-OHdG-positive cells in the aneurysm walls were seen to have been significantly decreased by lixisenatide treatment. Western blot analysis showed decreased ERK expression. There was significantly reduced tumor necrosis factor-α mRNA expression in the aneurysm walls and CD68-positive cell infiltration in the aneurysm walls. On day 28, it was evident that the lixisenatide had dramatically reduced aneurysm development in the rats.. GLP-1 elevation inhibits AAA development in rats through its anti-oxidant and anti-inflammatory effects. Thus, GLP-1 could be a potent pharmacological target for AAA treatment.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Aortic Aneurysm, Abdominal; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Injections, Subcutaneous; Male; Molecular Targeted Therapy; Peptides; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction

2016
Improvements of Glucose and Lipid Metabolism After Jejuno-ileal Circuit Procedure in a Non-obese Diabetic Rat Model.
    Obesity surgery, 2016, Volume: 26, Issue:8

    In a recent study, we showed a jejuno-ileal circuit (JIC) procedure that effectively improved glucose homeostasis, but the intrinsic mechanism requires further studies. Furthermore, the role of JIC in lipid metabolism is also unknown. Given that adiposity aggravates insulin sensitivity, we hypothesize that the JIC procedure improves fat metabolism and thus further contributes to diabetic remission. The aim of this study was to investigate the effects of JIC surgery on lipid metabolism and glucose homeostasis in a non-obese diabetic rat model.. Fourteen high-fat diet and low-dose streptozotocin-induced diabetic rats were randomly divided into JIC and sham-JIC groups. Body weight, food intake, glucose tolerance, insulin resistance, serum lipid parameters, glucagon-like peptide 1 (GLP-1), and adipose-derived hormones were measured. At 12 weeks postoperatively, the expressions of hepatic fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were measured by Western blot. The lipid content of liver was assessed by hematoxylin-eosin staining and Oil Red O staining. The enteroendocrine cells in the distal ileum were examined by immunohistochemical staining.. Relative to the sham group, the JIC rats exhibited significant improvements in glucose tolerance, insulin resistance, and dyslipidemia without weight loss, showing increased GLP-1 and adiponectin and decreased leptin. JIC also reduced the expression of FAS and ACC in the liver, exhibited improved hepatic fat content, and raised the levels of GLP-1 and chromogranin A in the distal gut.. JIC alleviated lipometabolic disorders in hyperglycemic rats, which may contribute to the amelioration of insulin sensitivity and glycemic control.

    Topics: Animals; Blood Glucose; Cholesterol; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose Tolerance Test; Insulin Resistance; Jejunoileal Bypass; Lipid Metabolism; Male; Random Allocation; Rats; Rats, Wistar; Triglycerides

2016
Duodenal-Jejunal Bypass Preferentially Elevates Serum Taurine-Conjugated Bile Acids and Alters Gut Microbiota in a Diabetic Rat Model.
    Obesity surgery, 2016, Volume: 26, Issue:8

    Bile acids (BAs) have emerged as important signaling molecules in regulating metabolism and are closely related to gut microbiota. Bariatric surgery elevates serum BAs and affects gut microbiota universally. However, the specific profiles of postsurgical BA components and gut microbiota are still controversial. The aim of this study is to investigate the serum profiles of BA components and gut microbiota after duodenal-jejunal bypass (DJB).. DJB and SHAM procedures were performed in a high-fat-diet/streptozotocin-induced diabetic rat model. Body weight, energy intake, oral glucose tolerance test, insulin tolerance test, HOMA-IR, serum hormones, serum BAs, expression of BA transporters, and gut microbiota were analyzed at week 2 and week 12 postsurgery.. Compared with SHAM, DJB achieved rapid and durable improvement in glucose tolerance and insulin sensitivity, with enhanced GLP-1 secretion. DJB also elevated serum BAs, especially the taurine-conjugated BAs, with upregulation of BA transporters in the terminal ileum. The phylum level of Firmicutes and Proteobacteria abundance was increased postsurgery, at the expense of Bacteroidetes.. DJB preferentially increases serum taurine-conjugated BAs, probably because of more BA reabsorption in the terminal ileum. The gut microbiota is altered with more Firmicutes and Proteobacteria and less Bacteroidetes.

    Topics: Animals; Bile Acids and Salts; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Duodenum; Gastric Bypass; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Jejunum; Male; Obesity, Morbid; Rats; Rats, Wistar; Taurine

2016
Dipeptidyl Peptidase 4 Inhibition Alleviates Shortage of Circulating Glucagon-Like Peptide-1 in Heart Failure and Mitigates Myocardial Remodeling and Apoptosis via the Exchange Protein Directly Activated by Cyclic AMP 1/Ras-Related Protein 1 Axis.
    Circulation. Heart failure, 2016, Volume: 9, Issue:1

    Ample evidence demonstrates cardiovascular protection by incretin-based therapy using dipeptidyl peptidase 4 inhibitor (DPP4i) and glucagon-like peptide-1 (GLP-1) under either diabetic or nondiabetic condition. Their action on myocardium is mediated by the cyclic AMP (cAMP) signal; however, the pathway remains uncertain. This study was conducted to address the effect of DPP4i/GLP-1/cAMP axis on cardiac dysfunction and remodeling induced by pressure overload (thoracic aortic constriction [TAC]) independently of diabetes mellitus.. DPP4i (alogliptin, 10 mg/kg per day for 4 weeks) prevented TAC-induced contractile dysfunction, remodeling, and apoptosis of myocardium in a GLP-1 receptor antagonist (exendin [9-39])-sensitive fashion. In TAC, circulating level of GLP-1 (in pmol/L; 0.86 ± 0.10 for TAC versus 2.13 ± 0.54 for sham control) unexpectedly declined and so did the myocardial cAMP concentration (in pmol/mg protein; 33.0 ± 1.4 for TAC versus 42.2 ± 1.5 for sham). Alogliptin restored the decline in the GLP-1/cAMP levels observed in TAC, thereby augmented cAMP signaling effectors (protein kinase A [PKA] and exchange protein directly activated by cAMP 1 [EPAC1]). In vitro assay revealed distinct roles of PKA and EPAC1 in cardiac apoptosis. EPAC1 promoted cardiomyocyte survival via concomitant increase in B cell lymphoma-2 (Bcl-2) expression and activation of small G protein Ras-related protein 1 (Rap1) in a cAMP dose-dependent and PKA-independent fashion.. DPP4i restores cardiac remodeling and apoptosis caused by the pathological decline in circulating GLP-1 in response to pressure overload. EPAC1 is essential for cardiomyocyte survival via the cAMP/Rap1 activation independently of PKA.

    Topics: Animals; Apoptosis; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Glucagon-Like Peptide 1; Guanine Nucleotide Exchange Factors; Heart Failure; Male; Mice, Inbred C57BL; Myocytes, Cardiac; Peptide Fragments; Piperidines; Proto-Oncogene Proteins c-bcl-2; rap1 GTP-Binding Proteins; Signal Transduction; Uracil; Ventricular Remodeling

2016
Upregulated Pdx1 and MafA Contribute to β-Cell Function Improvement by Sleeve Gastrectomy.
    Obesity surgery, 2016, Volume: 26, Issue:4

    Sleeve gastrectomy is an effective technique for the treatment of severe obesity, and its effects on the improved β-cell function have not yet been fully understood.. From February 2014 to July 2015, sleeve gastrectomy was performed in 5 patients with T2D, who were assessed before and after sleeve gastrectomy (SG). Moreover, a high-fat-diet (HFD) mouse model was also used to study the molecular mechanisms of β-cell functional improvement after SG.. The glucose-stimulated acute insulin response was restored in the T2D patients after SG. The expression of GLP-1 in colonic tissue as well as β-cell specific transcription factors (TFs), Pdx1, and MafA in islets was significantly increased after SG.. β-cell dysfunction can be ameliorated by SG. The re-activation of key TFs contributes to the improvement of β cell function.

    Topics: Aged; Animals; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Gastrectomy; Glucagon-Like Peptide 1; Homeodomain Proteins; Humans; Insulin-Secreting Cells; Maf Transcription Factors, Large; Male; Mice; Mice, Inbred C57BL; Obesity, Morbid; Trans-Activators; Transcription Factors; Up-Regulation

2016
Glucagon-like peptide-1 analogue prevents nonalcoholic steatohepatitis in non-obese mice.
    World journal of gastroenterology, 2016, Feb-28, Volume: 22, Issue:8

    To investigate whether a glucagon-like peptide-1 (GLP-1) analogue inhibits nonalcoholic steatohepatitis (NASH), which is being increasingly recognized in Asia, in non-obese mice.. A methionine-choline-deficient diet (MCD) along with exendin-4 (20 μg/kg per day, ip), a GLP-1 analogue, or saline was administered to male db/db mice (non-obese NASH model). Four or eight weeks after commencement of the diet, the mice were sacrificed and their livers were excised. The excised livers were examined by histochemistry for evidence of hepatic steatosis and inflammation. Hepatic triglyceride (TG) and free fatty acid (FFA) content was measured, and the expression of hepatic fat metabolism- and inflammation-related genes was evaluated. Oxidative stress-related parameters and macrophage recruitment were also examined using immunohistochemistry.. Four weeks of MCD feeding induced hepatic steatosis and inflammation and increased the hepatic TG and FFA content. The expression of fatty acid transport protein 4 (FATP4), a hepatic FFA influx-related gene; macrophage recruitment; and the level of malondialdehyde (MDA), an oxidative stress marker, were significantly augmented by a 4-wk MCD. The levels of hepatic sterol regulatory element-binding protein-1c (SREBP-1c) mRNA (lipogenesis-related gene) and acyl-coenzyme A oxidase 1 (ACOX1) mRNA (β-oxidation-related gene) had decreased at 4 wk and further decreased at 8 wk. However, the level of microsomal triglyceride transfer protein mRNA (a lipid excretion-related gene) remained unchanged. The administration of exendin-4 significantly attenuated the MCD-induced increase in hepatic steatosis, hepatic TG and FFA content, and FATP4 expression as well as the MCD-induced augmentation of hepatic inflammation, macrophage recruitment, and MDA levels. Additionally, it further decreased the hepatic SREBP-1c level and alleviated the MCD-mediated inhibition of the ACOX1 mRNA level.. These results suggest that GLP-1 inhibits hepatic steatosis and inflammation through the inhibition of hepatic FFA influx and oxidative stress in a non-obese NASH model.

    Topics: Acyl-CoA Oxidase; Animals; Biomarkers; Disease Models, Animal; Exenatide; Fatty Acid Transport Proteins; Fatty Acids, Nonesterified; Gene Expression Regulation; Glucagon-Like Peptide 1; Inflammation Mediators; Liver; Macrophages; Male; Mice, Inbred NOD; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Peptides; Sterol Regulatory Element Binding Protein 1; Time Factors; Triglycerides; Venoms

2016
The Dose-Dependent Organ-Specific Effects of a Dipeptidyl Peptidase-4 Inhibitor on Cardiovascular Complications in a Model of Type 2 Diabetes.
    PloS one, 2016, Volume: 11, Issue:3

    Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been suggested to have a non-glucoregulatory protective effect in various tissues, the effects of long-term inhibition of DPP-4 on the micro- and macro-vascular complications of type 2 diabetes remain uncertain. The aim of the present study was to investigate the organ-specific protective effects of DPP-4 inhibitor in rodent model of type 2 diabetes.. Eight-week-old diabetic and obese db/db mice and controls (db/m mice) received vehicle or one of two doses of gemigliptin (0.04 and 0.4%) daily for 12 weeks. Urine albumin excretion and echocardiography measured at 20 weeks of age. Heart and kidney tissue were subjected to molecular analysis and immunohistochemical evaluation.. Gemigliptin effectively suppressed plasma DPP-4 activation in db/db mice in a dose-dependent manner. The HbA1c level was normalized in the 0.4% gemigliptin, but not in the 0.04% gemigliptin group. Gemigliptin showed a dose-dependent protective effect on podocytes, anti-apoptotic and anti-oxidant effects in the diabetic kidney. However, the dose-dependent effect of gemigliptin on diabetic cardiomyopathy was ambivalent. The lower dose significantly attenuated left ventricular (LV) dysfunction, apoptosis, and cardiac fibrosis, but the higher dose could not protect the LV dysfunction and cardiac fibrosis.. Gemigliptin exerted non-glucoregulatory protective effects on both diabetic nephropathy and cardiomyopathy. However, high-level inhibition of DPP-4 was associated with an organ-specific effect on cardiovascular complications in type 2 diabetes.

    Topics: Albuminuria; Animals; Apoptosis; Cardiomegaly; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Forkhead Box Protein O3; Forkhead Transcription Factors; Glucagon-Like Peptide 1; Glycated Hemoglobin; Immunohistochemistry; Kidney; Male; Mice; NADPH Oxidases; Piperidones; Podocytes; Proto-Oncogene Proteins c-akt; Pyrimidines; Ventricular Dysfunction

2016
Neuroprotective Effects of rhGLP-1 in Diabetic Rats with Cerebral Ischemia/Reperfusion Injury.
    Drug development research, 2016, Volume: 77, Issue:3

    Preclinical Research The aim of the present study was to evaluate the neuroprotective benefits of rhGLP-1 in diabetic rats subjected to acute cerebral ischemia/reperfusion injury induced by middle cerebral artery occlusion/reperfusion (MCAO/R). Streptozotocin (STZ)-induced diabetic rats were pretreated with rhGLP-1 (10, 20, or 40 μg/kg ip, tid) for 14 days. During this time, body weight and fasting blood glucose levels were assessed. Rats were then subjected to MCAO 90 min/R 24 h. At 2 and 24 h of reperfusion, rats were evaluated for neurological deficits and blood samples were collected to analyze markers of brain injury. Rats were then sacrificed to assess the infarction volume. rhGLP-1 pretreatment lowered blood glucose levels, improved neurological scores, attenuated infarct volumes, and reduced the blood levels of S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), and myelin basic protein (MBP). rhGLP-1 has neuroprotective benefits in diabetic rats with cerebral ischemia/reperfusion injury and could potentially be used as a prophylatic neuroprotectant in diabetic patients at high risk of ischemic stroke. Drug Dev Res 77 : 124-133, 2016.   © 2016 Wiley Periodicals, Inc.

    Topics: Animals; Body Weight; Brain Ischemia; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon-Like Peptide 1; Hypoglycemic Agents; Male; Myelin Basic Protein; Neuroprotective Agents; Phosphopyruvate Hydratase; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Reperfusion Injury; S100 Calcium Binding Protein beta Subunit; Streptozocin; Treatment Outcome

2016
Protective Effect of a GLP-1 Analog on Ischemia-Reperfusion Induced Blood-Retinal Barrier Breakdown and Inflammation.
    Investigative ophthalmology & visual science, 2016, 05-01, Volume: 57, Issue:6

    Inflammation associated with blood-retinal barrier (BRB) breakdown is a common feature of several retinal diseases. Therefore, the development of novel nonsteroidal anti-inflammatory approaches may provide important therapeutic options. Previous studies demonstrated that inhibition of dipeptidyl peptidase-IV, the enzyme responsible for the degradation of glucagon-like peptide-1 (GLP-1), led to insulin-independent prevention of diabetes-induced increases in BRB permeability, suggesting that incretin-based drugs may have beneficial pleiotropic effects in the retina. In the current study, the barrier protective and anti-inflammatory properties of exendin-4 (Ex-4), an analog of GLP-1, after ischemia-reperfusion (IR) injury were examined.. Ischemia-reperfusion injury was induced in rat retinas by increasing the intraocular pressure for 45 minutes followed by 48 hours of reperfusion. Rats were treated with Ex-4 prior to and following IR. Blood-retinal barrier permeability was assessed by Evans blue dye leakage. Retinal inflammatory gene expression and leukocytic infiltration were measured by qRT-PCR and immunofluorescence, respectively. A microglial cell line was used to determine the effects of Ex-4 on lipopolysaccharide (LPS)-induced inflammatory response.. Exendin-4 dramatically reduced the BRB permeability induced by IR injury, which was associated with suppression of inflammatory gene expression. Moreover, in vitro studies showed that Ex-4 also reduced the inflammatory response to LPS and inhibited NF-κB activation.. The present work suggests that Ex-4 can prevent IR injury-induced BRB breakdown and inflammation through inhibition of inflammatory cytokine production by activated microglia and may provide a novel option for therapeutic intervention in diseases involving retinal inflammation.

    Topics: Animals; Blood-Retinal Barrier; Cattle; Cells, Cultured; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Immunoblotting; Immunohistochemistry; Incretins; Inflammation; Ischemia; Male; Peptides; Rats; Rats, Long-Evans; Reperfusion Injury; Retinal Diseases; Venoms

2016
Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.
    Basic research in cardiology, 2016, Volume: 111, Issue:4

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion.

    Topics: Animals; Disease Models, Animal; Gene Expression Profiling; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Myocardial Reperfusion Injury; Obesity; Oligonucleotide Array Sequence Analysis; Proteomics; Swine; Transcriptome

2016
Oxyntomodulin Identified as a Marker of Type 2 Diabetes and Gastric Bypass Surgery by Mass-spectrometry Based Profiling of Human Plasma.
    EBioMedicine, 2016, Volume: 7

    Low-abundance regulatory peptides, including metabolically important gut hormones, have shown promising therapeutic potential. Here, we present a streamlined mass spectrometry-based platform for identifying and characterizing low-abundance regulatory peptides in humans. We demonstrate the clinical applicability of this platform by studying a hitherto neglected glucose- and appetite-regulating gut hormone, namely, oxyntomodulin. Our results show that the secretion of oxyntomodulin in patients with type 2 diabetes is significantly impaired, and that its level is increased by more than 10-fold after gastric bypass surgery. Furthermore, we report that oxyntomodulin is co-distributed and co-secreted with the insulin-stimulating and appetite-regulating gut hormone glucagon-like peptide-1 (GLP-1), is inactivated by the same protease (dipeptidyl peptidase-4) as GLP-1 and acts through its receptor. Thus, oxyntomodulin may participate with GLP-1 in the regulation of glucose metabolism and appetite in humans. In conclusion, this mass spectrometry-based platform is a powerful resource for identifying and characterizing metabolically active low-abundance peptides.

    Topics: Animals; Biomarkers; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Disease Models, Animal; Gastric Bypass; Glucagon-Like Peptide 1; Humans; Mass Spectrometry; Mice; Oxyntomodulin; Proteomics

2016
Enhanced Ghrelin Levels and Hypothalamic Orexigenic AgRP and NPY Neuropeptide Expression in Models of Jejuno-Colonic Short Bowel Syndrome.
    Scientific reports, 2016, 06-21, Volume: 6

    Short bowel syndrome (SBS) patients developing hyperphagia have a better outcome. Gastrointestinal endocrine adaptations help to improve intestinal functions and food behaviour. We investigated neuroendocrine adaptations in SBS patients and rat models with jejuno-ileal (IR-JI) or jejuno-colonic (IR-JC) anastomosis with and without parenteral nutrition. Circulating levels of ghrelin, PYY, GLP-1, and GLP-2 were determined in SBS rat models and patients. Levels of mRNA for proglucagon, PYY and for hypothalamic neuropeptides were quantified by qRT-PCR in SBS rat models. Histology and immunostaining for Ki67, GLP-1 and PYY were performed in SBS rats. IR-JC rats, but not IR-JI, exhibited significantly higher crypt depths and number of Ki67-positive cells than sham. Fasting and/or postprandial plasma ghrelin and PYY concentrations were higher, or tend to be higher, in IR-JC rats and SBS-JC patients than in controls. Proglucagon and Pyy mRNA levels were significantly enhanced in IR-JC rats. Levels of mRNA coding hypothalamic orexigenic NPY and AgRP peptides were significantly higher in IR-JC than in sham rats. We demonstrate an increase of plasma ghrelin concentrations, major changes in hypothalamic neuropeptides levels and greater induction of PYY in SBS-JC rats and patients suggesting that jejuno-colonic continuity creates a peculiar environment promoting further gut-brain adaptations.

    Topics: Adult; Aged; Agouti-Related Protein; Anastomosis, Surgical; Animals; Colon; Disease Models, Animal; Feeding Behavior; Female; Ghrelin; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Humans; Hyperphagia; Hypothalamus; Intestinal Mucosa; Jejunum; Ki-67 Antigen; Male; Middle Aged; Neuropeptide Y; Peptide YY; Proglucagon; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; RNA, Messenger; Short Bowel Syndrome

2016
Intestinally-targeted TGR5 agonists equipped with quaternary ammonium have an improved hypoglycemic effect and reduced gallbladder filling effect.
    Scientific reports, 2016, 06-24, Volume: 6

    TGR5 activation of enteroendocrine cells increases glucagon-like peptide 1 (GLP-1) release, which maintains glycemic homeostasis. However, TGR5 activation in the gallbladder and heart is associated with severe side effects. Therefore, intestinally-targeted TGR5 agonists were suggested as potential hypoglycemic agents with minimal side effects. However, until now no such compounds with robust glucose-lowering effects were reported, especially in diabetic animal models. Herein, we identify a TGR5 agonist, 26a, which was proven to be intestinally-targeted through pharmacokinetic studies. 26a was used as a tool drug to verify the intestinally-targeted strategy. 26a displayed a robust and long-lasting hypoglycemic effect in ob/ob mice (once a day dosing (QD) and 18-day treatment) owing to sustained stimulation of GLP-1 secretion, which suggested that robust hypoglycemic effect could be achieved with activation of TGR5 in intestine alone. However, the gallbladder filling effect of 26a was rather complicated. Although the gallbladder filling effect of 26a was decreased in mice after once a day dosing, this side effect was still not eliminated. To solve the problem above, several research strategies were raised for further optimization.

    Topics: Ammonium Compounds; Animals; Blood Glucose; Disease Models, Animal; Enteroendocrine Cells; Female; Gallbladder; Glucagon-Like Peptide 1; Glucose Tolerance Test; HEK293 Cells; Homeostasis; Humans; Hypoglycemia; Hypoglycemic Agents; Intestinal Mucosa; Male; Mice; Mice, Inbred ICR; Mice, Obese; Permeability; Quaternary Ammonium Compounds; Receptors, G-Protein-Coupled

2016
Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling.
    Cardiovascular research, 2016, Volume: 111, Issue:4

    Exercise capacity is reduced in heart failure (HF) patients, due mostly to skeletal muscle abnormalities including impaired energy metabolism, mitochondrial dysfunction, fibre type transition, and atrophy. Glucagon-like peptide-1 (GLP-1) has been shown to improve exercise capacity in HF patients. We investigated the effects of the administration of a dipeptidyl peptidase (DPP)-4 inhibitor on the exercise capacity and skeletal muscle abnormalities in an HF mouse model after myocardial infarction (MI).. MI was created in male C57BL/6J mice by ligating the left coronary artery, and a sham operation was performed in other mice. The mice were then divided into two groups according to the treatment with or without a DPP-4 inhibitor, MK-0626 [1 mg/kg body weight (BW)/day] provided in the diet. Four weeks later, the exercise capacity evaluated by treadmill test was revealed to be limited in the MI mice, and it was ameliorated in the MI + MK-0626 group without affecting the infarct size or cardiac function. The citrate synthase activity, mitochondrial oxidative phosphorylation capacity, supercomplex formation, and their quantity were reduced in the skeletal muscle from the MI mice, and these decreases were normalized in the MI + MK-0626 group, in association with the improvement of mitochondrial biogenesis. Immunohistochemical staining also revealed that a shift toward the fast-twitch fibre type in the MI mice was also reversed by MK-0626. Favourable effects of MK-0626 were significantly inhibited by treatment of GLP-1 antagonist, Exendin-(9-39) (150 pmol/kg BW/min, subcutaneous osmotic pumps) in MI + MK-0626 mice. Similarly, exercise capacity and mitochondrial function were significantly improved by treatment of GLP-1 agonist, Exendin-4 (1 nmol/kg/BW/h, subcutaneous osmotic pumps).. A DPP-4 inhibitor may be a novel therapeutic agent against the exercise intolerance seen in HF patients by improving the mitochondrial biogenesis in their skeletal muscle.

    Topics: Animals; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Male; Mice, Inbred C57BL; Mitochondria; Muscle, Skeletal; Myocardial Infarction; Organelle Biogenesis; Peptides; Triazoles; Venoms

2016
Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning.
    Cardiovascular research, 2016, Volume: 112, Issue:3

    Although the nature of the humoral factor which mediates cardioprotection established by remote ischaemic conditioning (RIc) remains unknown, parasympathetic (vagal) mechanisms appear to play a critical role. As the production and release of many gut hormones is modulated by the vagus nerve, here we tested the hypothesis that RIc cardioprotection is mediated by the actions of glucagon-like peptide-1 (GLP-1).. A rat model of myocardial infarction (coronary artery occlusion followed by reperfusion) was used. Remote ischaemic pre- (RIPre) or perconditioning (RIPer) was induced by 15 min occlusion of femoral arteries applied prior to or during the myocardial ischaemia. The degree of RIPre and RIPer cardioprotection was determined in conditions of cervical or subdiaphragmatic vagotomy, or following blockade of GLP-1 receptors (GLP-1R) using specific antagonist Exendin(9-39). Phosphorylation of PI3K/AKT and STAT3 was assessed. RIPre and RIPer reduced infarct size by ∼50%. In conditions of bilateral cervical or subdiaphragmatic vagotomy RIPer failed to establish cardioprotection. GLP-1R blockade abolished cardioprotection induced by either RIPre or RIPer. Exendin(9-39) also prevented RIPre-induced AKT phosphorylation. Cardioprotection induced by GLP-1R agonist Exendin-4 was preserved following cervical vagotomy, but was abolished in conditions of M3 muscarinic receptor blockade.. These data strongly suggest that GLP-1 functions as a humoral factor of remote ischaemic conditioning cardioprotection. This phenomenon requires intact vagal innervation of the visceral organs and recruitment of GLP-1R-mediated signalling. Cardioprotection induced by GLP-1R activation is mediated by a mechanism involving M3 muscarinic receptors.

    Topics: Animals; Disease Models, Animal; Exenatide; Femoral Artery; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hormone Antagonists; Ischemic Preconditioning; Ligation; Male; Muscarinic Antagonists; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Peptide Fragments; Peptides; Phosphatidylinositol 3-Kinase; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Receptor, Muscarinic M3; Signal Transduction; STAT3 Transcription Factor; Vagotomy; Vagus Nerve; Venoms

2016
Dysgenesis of enteroendocrine cells in Aristaless-Related Homeobox polyalanine expansion mutations.
    Journal of pediatric gastroenterology and nutrition, 2015, Volume: 60, Issue:2

    Severe congenital diarrhea occurs in approximately half of patients with Aristaless-Related Homeobox (ARX) null mutations. The cause of this diarrhea is unknown. In a mouse model of intestinal Arx deficiency, the prevalence of a subset of enteroendocrine cells is altered, leading to diarrhea. Because polyalanine expansions within the ARX protein are the most common mutations found in ARX-related disorders, we sought to characterize the enteroendocrine population in human tissue of an ARX mutation and in a mouse model of the corresponding polyalanine expansion (Arx).. Immunohistochemistry and quantitative real-time polymerase chain reaction were the primary modalities used to characterize the enteroendocrine populations. Daily weights were determined for the growth curves, and Oil-Red-O staining on stool and tissue identified neutral fats.. An expansion of 7 alanines in the first polyalanine tract of both human ARX and mouse Arx altered enteroendocrine differentiation. In human tissue, cholecystokinin, glucagon-like peptide 1, and somatostatin populations were reduced, whereas the chromogranin A population was unchanged. In the mouse model, cholecystokinin and glucagon-like peptide 1 populations were also lost, although the somatostatin-expressing population was increased. The ARX protein was present in human tissue, whereas the Arx protein was degraded in the mouse intestine.. ARX/Arx is required for the specification of a subset of enteroendocrine cells in both humans and mice. Owing to protein degradation, the Arx mouse recapitulates findings of the intestinal Arx null model, but is not able to further the study of the differential effects of the ARX protein on its transcriptional targets in the intestine.

    Topics: Adolescent; Animals; Cell Differentiation; Cholecystokinin; Chromogranin A; Diarrhea; Disease Models, Animal; Duodenal Diseases; Duodenum; Enteroendocrine Cells; Failure to Thrive; Female; Glucagon-Like Peptide 1; Homeodomain Proteins; Humans; Intestinal Pseudo-Obstruction; Male; Mice; Mice, Inbred C57BL; Mutagenesis, Insertional; Peptides; Somatostatin; Steatorrhea; Transcription Factors

2015
Saxagliptin restores vascular mitochondrial exercise response in the Goto-Kakizaki rat.
    Journal of cardiovascular pharmacology, 2015, Volume: 65, Issue:2

    Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg·d). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.

    Topics: Adamantane; Animals; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Mitochondria, Muscle; Mitochondrial Proteins; Motor Activity; Muscle, Smooth, Vascular; Nitric Oxide Synthase Type III; Organelle Biogenesis; Physical Conditioning, Animal; Rats; Treatment Outcome

2015
Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass.
    Human molecular genetics, 2015, Mar-01, Volume: 24, Issue:5

    Type 2 diabetes (T2D) is characterized by β cell dysfunction and loss. Single nucleotide polymorphisms in the T-cell factor 7-like 2 (TCF7L2) gene, associated with T2D by genome-wide association studies, lead to impaired β cell function. While deletion of the homologous murine Tcf7l2 gene throughout the developing pancreas leads to impaired glucose tolerance, deletion in the β cell in adult mice reportedly has more modest effects. To inactivate Tcf7l2 highly selectively in β cells from the earliest expression of the Ins1 gene (∼E11.5) we have therefore used a Cre recombinase introduced at the Ins1 locus. Tcfl2(fl/fl)::Ins1Cre mice display impaired oral and intraperitoneal glucose tolerance by 8 and 16 weeks, respectively, and defective responses to the GLP-1 analogue liraglutide at 8 weeks. Tcfl2(fl/fl)::Ins1Cre islets displayed defective glucose- and GLP-1-stimulated insulin secretion and the expression of both the Ins2 (∼20%) and Glp1r (∼40%) genes were significantly reduced. Glucose- and GLP-1-induced intracellular free Ca(2+) increases, and connectivity between individual β cells, were both lowered by Tcf7l2 deletion in islets from mice maintained on a high (60%) fat diet. Finally, analysis by optical projection tomography revealed ∼30% decrease in β cell mass in pancreata from Tcfl2(fl/fl)::Ins1Cre mice. These data demonstrate that Tcf7l2 plays a cell autonomous role in the control of β cell function and mass, serving as an important regulator of gene expression and islet cell coordination. The possible relevance of these findings for the action of TCF7L2 polymorphisms associated with Type 2 diabetes in man is discussed.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Gene Deletion; Genetic Loci; Genome-Wide Association Study; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Insulin; Insulin Secretion; Insulin-Secreting Cells; Integrases; Mice; Mice, Inbred C57BL; Mice, Knockout; Molecular Weight; Pancreas; Polymorphism, Single Nucleotide; Receptors, Glucagon; Transcription Factor 7-Like 2 Protein; Wnt Signaling Pathway

2015
Effect of dipeptidyl peptidase 4 inhibition on arterial blood pressure is context dependent.
    Hypertension (Dallas, Tex. : 1979), 2015, Volume: 65, Issue:1

    Because the effects of dipeptidyl peptidase 4 (DPP4) inhibitors on blood pressure are controversial, we examined the long-term effects of sitagliptin (80 mg/kg per day) on blood pressure (radiotelemetry) in spontaneously hypertensive rats (SHR), Wistar-Kyoto rats, and Zucker Diabetic-Sprague Dawley rats (metabolic syndrome model). In SHR, chronic (3 weeks) sitagliptin significantly increased systolic, mean, and diastolic blood pressures by 10.3, 9.2, and 7.9 mm Hg, respectively, a response abolished by coadministration of BIBP3226 (2 mg/kg per day; selective Y1-receptor antagonist). Sitagliptin also significantly increased blood pressure in SHR treated with hydralazine (vasodilator; 25 mg/kg per day) or enalapril (angiotensin-converting enzyme inhibitor; 10 mg/kg per day). In Wistar-Kyoto rats, chronic sitagliptin slightly decreased systolic, mean, and diastolic blood pressures (-1.8, -1.1, and -0.4 mm Hg, respectively). In Zucker Diabetic-Sprague Dawley rats, chronic sitagliptin decreased systolic, mean, and diastolic blood pressures by -7.7, -5.8, and -4.3 mm Hg, respectively, and did not alter the antihypertensive effects of chronic enalapril. Because DPP4 inhibitors impair the metabolism of neuropeptide Y1-36 (NPY1-36; Y1-receptor agonist) and glucagon-like peptide (GLP)-1(7-36)NH2 (GLP-1 receptor agonist), we examined renovascular responses to NPY1-36 and GLP-1(7-36)NH2 in isolated perfused SHR and Zucker Diabetic-Sprague Dawley kidneys pretreated with norepinephrine (to induce basal tone). In Zucker Diabetic-Sprague Dawley kidneys, NPY1-36 and GLP-1(7-36)NH2 exerted little, if any, effect on renovascular tone. In contrast, in SHR kidneys, both NPY1-36 and GLP-1(7-36)NH2 elicited potent and efficacious vasoconstriction.. (1) The effects of DPP4 inhibitors on blood pressure are context dependent; (2) The context-dependent effects of DPP4 inhibitors are due in part to differential renovascular responses to DPP4’s most important substrates (NPY1–36 and GLP-1(7–36)NH2) [corrected]; (3) Y1 receptor antagonists may prevent the prohypertensive and possibly augment the antihypertensive effects of DPP4 inhibitors.

    Topics: Animals; Blood Pressure; Blood Pressure Determination; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Hypertension; Male; Pyrazines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Sitagliptin Phosphate; Treatment Outcome; Triazoles

2015
Protective effects of pioglitazone and/or liraglutide on pancreatic β-cells in db/db mice: Comparison of their effects between in an early and advanced stage of diabetes.
    Molecular and cellular endocrinology, 2015, Jan-15, Volume: 400

    The aim was to compare the protective effects of pioglitazone (PIO) and/or liraglutide (LIRA) on β-cells with the progression of diabetes. Male db/db mice were treated with PIO and/or LIRA for 2 weeks in an early and advanced stage. In an early stage insulin biosynthesis and secretion were markedly increased by PIO and LIRA which was not observed in an advanced stage. In concomitant with such phenomena, expression levels of various β-cell-related factors were up-regulated by PIO and LIRA only in an early stage. Furthermore, β-cell mass was also increased by the treatment only in an early stage. Although there was no difference in apoptosis ratio between the two stages, β-cell proliferation was augmented by the treatment only in an early stage. In conclusion, protective effects of pioglitazone and/or liraglutide on β-cells were more powerful in an early stage of diabetes compared to an advanced stage.

    Topics: Animals; Apoptosis; Blood Glucose; Caspases; Cell Proliferation; Diabetes Mellitus, Type 2; Disease Models, Animal; Disease Progression; Gene Expression; Glucagon; Glucagon-Like Peptide 1; Hypoglycemic Agents; Insulin; Insulin-Secreting Cells; Ki-67 Antigen; Liraglutide; Male; Mice; Mice, Transgenic; Organ Size; Pioglitazone; Proto-Oncogene Proteins c-bcl-2; RNA, Ribosomal, 18S; Thiazolidinediones; Time Factors; Triglycerides

2015
Effect of bariatric surgery combined with medical therapy versus intensive medical therapy or calorie restriction and weight loss on glycemic control in Zucker diabetic fatty rats.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2015, Feb-15, Volume: 308, Issue:4

    Bariatric surgery rapidly improves Type 2 diabetes mellitus (T2DM). Our objective was to profile and compare the extent and duration of improved glycemic control following Roux-en-Y gastric (RYGB) bypass surgery and vertical sleeve gastrectomy (SG) and compare against calorie restriction/weight loss and medical combination therapy-based approaches using the Zucker diabetic fatty rat (ZDF) rodent model of advanced T2DM. Male ZDF rats underwent RYGB (n = 15) or SG surgery (n = 10) at 18 wk of age and received postsurgical insulin treatment, as required to maintain mid-light-phase glycemia within a predefined range (10-15 mmol/l). In parallel, other groups of animals underwent sham surgery with ad libitum feeding (n = 6), with body weight (n = 8), or glycemic matching (n = 8) to the RYGB group, using food restriction or a combination of insulin, metformin, and liraglutide, respectively. Both bariatric procedures decreased the daily insulin dose required to maintain mid-light-phase blood glucose levels below 15 mmol/l, compared with those required by body weight or glycemia-matched rats (P < 0.001). No difference was noted between RYGB and SG with regard to initial efficacy. SG was, however, associated with higher food intake, weight regain, and higher insulin requirements vs. RYGB at study end (P < 0.05). Severe hypoglycemia occurred in several rats after RYGB. RYGB and SG significantly improved glycemic control in a rodent model of advanced T2DM. While short-term outcomes are similar, long-term efficacy appears marginally better after RYGB, although this is tempered by the increased risk of hypoglycemia.

    Topics: Age Factors; Animals; Behavior, Animal; Biomarkers; Blood Glucose; Caloric Restriction; Combined Modality Therapy; Diabetes Mellitus, Type 2; Disease Models, Animal; Drug Therapy, Combination; Eating; Feeding Behavior; Gastrectomy; Gastric Bypass; Glucagon-Like Peptide 1; Hypoglycemia; Hypoglycemic Agents; Insulin; Liraglutide; Male; Metformin; Obesity; Rats, Zucker; Risk Factors; Time Factors; Weight Gain; Weight Loss

2015
PEGylated exendin-4, a modified GLP-1 analog exhibits more potent cardioprotection than its unmodified parent molecule on a dose to dose basis in a murine model of myocardial infarction.
    Theranostics, 2015, Volume: 5, Issue:3

    A Site-specifically PEGylated exendin-4 (denoted as PEG-Ex4) is an exendin-4 (denoted as Ex4) analog we developed by site-specific PEGylation of exendin-4 with a high molecular weight trimeric poly(ethylene glycol) (tPEG). It has been shown to possess prolonged half-life in vivo with similar receptor binding affinity compared to unmodified exendin-4 by our previous work. This study is sought to test whether PEG-Ex4 is suitable for treating myocardial infarction (MI). In the MI model, PEG-Ex4 was administered every 3 days while equivalent amount of Ex4 was administered every 3 days or twice daily. Animal survival rate, heart function, remodeling and neoangiogenesis were evaluated and compared. Tube formation was examined in endothelial cells. In addition, Western blotting and histology were performed to determine the markers of cardiac hypertrophy and angiogenesis and to explore the possible molecular mechanism involved. PEG-Ex4 and Ex4 showed comparable binding affinity to GLP-1 receptor. In MI mice, PEG-Ex4 given at 3 days interval achieved similar extent of protection as Ex4 given twice daily, while Ex4 given at 3 days interval failed to produce protection. PEG-Ex4 elevated endothelial tube formation in vitro and capillary density in the border area of MI. PEG-Ex4 increased Akt activity and VEGF production in a GLP-1R dependent manner in endothelial cells and antagonism of GLP-1R, Akt or VEGF abolished the protection of PEG-Ex4 in the MI model. PEG-Ex4 is a potent long-acting GLP-1 receptor agonist for the treatment of chronic heart disease. Its protection might be attributed to enhanced angiogenesis mediated by the activation of Akt and VEGF.

    Topics: Aminophylline; Animals; Atropine; Blotting, Western; Cardiovascular Agents; Disease Models, Animal; Drug Combinations; Exenatide; Glucagon-Like Peptide 1; Heart; Heart Function Tests; Histocytochemistry; Male; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Neovascularization, Physiologic; Nitroglycerin; Papaverine; Peptides; Phenobarbital; Survival Analysis; Treatment Outcome; Venoms

2015
Gliptin and GLP-1 analog treatment improves survival and vascular inflammation/dysfunction in animals with lipopolysaccharide-induced endotoxemia.
    Basic research in cardiology, 2015, Volume: 110, Issue:2

    Dipeptidyl peptidase (DPP)-4 inhibitors are used to treat hyperglycemia by increasing the incretin glucagon-like peptide-1 (GLP-1). Previous studies showed anti-inflammatory and antiatherosclerotic effects of DPP-4 inhibitors. Here, we compared the effects of linagliptin versus sitagliptin and liraglutide on survival and vascular function in animal models of endotoxic shock by prophylactic therapy and treatment after lipopolysaccharide (LPS) injection. Gliptins were administered either orally or subcutaneously: linagliptin (5 mg/kg/day), sitagliptin (50 mg/kg/day) or liraglutide (200 µg/kg/day). Endotoxic shock was induced by LPS injection (mice 17.5-20 mg/kg i.p., rats 10 mg/kg/day). Linagliptin and liraglutide treatment or DPP-4 knockout improved the survival of endotoxemic mice, while sitagliptin was ineffective. Linagliptin, liraglutide and sitagliptin ameliorated LPS-induced hypotension and vascular dysfunction in endotoxemic rats, suppressed inflammatory parameters such as whole blood nitrosyl-iron hemoglobin (leukocyte-inducible nitric oxide synthase activity) or aortic mRNA expression of markers of inflammation as well as whole blood and aortic reactive oxygen species formation. Hemostasis (tail bleeding time, activated partial thromboplastin time) was impaired in endotoxemic rats and recovered under cotreatment with linagliptin and liraglutide. Finally, the beneficial effects of linagliptin on vascular function and inflammatory parameters in endotoxemic mice were impaired in AMP-activated kinase (alpha1) knockout mice. The improved survival of endotoxemic animals and other data shown here may warrant further clinical evaluation of these drugs in patients with septic shock beyond the potential improvement of inflammatory complications in diabetic individuals with special emphasis on the role of AMP-activated kinase (alpha1) in the DPP-4/GLP-1 cascade.

    Topics: Animals; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Endotoxemia; Glucagon-Like Peptide 1; Inflammation; Linagliptin; Lipopolysaccharides; Liraglutide; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Purines; Pyrazines; Quinazolines; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Sitagliptin Phosphate; Triazoles

2015
Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity.
    Journal of Alzheimer's disease : JAD, 2015, Volume: 45, Issue:3

    Numerous epidemiological and experimental studies have demonstrated that patients who suffer from metabolic disorders, such as type 2 diabetes mellitus (T2DM) or obesity, have higher risks of cognitive dysfunction and of Alzheimer's disease (AD). Impaired insulin signaling in the brain could contribute to the formation of neurofibrillary tangles, which contain an abnormally hyperphosphorylated tau protein. This study aimed to determine whether potential tau hyperphosphorylation could be detected in an obesity-induced pre-diabetes state and whether anorexigenic agents could affect this state. We demonstrated that 6-month-old mice with monosodium glutamate (MSG) obesity, which represent a model of obesity-induced pre-diabetes, had increased tau phosphorylation at Ser396 and Thr231 in the hippocampus compared with the controls, as determined by western blots. Two weeks of subcutaneous treatment with a lipidized analog of prolactin-releasing peptide (palm-PrRP31) or with the T2DM drug liraglutide, which both had a central anorexigenic effect, resulted in increased phosphorylation of the insulin cascade kinases PDK1 (Ser241), Akt (Thr308), and GSK-3β (Ser9). Furthermore, these drugs attenuated phosphorylation at Ser396, Thr231, and Thr212 of tau and of the primary tau kinases in the hippocampi of 6-month-old MSG-obese mice. We identified tau hyperphosphorylation in the obesity-induced pre-diabetes state in MSG-obese mice and demonstrated the beneficial effects of palm-PrRP31 and liraglutide, both of known central anorexigenic effects, on hippocampal insulin signaling and on tau phosphorylation.

    Topics: Analysis of Variance; Animals; Body Weight; Disease Models, Animal; Flavoring Agents; Glucagon-Like Peptide 1; Glucose Tolerance Test; Hippocampus; Insulins; Lipopeptides; Male; Mice; Obesity; Phosphorylation; Prolactin-Releasing Hormone; Receptors, G-Protein-Coupled; Signal Transduction; Sodium Glutamate; tau Proteins; Time Factors

2015
Rapid and body weight-independent improvement of endothelial and high-density lipoprotein function after Roux-en-Y gastric bypass: role of glucagon-like peptide-1.
    Circulation, 2015, Mar-10, Volume: 131, Issue:10

    Roux-en-Y gastric bypass (RYGB) reduces body weight and cardiovascular mortality in morbidly obese patients. Glucagon-like peptide-1 (GLP-1) seems to mediate the metabolic benefits of RYGB partly in a weight loss-independent manner. The present study investigated in rats and patients whether obesity-induced endothelial and high-density lipoprotein (HDL) dysfunction is rapidly improved after RYGB via a GLP-1-dependent mechanism.. Eight days after RYGB in diet-induced obese rats, higher plasma levels of bile acids and GLP-1 were associated with improved endothelium-dependent relaxation compared with sham-operated controls fed ad libitum and sham-operated rats that were weight matched to those undergoing RYGB. Compared with the sham-operated rats, RYGB improved nitric oxide (NO) bioavailability resulting from higher endothelial Akt/NO synthase activation, reduced c-Jun amino terminal kinase phosphorylation, and decreased oxidative stress. The protective effects of RYGB were prevented by the GLP-1 receptor antagonist exendin9-39 (10 μg·kg(-1)·h(-1)). Furthermore, in patients and rats, RYGB rapidly reversed HDL dysfunction and restored the endothelium-protective properties of the lipoprotein, including endothelial NO synthase activation, NO production, and anti-inflammatory, antiapoptotic, and antioxidant effects. Finally, RYGB restored HDL-mediated cholesterol efflux capacity. To demonstrate the role of increased GLP-1 signaling, sham-operated control rats were treated for 8 days with the GLP-1 analog liraglutide (0.2 mg/kg twice daily), which restored NO bioavailability and improved endothelium-dependent relaxations and HDL endothelium-protective properties, mimicking the effects of RYGB.. RYGB rapidly reverses obesity-induced endothelial dysfunction and restores the endothelium-protective properties of HDL via a GLP-1-mediated mechanism. The present translational findings in rats and patients unmask novel, weight-independent mechanisms of cardiovascular protection in morbid obesity.

    Topics: Adult; Animals; Antioxidants; Body Weight; Case-Control Studies; Cells, Cultured; Diet, High-Fat; Disease Models, Animal; Endothelium, Vascular; Female; Gastric Bypass; Glucagon-Like Peptide 1; Humans; Lipoproteins, HDL; Male; Nitric Oxide; Obesity; Oxidative Stress; Proto-Oncogene Proteins c-akt; Rats; Rats, Wistar; Signal Transduction; Treatment Outcome; Weight Loss

2015
Central Nervous System Regulation of Intestinal Lipoprotein Metabolism by Glucagon-Like Peptide-1 via a Brain-Gut Axis.
    Arteriosclerosis, thrombosis, and vascular biology, 2015, Volume: 35, Issue:5

    Intestinal overproduction of atherogenic chylomicron particles postprandially is an important component of diabetic dyslipidemia in insulin-resistant states. In addition to enhancing insulin secretion, peripheral glucagon-like peptide-1 (GLP-1) receptor stimulation has the added benefit of reducing this chylomicron overproduction in patients with type 2 diabetes mellitus. Given the presence of central GLP-1 receptors and GLP-1-producing neurons, we assessed whether central GLP-1 exerts an integral layer of neuronal control during the production of these potentially atherogenic particles.. Postprandial production of triglyceride-rich lipoproteins was assessed in Syrian hamsters administered a single intracerebroventricular injection of the GLP-1 receptor agonist exendin-4. Intracerebroventricular exendin-4 reduced triglyceride-rich lipoprotein-triglyceride and -apolipoprotein B48 accumulation relative to vehicle-treated controls. This was mirrored by intracerebroventricular MK-0626, an inhibitor of endogenous GLP-1 degradation, and prevented by central exendin9-39, a GLP-1 receptor antagonist. The effects of intracerebroventricular exendin-4 were also lost during peripheral adrenergic receptor and central melanocortin-4 receptor inhibition, achieved using intravenous propranolol and phentolamine and intracerebroventricular HS014, respectively. However, central exendin9-39 did not preclude the effects of peripheral exendin-4 treatment on chylomicron output.. Central GLP-1 is a novel regulator of chylomicron production via melanocortin-4 receptors. Our findings point to the relative importance of central accessibility of GLP-1-based therapies and compel further studies examining the status of this brain-gut axis in the development of diabetic dyslipidemia and chylomicron overproduction.

    Topics: Animals; Central Nervous System; Chylomicrons; Cricetinae; Diabetes Mellitus, Type 2; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Intestinal Mucosa; Intestines; Lipid Metabolism; Lipoproteins; Peptides; Random Allocation; Receptors, Glucagon; Venoms

2015
Effects of sleeve gastrectomy and gastric banding on the hypothalamic feeding center in an obese rat model.
    Surgery today, 2015, Volume: 45, Issue:12

    Laparoscopic sleeve gastrectomy (SG) and gastric banding (GB) are popular bariatric procedures for treating morbid obesity. This study aimed to investigate changes in the hypothalamic feeding center after these surgeries in a diet-induced obese rat model.. Obesity was induced in 60 Sprague-Dawley rats using a high-energy diet for 6 weeks. These rats were divided into four groups: the sham-operated (SO) control, pair-fed (PF) control, SG and GB groups. Six weeks after the surgery, metabolic parameters, the plasma levels of leptin, ghrelin, peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) and the hypothalamic mRNA expressions of neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) were measured.. Compared with those observed in the SO group, the body and fat tissue weights were significantly decreased and the metabolic parameters were significantly improved in the PF, SG and GB groups 6 weeks after surgery. The plasma ghrelin levels were significantly lower and the PYY and GLP-1 levels were significantly higher in the SG group than in the PF, GB and SO groups. Compared with that seen in the PF and GB groups, the hypothalamic mRNA expression of NPY was significantly lower and the expression of POMC was significantly higher in the SG group.. SG may affect the neurological pathway associated with appetite in the hypothalamus and thereby control ingestive behavior.

    Topics: Animals; Bariatric Surgery; Disease Models, Animal; Feeding Behavior; Gastrectomy; Ghrelin; Glucagon-Like Peptide 1; Hypothalamus; Leptin; Male; Neuropeptide Y; Obesity, Morbid; Peptide YY; Pro-Opiomelanocortin; Rats, Sprague-Dawley; RNA, Messenger

2015
Dipeptidyl-peptidase-4 inhibitor, alogliptin, attenuates arterial inflammation and neointimal formation after injury in low-density lipoprotein (LDL) receptor-deficient mice.
    Journal of the American Heart Association, 2015, Mar-13, Volume: 4, Issue:3

    The results of recent studies suggest that dipeptidyl-peptidase-4 inhibitors have antiatherogenic effects. However, whether or not dipeptidyl-peptidase-4 inhibitors could suppress arterial inflammation and intimal hyperplasia after injury remains undetermined. The present study aims to clarify the anti-inflammatory effects of the dipeptidyl-peptidase-4 inhibitor, alogliptin (AGP), on the arteries of atherogenic low-density lipoprotein receptor-deficient (LKO) mice.. We compared intimal hyperplasia in LKO mice 2 weeks after femoral artery injury using an external vascular cuff model. All mice received oral injection of AGP (20 mg/kg per day) or normal saline (control) once daily for 14 days. Fasting blood sugar levels, serum cholesterol levels, or blood pressure did not significantly differ between the 2 groups. Plasma levels of active glucagon-like peptide-1 were higher in the AGP than in the control LKO mice (22.2±1.9 versus 15.6±0.9 pg/mL; P<0.05). Compared with saline, AGP significantly reduced intimal hyperplasia (1087±127 versus 1896±140 μm(2); P<0.001) as well as the intima/media ratio (0.08±0.01 versus 0.16±0.02; P<0.001). Immunostaining showed that AGP reduced proliferating cells (proliferating cell nuclear antigen-positive nuclei; P<0.001), percent smooth-muscle cell area (α-SMA-positive cells; P<0.001), inflammatory cells infiltration (lymphocyte antigen 6 complex-positive cells; P<0.05), tumor necrosis factor-α expression (P<0.05), and percent phospho-NF-κB-positive cell compared with saline. Levels of tumor necrosis factor -α (0.5-fold P<0.05), monocyte chemoattractant protein 1 (0.3-fold P<0.01), and interleukin-1β (0.2-fold P<0.05) mRNA were lower in the injured arteries of the AGP than in the control group.. AGP appeared to suppress neointimal formation by inhibiting inflammation, independently of its effects on glucose or cholesterol metabolism in atherogenic LKO mice.

    Topics: Actins; Animals; Anti-Inflammatory Agents; Arteritis; Atherosclerosis; Biomarkers; Blood Glucose; Cell Proliferation; Chemokine CCL2; Cholesterol; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Femoral Artery; Glucagon-Like Peptide 1; Inflammation Mediators; Interleukin-1beta; Male; Mice, Knockout; Neointima; NF-kappa B; Phosphorylation; Piperidines; Proliferating Cell Nuclear Antigen; Receptors, LDL; Tumor Necrosis Factor-alpha; Uracil; Vascular System Injuries

2015
Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats.
    PloS one, 2015, Volume: 10, Issue:3

    In addition to classic functions of facilitating hepatobiliary secretion and intestinal absorption of lipophilic nutrients, bile acids (BA) are also endocrine factors and regulate glucose and lipid metabolism. Recent data indicate that antiobesity bariatric procedures e.g. Roux-en-Y gastric bypass surgery (RYGB), which also remit diabetes, increase plasma BAs in humans, leading to the hypothesis that BAs may play a role in diabetes resolution following surgery. To investigate the effect of RYGB on BA physiology and its relationship with glucose homeostasis, we undertook RYGB and SHAM surgery in Zucker diabetic fatty (ZDF) and normoglycemic Sprague Dawley (SD) rats and measured plasma and fecal BA levels, as well as plasma glucose, insulin, Glucagon like peptide 1 (GLP-1) and Peptide YY (PYY), 2 days before and 3, 7, 14 and 28 days after surgery. RYGB decreased body weight and increased plasma GLP-1 in both SD and ZDF rats while decreasing plasma insulin and glucose in ZDF rats starting from the first week. Compared to SHAM groups, both SD-RYGB and ZDF-RYGB groups started to have increases in plasma total BAs in the second week, which might not contribute to early post-surgery metabolic changes. While there was no significant difference in fecal BA excretion between SD-RYGB and SD-SHAM groups, the ZDF-RYGB group had a transient 4.2-fold increase (P<0.001) in 24-hour fecal BA excretion on post-operative day 3 compared to ZDF-SHAM, which paralleled a significant increase in plasma PYY. Ratios of plasma and fecal cholic acid/chenodeoxycholic acid derived BAs were decreased in RYGB groups. In addition, tissue mRNA expression analysis suggested early intestinal BA reabsorption and potentially reduced hepatic cholic acid production in RYGB groups. In summary, we present novel data on RYGB-mediated changes in BA metabolism to further understand the role of BAs in RYGB-induced metabolic effects in humans.

    Topics: Animals; Bile Acids and Salts; Blood Glucose; Body Weight; Diabetes Mellitus, Experimental; Disease Models, Animal; Gastric Bypass; Gastric Inhibitory Polypeptide; Gene Expression Profiling; Glucagon-Like Peptide 1; Insulin; Organ Specificity; Peptide YY; Rats

2015
Preservation of the blood brain barrier and cortical neuronal tissue by liraglutide, a long acting glucagon-like-1 analogue, after experimental traumatic brain injury.
    PloS one, 2015, Volume: 10, Issue:3

    Cerebral edema is a common complication following moderate and severe traumatic brain injury (TBI), and a significant risk factor for development of neuronal death and deterioration of neurological outcome. To this date, medical approaches that effectively alleviate cerebral edema and neuronal death after TBI are not available. Glucagon-like peptide-1 (GLP-1) has anti-inflammatory properties on cerebral endothelium and exerts neuroprotective effects. Here, we investigated the effects of GLP-1 on secondary injury after moderate and severe TBI. Male Sprague Dawley rats were subjected either to TBI by Controlled Cortical Impact (CCI) or sham surgery. After surgery, vehicle or a GLP-1 analogue, Liraglutide, were administered subcutaneously twice daily for two days. Treatment with Liraglutide (200 μg/kg) significantly reduced cerebral edema in pericontusional regions and improved sensorimotor function 48 hours after CCI. The integrity of the blood-brain barrier was markedly preserved in Liraglutide treated animals, as determined by cerebral extravasation of Evans blue conjugated albumin. Furthermore, Liraglutide reduced cortical tissue loss, but did not affect tissue loss and delayed neuronal death in the thalamus on day 7 post injury. Together, our data suggest that the GLP-1 pathway might be a promising target in the therapy of cerebral edema and cortical neuronal injury after moderate and severe TBI.

    Topics: Animals; Blood Glucose; Blood-Brain Barrier; Brain Edema; Brain Injuries; Cell Death; Cerebral Cortex; Disease Models, Animal; Glucagon-Like Peptide 1; Liraglutide; Male; Neurons; Neuroprotective Agents; Psychomotor Performance; Rats; Rats, Sprague-Dawley; Sensorimotor Cortex

2015
Nutrient induced type 2 and chemical induced type 1 experimental diabetes differently modulate gastric GLP-1 receptor expression.
    Journal of diabetes research, 2015, Volume: 2015

    T2DM patients demonstrate reduced GLP-1 receptor (GLP-1R) expression in their gastric glands. Whether induced T2DM and T1DM differently affect the gastric GLP-1R expression is not known. This study assessed extrapancreatic GLP-1R system in glandular stomach of rodents with different types of experimental diabetes. T2DM and T1DM were induced in Psammomys obesus (PO) by high-energy (HE) diet and by streptozotocin (STZ) in Sprague Dawly (SD) rats, respectively. GLP-1R expression was determined in glandular stomach by RT PCR and immunohistomorphological analysis. The mRNA expression and cellular association of the GLP-1R in principal glands were similar in control PO and SD rats. However, nutrient and chemical induced diabetes resulted in opposite alterations of glandular GLP-1R expression. Diabetic PO demonstrated increased GLP-1R mRNA expression, intensity of cellular GLP-1R immunostaining, and frequency of GLP-1R positive cells in the neck area of principal glands compared with controls. In contrast, SD diabetic rats demonstrated decreased GLP-1 mRNA, cellular GLP-1R immunoreactivity, and frequency of GLP-1R immunoreactive cells in the neck area compared with controls. In conclusion, nutrient and chemical induced experimental diabetes result in distinct opposite alterations of GLP-1R expression in glandular stomach. These results suggest that induced T1DM and T2DM may differently modulate GLP-1R system in enteropancreatic axis.

    Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Disease Models, Animal; Female; Gastric Mucosa; Gerbillinae; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Pancreas; Rats; Rats, Sprague-Dawley; RNA, Messenger; Streptozocin

2015
Liraglutide is neurotrophic and neuroprotective in neuronal cultures and mitigates mild traumatic brain injury in mice.
    Journal of neurochemistry, 2015, Volume: 135, Issue:6

    Traumatic brain injury (TBI), a brain dysfunction for which there is no present effective treatment, is often caused by a concussive impact to the head and affects an estimated 1.7 million Americans annually. Our laboratory previously demonstrated that exendin-4, a long-lasting glucagon-like peptide 1 receptor (GLP-1R) agonist, has neuroprotective effects in cellular and animal models of TBI. Here, we demonstrate neurotrophic and neuroprotective effects of a different GLP-1R agonist, liraglutide, in neuronal cultures and a mouse model of mild TBI (mTBI). Liraglutide promoted dose-dependent proliferation in SH-SY5Y cells and in a GLP-1R over-expressing cell line at reduced concentrations. Pre-treatment with liraglutide rescued neuronal cells from oxidative stress- and glutamate excitotoxicity-induced cell death. Liraglutide produced neurotrophic and neuroprotective effects similar to those of exendin-4 in vitro. The cAMP/PKA/pCREB pathway appears to play an important role in this neuroprotective activity of liraglutide. Furthermore, our findings in cell culture were well-translated in a weight drop mTBI mouse model. Post-treatment with a clinically relevant dose of liraglutide for 7 days in mice ameliorated memory impairments caused by mTBI when evaluated 7 and 30 days post trauma. These data cross-validate former studies of exendin-4 and suggest that liraglutide holds therapeutic potential for the treatment of mTBI. Exendin-4, a long-lasting glucagon-like peptide 1 receptor (GLP-1R) agonist, has neuroprotective effects in cellular and animal models of traumatic brain injury (TBI). Here, we demonstrate neurotrophic and neuroprotective effects of a different GLP-1R agonist, liraglutide, in neuronal cultures and a mouse model of mild TBI (mTBI). Liraglutide promoted dose-dependent proliferation in SH-SY5Y cells and in a GLP-1R over-expressing cell line at reduced concentrations. Pretreatment with liraglutide rescued neuronal cells from oxidative stress- and glutamate excitotoxicity-induced cell death. Liraglutide produced neurotrophic and neuroprotective effects similar to those of exendin-4 in vitro, likely involving the cAMP/PKA/pCREB pathway. Our findings in cell culture were well-translated in a weight-drop mTBI mouse model. Post-treatment with a clinically relevant dose of liraglutide for 7 days in mice ameliorated memory impairments caused by mTBI.

    Topics: Animals; Brain Concussion; Brain Injuries; Cell Death; Cell Line; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Hypoglycemic Agents; Liraglutide; Mice; Neurons; Neuroprotective Agents; Peptides; Receptors, Glucagon; Venoms

2015
Neuroprotective effects of (Val8)GLP-1-Glu-PAL in the MPTP Parkinson's disease mouse model.
    Behavioural brain research, 2015, Oct-15, Volume: 293

    Glucagon-like peptide 1 (GLP-1) is a hormone and a growth factor. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. They also have shown neuroprotective properties in animal models of neurodegenerative disorders. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in animal models of Parkinson's disease (PD), and a first clinical trial in PD patients showed promising results. (Val8)GLP-1-glu-PAL is a new GLP-1 analogue which has a longer biological half-life than exendin-4. We previously showed that (Val8)GLP-1-glu-PAL has neuroprotective properties. Here we tested the drug in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected (30mg/kg i.p.) along with (Val8)GLP-1-glu-PAL (25nmol/kg i.p.) once-daily for 8 days. (Val8)GLP-1-glu-PAL showed good effects in preventing the MPTP-induced motor impairment (Rotarod, open field locomotion, swim test), reduction in tyrosine hydroxylase levels (dopamine synthesis) in the substantia nigra, a reduction of activated caspase 3 levels, of TUNEL positive cell numbers, of the pro-apoptotic signaling molecule BAX and an increase in the growth signaling molecule Bcl-2. The results demonstrate that (Val8)GLP-1-glu-PAL shows promise as a novel treatment of PD.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Analysis of Variance; Animals; Caspase 3; Disease Models, Animal; Exploratory Behavior; Glucagon-Like Peptide 1; Lipopeptides; Male; Mice; Mice, Inbred C57BL; Motor Activity; Neuroprotective Agents; Parkinsonian Disorders; Rotarod Performance Test; Swimming; Tyrosine 3-Monooxygenase

2015
Pancreatic Neuroendocrine Tumors in Mice Deficient in Proglucagon-Derived Peptides.
    PloS one, 2015, Volume: 10, Issue:7

    Animal models with defective glucagon action show hyperplasia of islet α-cells, however, the regulatory mechanisms underlying the proliferation of islet endocrine cells remain largely to be elucidated. The Gcggfp/gfp mice, which are homozygous for glucagon/green fluorescent protein knock-in allele (GCGKO), lack all proglucagon-derived peptides including glucagon and GLP-1. The present study was aimed to characterize pancreatic neuroendocrine tumors (panNETs), which develop in the GCGKO mice. At 15 months of age, macroscopic GFP-positive tumors were identified in the pancreas of all the GCGKO mice, but not in that of the control heterozygous mice. The tumor manifested several features that were consistent with pancreatic neuroendocrine tumors (panNETs), such as organoid structures with trabecular and cribriform patterns, and the expression of chromogranin A and synaptophysin. Dissemination of GFP-positive cells was observed in the liver and lungs in 100% and 95%, respectively, of 15-month-old GCGKO mice. To elucidate the regulatory mechanism for tumor growth, PanNET grafts were transplanted into subrenal capsules in GCGKO and control mice. Ki-67 positive cells were identified in panNET grafts transplanted to GCGKO mice 1 month after transplantation, but not in those to control mice. These results suggest that humoral factors or conditions specific to GCGKO mice, are involved in the proliferation of panNETs. Taken together, GCGKO mice are novel animal model for studying the development, pathogenesis, and metastasis panNETs.

    Topics: Animals; Disease Models, Animal; Gene Expression Regulation, Neoplastic; Glucagon; Glucagon-Like Peptide 1; Green Fluorescent Proteins; Humans; Immunohistochemistry; Islets of Langerhans; Liver Neoplasms; Mice; Mice, Knockout; Mice, Transgenic; Microscopy, Confocal; Neuroendocrine Tumors; Pancreatic Neoplasms; Proglucagon; Reverse Transcriptase Polymerase Chain Reaction

2015
Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2015, Jul-29, Volume: 35, Issue:30

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast "silences" GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress.. The results from this study reveal a potential central mechanism for the "metabolic tuning" of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats, reduces or blocks the ability of acute stress to activate hindbrain neurons that are immunoreactive for either prolactin-releasing peptide or glucagon-like peptide 1, and attenuates the activation of their stress-sensitive projection targets in the limbic forebrain. In nonfasted rats, central antagonism of glucagon-like peptide 1 receptors partially mimics the effect of an overnight fast by blocking the ability of acute stress to inhibit food intake, and by attenuating stress-induced activation of hindbrain and limbic forebrain neurons. We propose that caloric restriction attenuates behavioral and physiological responses to acute stress by "silencing" central glucagon-like peptide 1 signaling pathways.

    Topics: Animals; Anxiety; Caloric Restriction; Disease Models, Animal; Food Deprivation; Glucagon-Like Peptide 1; Immunohistochemistry; Male; Maze Learning; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Rhombencephalon; Signal Transduction; Stress, Psychological

2015
Changes in ghrelin, CCK, GLP-1, and peroxisome proliferator-activated receptors in a hypoxia-induced anorexia rat model.
    Endokrynologia Polska, 2015, Volume: 66, Issue:4

    A high-altitude environment causes appetite loss in unacclimatised humans, leading to weight reduction. Ghrelin, cholecystokinin (CCK), and glucagon like peptide-1 (GLP-1), are gut hormones involved in the regulation of food intake and energy metabolism. The liver is an important site of metabolic regulation, and together with the gut it plays a role in food intake regulation. This study intends to study the time-dependent changes occurring in plasma gut hormones, PPARα, PPARδ, and PGC1α, in the stomach and liver during hypoxia.. Male Sprague Dawley rats were exposed to hypobaric hypoxia in a decompression chamber at 7620 m for different durations up to seven days.. Hypoxia increased circulating ghrelin from the third day onwards while CCK and GLP-1 decreased immediately. An increase in ghrelin, ghrelin receptor protein levels, and GOAT mRNA levels in the stomach was observed. Stomach cholecystokinin receptor (CCKAR), PPARα, and PPARδ decreased. Liver CCKAR decreased during the first day of hypoxia and returned to normal levels from the third day onwards. PPARα and PGC1α expression increased while PPARδ protein levels reduced in the liver on third day.. Hypoxia alters the expression of ghrelin and ghrelin receptor in the stomach, CCKAR in the liver, and PPAR and its cofactors, which might be possible role players in the contribution of gut and liver to anorexia at high altitude.

    Topics: Animals; Anorexia; Cholecystokinin; Disease Models, Animal; Gastric Mucosa; Gene Expression Regulation; Ghrelin; Glucagon-Like Peptide 1; Hypoxia; Liver; Male; Peroxisome Proliferator-Activated Receptors; Rats; Rats, Sprague-Dawley

2015
Exendin-4 attenuates brain death-induced liver damage in the rat.
    Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society, 2015, Volume: 21, Issue:11

    The majority of liver grafts destined for transplantation originate from brain dead donors. However, significantly better posttransplantation outcomes are achieved when organs from living donors are used, suggesting that brain death (BD) causes irreversible damage to the liver tissue. Recently, glucagon-like peptide-1 (GLP1) analogues were shown to possess interesting hepatic protection effects in different liver disease models. We hypothesized that donor treatment with the GLP1 analogue exendin-4 (Ex-4) could alleviate BD-induced liver damage. A rat model of BD was employed in order to estimate BD-induced liver damage and Ex-4's potential protective effects. Liver damage was assessed by biochemical determination of circulating hepatic markers. Apoptosis in the hepatic tissue was assessed by immunoblot and immunohistochemistry using an antibody that only recognizes the active form of caspase-3. Gene expression changes in inflammation and stress response genes were monitored by quantitative real-time polymerase chain reaction. Here, we show that Ex-4 administration to the brain dead liver donors significantly reduces levels of circulating aspartate aminotransferase and lactate dehydrogenase. This was accompanied by a remarkable reduction in hepatocyte apoptosis. In this model, BD caused up-regulation of tumor necrosis factor and stress-related genes, confirming previous findings in clinical and animal studies. In conclusion, treatment of brain dead rats with Ex-4 reduced BD-induced liver damage. Further investigation is needed to determine the molecular basis of the observed liver protection. After testing in a randomized clinical trial, the inclusion of GLP1 analogues in organ donor management might help to improve organ quality, maximize organ donation, and possibly increase liver transplantation success rates.

    Topics: Animals; Apoptosis; Brain Death; Caspase 3; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Exenatide; Gene Expression Regulation; Glucagon-Like Peptide 1; Hypoglycemic Agents; Immunoblotting; Immunohistochemistry; Liver; Liver Diseases; Liver Transplantation; Male; Peptides; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Venoms

2015
Chronic high-fat feeding increases GIP and GLP-1 secretion without altering body weight.
    American journal of physiology. Gastrointestinal and liver physiology, 2015, Nov-15, Volume: 309, Issue:10

    The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), enhance postprandial insulin secretion, promote adipogenesis, and regulate gastrointestinal motility and food intake. To date, a consensus on how the incretin response is altered in obesity is lacking. We investigated the effects of chronic high-fat (HF) feeding on incretin secretion in the lymph fistula rat model. Male Sprague-Dawley rats (8 wk) were provided a semipurified AIN93M HF or low-fat (LF) diet ad libitum for 3 or 13 wk; a HF pair-fed (HF-PF) group was included as a control during the 3-wk feeding trial. Energy intake, body weight, and body composition were regularly monitored. At the culmination of the feeding period, an intestinal lymphatic duct cannula and duodenal infusion tube were installed. All animals were challenged with a 3-ml Ensure bolus (3.125 kcal/animal) to measure lymphatic incretin secretion. Despite a significantly higher energy intake, both the 3-wk and 13-wk HF-fed animals did not have an increase in body weight and only a slight increase in body fat compared with LF-fed rats. Following the duodenal Ensure challenge, the 3-wk and 13-wk HF-fed rats had significantly greater lymphatic GIP and GLP-1 secretion than the LF-fed animals. Additionally, the HF-PF group displayed a secretion profile similar to the HF-fed animals for GIP but a similar pattern to the LF-fed animals for GLP-1. The HF-PF data suggest that the increased GIP secretion is driven by the greater percentage of fat intake, whereas the increased GLP-1 secretion is driven by the excess caloric intake.

    Topics: Adipogenesis; Animals; Body Composition; Body Weight; Diet, High-Fat; Dietary Fats; Disease Models, Animal; Gastric Inhibitory Polypeptide; Gastrointestinal Motility; Glucagon-Like Peptide 1; Incretins; Insulin; Insulin Secretion; Male; Obesity; Postprandial Period; Rats; Rats, Sprague-Dawley

2015
Glucagon Like Peptide-1 (GLP-1) Modulates OVA-Induced Airway Inflammation and Mucus Secretion Involving a Protein Kinase A (PKA)-Dependent Nuclear Factor-κB (NF-κB) Signaling Pathway in Mice.
    International journal of molecular sciences, 2015, Aug-26, Volume: 16, Issue:9

    Asthma is a common chronic pulmonary inflammatory disease, featured with mucus hyper-secretion in the airway. Recent studies found that glucagon like peptide-1 (GLP-1) analogs, including liraglutide and exenatide, possessed a potent anti-inflammatory property through a protein kinase A (PKA)-dependent signaling pathway. Therefore, the aim of current study was to investigate the value of GLP-1 analog therapy liraglutide in airway inflammation and mucus secretion in a murine model of ovalbumin (OVA)-induced asthma, and its underlying molecular mechanism. In our study, BALB/c mice were sensitized and challenged by OVA to induce chronic asthma. Pathological alterations, the number of cells and the content of inflammatory mediators in bronchoalveolar lavage fluid (BALF), and mucus secretion were observed and measured. In addition, the mRNA and protein expression of E-selectin and MUC5AC were analyzed by qPCR and Western blotting. Then, the phosphorylation of PKA and nuclear factor-κB (NF-κB) p65 were also measured by Western blotting. Further, NF-κB p65 DNA binding activity was detected by ELISA. OVA-induced airway inflammation, airway mucus hyper-secretion, the up-regulation of E-selectin and MUC5AC were remarkably inhibited by GLP-1 in mice (all p < 0.01). Then, we also found that OVA-reduced phosphorylation of PKA, and OVA-enhanced NF-κB p65 activation and NF-κB p65 DNA binding activity were markedly improved by GLP-1 (all p < 0.01). Furthermore, our data also figured out that these effects of GLP-1 were largely abrogated by the PKA inhibitor H-89 (all p < 0.01). Taken together, our results suggest that OVA-induced asthma were potently ameliorated by GLP-1 possibly through a PKA-dependent inactivation of NF-κB in mice, indicating that GLP-1 analogs may be considered an effective and safe drug for the potential treatment of asthma in the future.

    Topics: Animals; Asthma; Bronchoalveolar Lavage Fluid; Cyclic AMP-Dependent Protein Kinases; Cytokines; Disease Models, Animal; E-Selectin; Glucagon-Like Peptide 1; Inflammation Mediators; Leukocyte Count; Leukocytes; Mice; Mucus; NF-kappa B; Ovalbumin; Signal Transduction

2015
Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance.
    Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance, 2015, Nov-06, Volume: 17

    Cardiovascular complications of obesity and diabetes are major health problems. Assessing their development, their link with ectopic fat deposition and their flexibility with therapeutic intervention is essential. The aim of this study was to longitudinally investigate cardiac alterations and ectopic fat accumulation associated with diet-induced obesity using multimodal cardiovascular magnetic resonance (CMR) in mice. The second objective was to monitor cardiac response to exendin-4 (GLP-1 receptor agonist).. Male C57BL6R mice subjected to a high fat (35 %) high sucrose (34 %) (HFHSD) or a standard diet (SD) during 4 months were explored every month with multimodal CMR to determine hepatic and myocardial triglyceride content (HTGC, MTGC) using proton MR spectroscopy, cardiac function with cine cardiac MR (CMR) and myocardial perfusion with arterial spin labeling CMR. Furthermore, mice treated with exendin-4 (30 μg/kg SC BID) after 4 months of diet were explored before and 14 days post-treatment with multimodal CMR.. HFHSD mice became significantly heavier (+33 %) and displayed glucose homeostasis impairment (1-month) as compared to SD mice, and developed early increase in HTGC (1 month, +59 %) and MTGC (2-month, +63 %). After 3 months, HFHSD mice developed cardiac dysfunction with significantly higher diastolic septum wall thickness (sWtnD) (1.28 ± 0.03 mm vs. 1.12 ± 0.03 mm) and lower cardiac index (0.45 ± 0.06 mL/min/g vs. 0.68 ± 0.07 mL/min/g, p = 0.02) compared to SD mice. A significantly lower cardiac perfusion was also observed (4 months:7.5 ± 0.8 mL/g/min vs. 10.0 ± 0.7 mL/g/min, p = 0.03). Cardiac function at 4 months was negatively correlated to both HTGC and MTGC (p < 0.05). 14-day treatment with Exendin-4 (Ex-4) dramatically reversed all these alterations in comparison with placebo-treated HFHSD. Ex-4 diminished myocardial triglyceride content (-57.8 ± 4.1 %), improved cardiac index (+38.9 ± 10.9 %) and restored myocardial perfusion (+52.8 ± 16.4 %) under isoflurane anesthesia. Interestingly, increased wall thickness and hepatic steatosis reductions were independent of weight loss and glycemia decrease in multivariate analysis (p < 0.05).. CMR longitudinal follow-up of cardiac consequences of obesity and diabetes showed early accumulation of ectopic fat in mice before the occurrence of microvascular and contractile dysfunction. This study also supports a cardioprotective effect of glucagon-like peptide-1 receptor agonist.

    Topics: Adiposity; Animals; Blood Glucose; Coronary Circulation; Diabetes Mellitus; Diet, High-Fat; Dietary Sucrose; Disease Models, Animal; Exenatide; Fatty Liver; Glucagon-Like Peptide 1; Heart Diseases; Liver; Magnetic Resonance Imaging, Cine; Male; Mice, Inbred C57BL; Multimodal Imaging; Multivariate Analysis; Myocardial Contraction; Myocardial Perfusion Imaging; Myocardium; Obesity; Peptides; Predictive Value of Tests; Proton Magnetic Resonance Spectroscopy; Recovery of Function; Time Factors; Triglycerides; Venoms; Ventricular Function; Weight Gain

2015
Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass.
    International journal of clinical and experimental pathology, 2015, Volume: 8, Issue:12

    Bile acid plays an important role in regulating blood glucose, lipid and energy metabolism. The present study was implemented to determine the effect of duodenal-jejunal bypass (DJB) on FXR, TGR-5expression in terminal ileum and its bile acid-related mechanism on glucose and lipid metabolism. Immunohistochemistry was used to detect relative gene or protein expression in liver and intestine. Firstly, we found that expression of FXR in liver and terminal ileum of DJB group was significantly higher than that in S-DJB group (P<0.05). In addition, DJB dramatically increased the activation of TGR-5 in the liver of rats. Furthermore, PEPCK, G6Pase, FBPase 1 and GLP-1 were up-regulated by DJB. In conclusion, these results showed that bile acid ameliorated glucose and lipid metabolism through bile acid-FXR and bile acid- TGR-5 signaling pathway.

    Topics: Anastomosis, Surgical; Animals; Bile Acids and Salts; Diabetes Mellitus, Type 2; Disease Models, Animal; Duodenum; Fructose-Bisphosphatase; Glucagon-Like Peptide 1; Glucose; Glucose-6-Phosphatase; Ileum; Intracellular Signaling Peptides and Proteins; Jejunum; Lipid Metabolism; Liver; Phosphoenolpyruvate Carboxykinase (GTP); Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Receptors, G-Protein-Coupled

2015
Novel GPR119 agonist HD0471042 attenuated type 2 diabetes mellitus.
    Archives of pharmacal research, 2014, Volume: 37, Issue:5

    In type 2 diabetes mellitus (T2DM) patients, the gradual loss of pancreatic β-cell function is a characteristic feature of disease progression that is associated with sustained hyperglycemia. Recently, G protein-coupled receptor 119 (GPR119) has been identified as a promising anti-diabetic therapeutic target. It is predominantly expressed in pancreatic β-cells, directly promotes glucose stimulated insulin secretion and indirectly increases glucagon-like peptide 1 (GLP-1) levels reducing appetite and food intake. Activation of GPR119 leads to insulin release in β-cells by increasing intracellular cAMP. Here, we identified a novel structural class of small-molecule GPR119 agonists, HD0471042, consisting of substituted a 3-isopropyl-1,2,4-oxadiazol-piperidine derivative with promising potential for the treatment of T2DM. The GPR119 agonist, HD0471042 increased intracellular cAMP levels in stably human GPR119 expressing CHO cell lines and HIT-T15 cell lines, hamster β-cell line expressing endogenously GPR119. HD0471042, significantly elevated insulin release in INS-1 cells of rat pancreatic β-cell line. In in vivo experiments, a single dose of HD0471042 improved glucose tolerance. Insulin and GLP-1 level were increased in a dose-dependent manner. Treatment with HD0471042 for 6 weeks in diet induced obesity mice and for 4 weeks in ob/ob and db/db mice improved glycemic control and also reduced weight gain in a dose-dependent manner. These data demonstrate that the novel GPR119 agonist, HD0471042, not only effectively controlled glucose levels, but also had an anti-obesity effect, a feature observed with GLP-1. We therefore suggest that HD0471042 represents a new type of anti-diabetes agent with anti-obesity potential for the effective treatment of type 2 diabetes.

    Topics: Animals; Anti-Obesity Agents; Blood Glucose; CHO Cells; Cricetulus; Cyclic AMP; Diabetes Mellitus, Type 2; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Design; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Insulin; Insulin-Secreting Cells; Male; Mice, Inbred C57BL; Obesity; Oxadiazoles; Piperidines; Rats; Receptors, G-Protein-Coupled; Structure-Activity Relationship; Time Factors; Transfection; Weight Gain

2014
Incretin response to a standard test meal in a rat model of sleeve gastrectomy with diet-induced obesity.
    Obesity surgery, 2014, Volume: 24, Issue:1

    Currently, the most effective treatment for obesity is bariatric surgery. Gastroduodenal bypass surgery produces sustained weight loss and improves glycemic control and insulin sensitivity. Previous studies have shown that sleeve gastrectomy (SG) produces similar results and implicate changes in incretin hormone release in these effects.. Male Sprague-Dawley rats were divided into four groups; lean control (lean), diet-induced obesity (DIO), DIO animals that had undergone SG (SG), and DIO animals that had undergone a sham operation (sham).. After a 2-week recovery period, the incretin response to a standard test meal was measured. Blood sampling was performed in free-moving rats at various time points using chronic vascular access to the right jugular vein. There was a significant increase in the bodyweight of DIO animals fed a high-fat/high-sugar diet compared with the lean animals, which was reversed by SG. DIO caused an impairment of the GLP-1 response to a standard test meal, but not the GIP response. SG resulted in a dramatic increase in the GLP-1 response to a standard test meal but had no effect on the GIP response.. A rapid rise in blood sugar was observed in the SG group following a standard test meal that was followed by reactive hypoglycemia. SG dramatically increases the GLP-1 response to a standard test meal but has no effect on GIP in a rat model of DIO.

    Topics: Animals; Blood Glucose; Diet; Disease Models, Animal; Gastrectomy; Glucagon-Like Peptide 1; Incretins; Male; Obesity; Rats; Rats, Sprague-Dawley

2014
Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer's disease.
    Neuropharmacology, 2014, Volume: 76 Pt A

    Type 2 diabetes is a risk factor in the development of Alzheimer's disease (AD). It has been shown that insulin signalling is desensitised in the brains of AD patients. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and long-lasting analogues such as liraglutide (Victoza(®)) are on the market as type 2 diabetes treatments. We have previously shown that liraglutide improved cognitive function, reduced amyloid plaque deposition, inflammation, overall APP and oligomer levels and enhanced LTP when injected peripherally for two months in 7 month old APPswe/PS1ΔE9 (APP/PS1) mice. This showed that liraglutide has preventive effects at the early stage of AD development. The current study investigated whether Liraglutide would have restorative effects in late-stage Alzheimer's disease in mice. Accordingly, 14-month-old APP/PS1 and littermate control mice were injected with Liraglutide (25 nmol/kg bw) ip. for 2 months. Spatial memory was improved by Liraglutide-treatment in APP/PS1 mice compared with APP/PS1 saline-treated mice. Overall plaque load was reduced by 33%, and inflammation reduced by 30%, while neuronal progenitor cell count in the dentate gyrus was increased by 50%. LTP was significantly enhanced in APP/PS1 liraglutide-treated mice compared with APP/PS1 saline mice, corroborated with increased synapse numbers in hippocampus and cortex. Total brain APP and beta-amyloid oligomer levels were reduced in Liraglutide-treated APP/PS1 mice while IDE levels were increased. These results demonstrate that Liraglutide not only has preventive properties, but also can reverse some of the key pathological hallmarks of AD. Liraglutide is now being tested in clinical trials in AD patients. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.

    Topics: Aging; Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Cell Count; Disease Models, Animal; Glucagon-Like Peptide 1; Inflammation; Liraglutide; Long-Term Potentiation; Male; Memory; Memory Disorders; Mice; Mice, Transgenic; Nerve Degeneration; Neuroprotective Agents; Plaque, Amyloid; Stem Cells; Synapses

2014
Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β cells.
    Cell metabolism, 2014, Jan-07, Volume: 19, Issue:1

    β cell failure in type 2 diabetes (T2D) is associated with hyperglycemia, but the mechanisms are not fully understood. Congenital hyperinsulinism caused by glucokinase mutations (GCK-CHI) is associated with β cell replication and apoptosis. Here, we show that genetic activation of β cell glucokinase, initially triggering replication, causes apoptosis associated with DNA double-strand breaks and activation of the tumor suppressor p53. ATP-sensitive potassium channels (KATP channels) and calcineurin mediate this toxic effect. Toxicity of long-term glucokinase overactivity was confirmed by finding late-onset diabetes in older members of a GCK-CHI family. Glucagon-like peptide-1 (GLP-1) mimetic treatment or p53 deletion rescues β cells from glucokinase-induced death, but only GLP-1 analog rescues β cell function. DNA damage and p53 activity in T2D suggest shared mechanisms of β cell failure in hyperglycemia and CHI. Our results reveal membrane depolarization via KATP channels, calcineurin signaling, DNA breaks, and p53 as determinants of β cell glucotoxicity and suggest pharmacological approaches to enhance β cell survival in diabetes.

    Topics: Animals; Biomarkers; Calcineurin; Cell Death; Cell Proliferation; Congenital Hyperinsulinism; Diabetes Mellitus, Type 2; Disease Models, Animal; DNA Breaks, Double-Stranded; Enzyme Activation; Enzyme Induction; Fasting; Glucagon-Like Peptide 1; Glucokinase; Glucose; Humans; Insulin-Secreting Cells; Membrane Potentials; Mice; Transgenes; Tumor Suppressor Protein p53

2014
Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes.
    Biochemical and biophysical research communications, 2014, Jan-17, Volume: 443, Issue:3

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbation of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy.. Five-week-old male Sprague-Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks.. PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney.. These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose.

    Topics: Adamantane; Animals; Anti-Inflammatory Agents; Cyclic AMP; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetic Nephropathies; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Kidney Diseases; Kidney Glomerulus; Male; Nitriles; Protective Agents; Pyrrolidines; Rats; Rats, Sprague-Dawley

2014
APOE*3Leiden.CETP transgenic mice as model for pharmaceutical treatment of the metabolic syndrome.
    Diabetes, obesity & metabolism, 2014, Volume: 16, Issue:6

    This study aimed to investigate systematically (i) the appropriate dietary conditions to induce the features of the MetS in APOE*3Leiden.humanCholesteryl Ester Transfer Protein (E3L.CETP) mice and (ii) whether the response of this model to different antidiabetic and hypolipidemic drugs is similar as in humans.. Male obese, IR and dyslipidemic E3L.CETP mice were treated with antidiabetic drugs rosiglitazone, liraglutide or an experimental 11β-hydroxysteroid-dehydrogenase-1 (HSD-1) inhibitor, or with hypolipidemic drugs atorvastatin, fenofibrate or niacin for 4-6 weeks. The effects on bw, IR and plasma and liver lipids were assessed.. Rosiglitazone, liraglutide and HSD-1 inhibitor significantly decreased glucose and insulin levels or IR. Liraglutide and HSD-1 inhibitor also decreased bw. Atorvastatin, fenofibrate and niacin improved the dyslipidemia and fenofibrate and niacin increased high-density lipoprotein (HDL) cholesterol. In addition, hepatic triglycerides were significantly decreased by treatment with rosiglitazone and liraglutide, while hepatic cholesterol esters were significantly decreased by rosiglitazone and atorvastatin.. We conclude that the E3L.CETP mouse is a promising novel translational model to investigate the effects of new drugs, alone or in combination, that affect IR, diabetic dyslipidemia and non-alcoholic fatty liver disease (NAFLD).

    Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Animals; Apolipoprotein E3; Atorvastatin; Cholesterol Ester Transfer Proteins; Disease Models, Animal; Fenofibrate; Glucagon-Like Peptide 1; Heptanoic Acids; Humans; Hypoglycemic Agents; Hypolipidemic Agents; Liraglutide; Male; Metabolic Syndrome; Mice, Transgenic; Niacin; Non-alcoholic Fatty Liver Disease; Obesity; Pyrroles; Rosiglitazone; Thiazolidinediones

2014
Effect of sitagliptin treatment on metabolism and cardiac function in genetic diabetic mice.
    European journal of pharmacology, 2014, Jan-15, Volume: 723

    To investigate the chronic effect of sitagliptin (7-[(3R)-3-amino-1-oxo-4-(2,4,5-trifluorophenyl)butyl]-5,6,7,8-tetrahydro-(3-(trifluoromethyl)-1,2,4-triazolo[4,3-a]pyrazine phosphate (1:1) monohydrate, SIT) on metabolism and cardiac function in genetic diabetic Akita mice, 10 weeks old Akita mice were either exposed for 4 months to a high fat and high cholesterol (HF-HC) diet, with or without 10mg/kg/day SIT, or were fed for 3 months with the same diet with or without 50mg/kg/day SIT. SIT treatment of Akita mice at either a low or high dose did not affect body or liver weight. A significant increase in subcutaneous and gonadal fat mass was only observed for the 50mg/kg/day dose of SIT. Furthermore, only the 50mg/kg/day SIT dose resulted in an improvement of glycemic control, as evidenced by a decrease in fasting blood HbA1c levels and an increase in plasma adiponectin levels. Echocardiographic analysis revealed that Akita mice kept on the HF-HC diet with 10mg/kg/day of SIT for 4 months showed an increase in ejection fraction and fractional shortening, whereas the higher dose (50mg/kg/day) had no effect on these parameters, but instead induced left ventricular (LV) hypertrophy as evidenced by an enlarged LV internal diameter, volume and mass. Thus, in the diabetic Akita mouse SIT is cardioprotective at a low dose (10mg/kg/day), whereas improvement of glycemic control requires a higher dose (50mg/kg/day) which, however, induces LV hypertrophy. This mouse model may thus be useful to study the safety of anti-diabetic drugs.

    Topics: Adiponectin; Animals; Blood Glucose; Body Weight; Diabetes Mellitus; Diet, High-Fat; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glycated Hemoglobin; Heart; Heart Function Tests; Hypoglycemic Agents; Insulin; Male; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Myocardium; Pyrazines; Sitagliptin Phosphate; Triazoles

2014
CD36- and GPR120-mediated Ca²⁺ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice.
    Gastroenterology, 2014, Volume: 146, Issue:4

    It is important to increase our understanding of gustatory detection of dietary fat and its contribution to fat preference. We studied the roles of the fat taste receptors CD36 and GPR120 and their interactions via Ca(2+) signaling in fungiform taste bud cells (TBC).. We measured Ca(2+) signaling in human TBC, transfected with small interfering RNAs against messenger RNAs encoding CD36 and GPR120 (or control small interfering RNAs). We also studied Ca(2+) signaling in TBC from CD36(-/-) mice and from wild-type lean and obese mice. Additional studies were conducted with mouse enteroendocrine cell line STC-1 that express GPR120 and stably transfected with human CD36. We measured release of serotonin and glucagon-like peptide-1 from human and mice TBC in response to CD36 and GPR120 activation.. High concentrations of linoleic acid induced Ca(2+) signaling via CD36 and GPR120 in human and mice TBC, as well as in STC-1 cells, and low concentrations induced Ca(2+) signaling via only CD36. Incubation of human and mice fungiform TBC with lineoleic acid down-regulated CD36 and up-regulated GPR120 in membrane lipid rafts. Obese mice had decreased spontaneous preference for fat. Fungiform TBC from obese mice had reduced Ca(2+) and serotonin responses, but increased release of glucagon-like peptide-1, along with reduced levels of CD36 and increased levels of GPR120 in lipid rafts.. CD36 and GPR120 have nonoverlapping roles in TBC signaling during orogustatory perception of dietary lipids; these are differentially regulated by obesity.

    Topics: Animals; Behavior, Animal; Calcium Signaling; CD36 Antigens; Cell Line; Diet, High-Fat; Disease Models, Animal; Food Preferences; Glucagon-Like Peptide 1; Humans; Inositol 1,4,5-Trisphosphate; Linoleic Acid; Membrane Microdomains; Mice; Mice, Inbred C57BL; Mice, Knockout; Obesity; Receptors, G-Protein-Coupled; RNA Interference; Serotonin; Taste; Taste Buds; Taste Perception; Transfection

2014
Double-strand adeno-associated virus-mediated exendin-4 expression in salivary glands is efficient in a diabetic rat model.
    Diabetes research and clinical practice, 2014, Volume: 103, Issue:3

    Exendin-4 (Ex-4) is an agonist of the glucagon-like peptide 1 (GLP-1) receptor, approved for the treatment of type 2 diabetes (T2DM). Several strategies have been tried to develop stable and efficacious Ex-4 expression systems. The purpose of the current study was to determine whether double-stranded adeno-associated virus (dsAAV)-mediated in vivo expression of exendin-4 in salivary glands (SG), improves pathology in the Sprague-Dawley (SD) rat model of diabetes mellitus (DM).. The effects of Ex-4 expression by recombinant dsAAV-NT4-Ex-4 were evaluated in vitro compared with a single-strand (ss) AAV. The dsAAV was delivered into SGs and the blood glucose and insulin levels were assessed in a rat model of DM.. DsAAV-NT4-Ex-4 virus induces significant exendin-4 expression in vitro. Furthermore, Ex-4 expressed from dsAAV virus in SGs enhances insulins secretion in vivo and significantly controls the onset of hyperglycemia in rat model of DM.. Results suggest that sustained secretion of Ex-4 following dsAAV-mediated gene therapy is feasible. SGs appear to be promising targets with potential clinical applicability for the treatment of DM. This represents the example of a successful use of Ex-4 for diabetes therapy, providing support for direct AAV-mediated in vivo as an easy, safe and efficient therapeutic strategy.

    Topics: Animals; Blood Glucose; Dependovirus; Diabetes Mellitus, Experimental; Disease Models, Animal; Exenatide; Genetic Therapy; Genetic Vectors; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; HEK293 Cells; Humans; Hypoglycemic Agents; Immunoenzyme Techniques; Insulin; Mice; NIH 3T3 Cells; Peptides; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Salivary Glands; Venoms

2014
Glucagon-like peptide-1 protects synaptic and learning functions from neuroinflammation in rodents.
    Journal of neuroscience research, 2014, Volume: 92, Issue:4

    Glucagon-like peptide-1 (GLP-1) is derived from the processing of proglucagon in intestinal L-cells and releases insulin from pancreatic β-cells as an incretin. The GLP-1 receptor has been proposed as a possible therapeutic target for the treatment of Alzheimer's disease, in which neuroinflammation is critical in the pathogenesis. The present study investigates whether GLP-1 (7-36) amide, an active fragment of GLP-1, protected against synaptic impairments induced by inflammation-related injurious agents (lipopolysaccharide [LPS], interleukin-1β [IL-1β], and H2 O2). In the Y-maze test, LPS (10 μg/mouse, i.c.v) significantly decreased the percentage alternation. Pretreatment with GLP-1 (7-36) amide (0.09-0.9 nmol/mouse, i.c.v.) prevented an impairment in spontaneous alternation performance. Pretreatment with LPS (10 μg/ml, 2 hr) impaired LTP induction but not paired-pulse facilitation in the CA1 region of rat hippocampal slices. This impairment was prevented by cotreatment with GLP-1 (7-36) amide (50 nM). IL-1β (0.57 nM) or H2 O2 (50 μM) also impaired LTP induction. This impairment was prevented by GLP-1 (7-36) amide (50 nM). These results suggest that GLP-1 (7-36) amide improves the synaptic impairments induced by inflammation-related injurious agents in the CA1 region of the hippocampus.

    Topics: Analysis of Variance; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Encephalitis; Excitatory Postsynaptic Potentials; Glucagon-Like Peptide 1; Hippocampus; Hydrogen Peroxide; In Vitro Techniques; Learning Disabilities; Lipopolysaccharides; Long-Term Potentiation; Male; Maze Learning; Motor Activity; Rats, Wistar; Synapses

2014
The incretin hormones glucagonlike peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer's disease.
    Alzheimer's & dementia : the journal of the Alzheimer's Association, 2014, Volume: 10, Issue:1 Suppl

    The incretin hormones glucagonlike peptide 1 and glucose-dependent insulinotropic polypeptide (GIP) have been developed to treat type 2 diabetes and also act as growth factors. We have tested several long-acting incretin mimetics in the amyloid precursor protein (APP)(Swe)/presenilin 1 (PS1)(ΔE9) model of Alzheimer's disease (AD). We found that liraglutide, lixisenatide, and D-Ala2-GIP cross the blood-brain barrier and prevent the impairment in memory formation and synaptic plasticity, increase synapse numbers, reduce amyloid plaque load and soluble amyloid-β levels, reduce oxidative stress and the chronic inflammation response in the brain, enhance the proliferation of neuronal progenitor cells, and increase neurogenesis in the dentate gyrus. In an (18)fluorodeoxyglucoe positron emission tomographic/computed tomographic imaging study in PLB1-triple mice, a mouse model that expresses human mutated APP, PS1, and tau proteins, glucose metabolism was found to be normalized in forebrain areas after liraglutide treatment, demonstrating that neuronal metabolic activity was normalized. A clinical trial testing liraglutide in patients with AD is currently ongoing.

    Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Humans; Mice; Mice, Transgenic; Neuroprotective Agents; Presenilin-1

2014
Liraglutide alleviates diabetic cardiomyopathy by blocking CHOP-triggered apoptosis via the inhibition of the IRE-α pathway.
    Molecular medicine reports, 2014, Volume: 9, Issue:4

    Clinically, diabetes mellitus is closely associated with and induces certain cardiovascular diseases. The aim of this study was to investigate endoplasmic reticulum (ER) stress-associated apoptosis of diabetic cardiomyopathy (DCM), and explore the protective mechanism of liraglutide. The DCM model was established with a high-fat diet and streptozotocin (STZ). Cardiac function was detected by echocardiogram examination and hematoxylin-eosin staining. ER stress unfolded protein response (UPR) hallmarks [inositol-requiring enzyme-α (IRE-α), p-Perk and ATF6] and transcription factors were detected with western blotting. Apoptosis inducers CHOP, c-Jun amino terminal kinase (JNK) and casapse-12 were also examined with western blotting. The results indicated that liraglutide is capable of improving cardiac function in DCM rats (P<0.05). IRE-α expression was significantly increased in the DCM group compared with the control group (P<0.05), and liraglutide is capable of decreasing IRE-α expression. X-box transcription factor-1 (XBP-1) was significantly spliced in the model group, and downregulated in the liraglutide-treated group. CHOP protein was upregulated in the DCM group, but inactivated by liraglutide treatment. In conclusion, liraglutide is capable of protecting DCM and blocking CHOP-mediated ER stress by inhibiting the IRE-α UPR pathway.

    Topics: Animals; Apoptosis; Blood Glucose; Diabetic Cardiomyopathies; Disease Models, Animal; Electrocardiography; Endoplasmic Reticulum Stress; Endoribonucleases; Fasting; Glucagon-Like Peptide 1; Liraglutide; Male; Mice; Multienzyme Complexes; Myocardium; Myocytes, Cardiac; Protein Serine-Threonine Kinases; Rats; Rats, Wistar; Signal Transduction; Transcription Factor CHOP; Ultrasonography

2014
Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimer's disease.
    Behavioural brain research, 2014, Jul-01, Volume: 267

    Alzheimer's disease (AD), the most common form of dementia, is characterized by the loss of normal functions of brain cells and neuronal death, ultimately leading to memory loss. Recent accumulating evidences have demonstrated the therapeutic potential of anti-diabetic agents, such as dipeptidyl peptidase-4 (DPP-4) inhibitors, for the treatment of Alzheimer's disease (AD), providing opportunities to explore and test the DPP-4 inhibitors for treating this fatal disease. Prior studies determining the efficacy of Pterocarpus marsupium (PM, Fabaceae) and Eugenia jambolana (EJ, Myrtaceae) extracts for ameliorating type 2 diabetes have demonstrated the DPP-4 inhibitory properties indicating the possibility of using of these extracts even for the treating AD. Therefore, in the present study, the neuroprotective roles of PM and EJ for ameliorating the streptozotocin (STZ) induced AD have been tested in rat model. Experimentally, PM and EJ extracts, at a dose range of 200 and 400mg/kg, were administered orally to STZ induced AD Wistar rats and cognitive evaluation tests were performed using radial arm maze and hole-board apparatus. Following 30 days of treatment with the extracts, a dose- and time-dependent attenuation of AD pathology, as evidenced by decreasing amyloid beta 42, total tau, phosphorylated tau and neuro-inflammation with an increase in glucagon-like peptide-1 (GLP-1) levels was observed. Therefore, PM and EJ extracts contain cognitive enhancers as well as neuroprotective agents against STZ induced AD.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Cognition Disorders; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Glucagon-Like Peptide 1; Hippocampus; Male; Maze Learning; Neuroprotective Agents; Peptide Fragments; Phosphorylation; Phytotherapy; Plant Preparations; Plaque, Amyloid; Pterocarpus; Rats, Wistar; Streptozocin; Syzygium; tau Proteins; Time Factors

2014
Prophylactic effects of the glucagon-like Peptide-1 analog liraglutide on hyperglycemia in a rat model of type 2 diabetes mellitus associated with chronic pancreatitis and obesity.
    Comparative medicine, 2014, Volume: 64, Issue:2

    The objective of this study was to investigate the effects of liraglutide, an analog of human glucagon-like peptide 1 (GLP1), on WBN/Kob-Lepr(fa) (fa/fa) rats, which spontaneously develop type 2 diabetes mellitus with pancreatic disorder and obesity. Male fa/fa rats (age, 7 wk) were allocated into 4 groups and received liraglutide (37.5, 75, 150 μg/kg SC) or saline (control group) once daily for 4 wk. All rats in the control group became overweight and developed hyperglycemia as they aged. Although the rats given liraglutide showed a dose-dependent reduction in food intake, no significant effects on body weight or fat content occurred. In the liraglutide groups, the development of hyperglycemia was suppressed, even as plasma insulin concentrations increased in a dose-dependent manner. Intravenous glucose tolerance testing of the liraglutide-treated rats confirmed improvement of glucose tolerance and enhanced insulin secretion. Histologic examination revealed increased numbers of pancreatic β-cell type islet cells and increased proliferation of epithelial cells of the small ducts in the liraglutide-treated groups. Although our study did not reveal a significant decrease in obesity after liraglutide administration, the results suggest a marked antidiabetic effect characterized by increased insulin secretion in fa/fa rats with pancreatic disorders.

    Topics: Adiposity; Age Factors; Animals; Body Weight; Diabetes Mellitus, Type 2; Disease Models, Animal; Dose-Response Relationship, Drug; Glucagon-Like Peptide 1; Hyperglycemia; Insulin; Liraglutide; Male; Obesity; Pancreatitis, Chronic; Pre-Exposure Prophylaxis; Rats

2014
Duodenal-Jejunal bypass improves glucose homeostasis in association with decreased proinflammatory response and activation of JNK in the liver and adipose tissue in a T2DM rat model.
    Obesity surgery, 2014, Volume: 24, Issue:9

    There is accumulating evidence that obesity leads to a proinflammatory state, which plays crucial roles in insulin resistance and development of type 2 diabetes mellitus (T2DM). Previous studies demonstrated that weight loss after bariatric surgery was accompanied by a suppression of the proinflammatory state. However, the effect of bariatric surgery on the proinflammatory state and associated signaling beyond weight loss is still elusive. The objective of this study was to investigate the effect of duodenal-jejunal bypass (DJB) on glucose homeostasis, the proinflammatory state and the involving signaling independently of weight loss.. A high-fat diet and low-dose streptozotocin administration were used to induce T2DM in male Sprague-Dawley rats. The diabetic rats underwent DJB or sham surgery. The blood glucose, glucose tolerance and insulin resistance were determined to evaluate the glucose homeostasis. Serum insulin, GLP-1 and hsCRP were detected by ELISA. The gene expression of TNF-α, IL-6, IL-1β and MCP-1 in liver and fat was determined by quantitative real-time RT-PCR. The JNK activity and serine phosphorylation of IRS-1 in liver and adipose tissue were determined by Western blotting.. Compared to the S-DJB group, DJB induced significant and sustained glycemic control with improved insulin sensitivity and glucose tolerance independently of weight loss. DJB improved the proinflammatory state indicated by decreased circulating hsCRP and proinflammatory gene expression in the liver and adipose tissue. The JNK activity and serine phosphorylation of IRS-1 in liver and adipose tissue were significantly reduced after DJB.. DJB achieved a rapid and sustainable glycemic control independently of weight loss. The data indicated that the improved proinflammatory state and decreased JNK activity after DJB may contribute to the improved glucose homeostasis.

    Topics: Adipose Tissue; Animals; Blood Glucose; Chemokine CCL2; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Duodenum; Gastric Bypass; Glucagon-Like Peptide 1; Insulin Receptor Substrate Proteins; Insulin Resistance; Interleukins; Jejunum; Liver; Male; MAP Kinase Signaling System; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha; Weight Loss

2014
Detection of impaired cognitive function in rat with hepatosteatosis model and improving effect of GLP-1 analogs (exenatide) on cognitive function in hepatosteatosis.
    TheScientificWorldJournal, 2014, Volume: 2014

    The aims of the study were to evaluate (1) detection of cognitive function changing in rat with hepatosteatosis model and (2) evaluate the effect of GLP-1 analog (exenatide) on cognitive function in hepatosteatosis. In the study group, 30% fructose was given in nutrition water to perform hepatosteatosis for 8 weeks to 18 male rats. Six male rats were chosen as control group and had normal nutrition. Fructose nutrition group were stratified into 3 groups. In first group (n = 6), intracerebroventricular (ICV) infusion of exenatide (n = 6) was given. ICV infusion of NaCl (n = 6) was given to second group. And also, the third group had no treatment. And also, rats were evaluated for passive avoidance learning (PAL) and liver histopathology. Mean levels of latency time were statistically significantly decreased in rats with hepatosteatosis than those of normal rats (P < 0.00001). However, mean level of latency time in rats with hepatosteatosis treated with ICV exenatide was statistically significantly increased than that of rats treated with ICV NaCl (P < 0.001). Memory performance falls off in rats with hepatosteatosis feeding on fructose (decreased latency time). However, GLP-1 ameliorates cognitive functions (increased latency time) in rats with hepatosteatosis and releated metabolic syndrome.

    Topics: Animals; Cognition; Disease Models, Animal; Exenatide; Fatty Liver; Glucagon-Like Peptide 1; Hypoglycemic Agents; Male; Peptides; Rats; Venoms

2014
Impact of the hepatic branch of the vagus and Roux-en-Y gastric bypass on the hypoglycemic effect and glucagon-like peptide-1 in rats with type 2 diabetes mellitus.
    The Journal of surgical research, 2014, Volume: 191, Issue:1

    The impact of the hepatic branch of the vagus and Roux-en-Y gastric bypass (RYGB) on the hypoglycemic effect and glucagon-like peptide-1 (GLP-1) in rats with type 2 diabetes mellitus (T2DM) was investigated, and interactions were preliminarily analyzed.. A total of 45 rats with T2DM were divided into four groups: sham operation (S, n = 10), sham operation with the hepatic branch of the vagus resected (SV, n = 11), RYGB (n = 12), and RYGB without preservation of the vagus (RYGBV, n = 12). Body mass, fasting blood glucose (FBG), fasting serum insulin, and concentrations of fasting serum GLP-1 were examined in the first, second, fourth, and eighth week before and after surgery. The effects of RYGB and the hepatic branch of the vagus on GLP-1 levels in the eighth postoperative week were also analyzed.. RYGB caused a significant reduction in the weight of rats with T2DM (P < 0.05), improved the levels of serum GLP-1 and insulin (P < 0.05), and decreased FBG level (P < 0.05). Retention of the hepatic branch of the vagus maintained weight reduction for a longer period (P < 0.05) and increased the levels of serum GLP-1 and insulin (P < 0.05), but had no impact on FBG level (P > 0.05).. RYGB had better therapeutic efficacy in rats with T2DM. Care should be taken during RYGB surgery to preserve the hepatic branch of the vagus.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Bypass; Glucagon-Like Peptide 1; Hypoglycemia; Insulin; Liver; Male; Obesity; Postoperative Period; Rats, Sprague-Dawley; Vagotomy; Vagus Nerve; Weight Loss

2014
Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes.
    Biochimica et biophysica acta, 2014, Volume: 1842, Issue:9

    The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resistance index along the course of diabetes onset (r=-0.56, p<0.01). T2DM increased the hippocampal levels of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mitochondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced brain plasticity as evidenced by a significant reduction of BDNF-TrkB signaling. These results suggest that the pathology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy homeostasis, with profound consequences for brain function and plasticity. All the described consequences of T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar results to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest that normalization of brain energy metabolism is a crucial factor to counteract central insulin sensitivity and synaptic plasticity associated with T2DM.

    Topics: Aldehydes; Animals; Biomarkers; Blood Glucose; Brain; Crosses, Genetic; Diabetes Mellitus, Type 2; Disease Models, Animal; Energy Metabolism; Glucagon-Like Peptide 1; Hippocampus; Homeostasis; Hypoglycemic Agents; Immunoblotting; Insulin Resistance; Liraglutide; Male; Neuronal Plasticity; Obesity; Rats; Rats, Sprague-Dawley; Rats, Zucker; Receptor, Insulin

2014
Ileal effect on blood glucose, HbA1c, and GLP-1 in Goto-Kakizaki rats.
    Obesity surgery, 2014, Volume: 24, Issue:11

    There have been enumerable studies on the effects of glucagon-like peptide-1 (GLP-1) on satiety and pancreatic islet function, stimulating the advocacy of surgical transposition of the ileum (rich in GLP-1-generating L-cells) higher in the gastrointestinal tract for earlier stimulation. In the Goto-Kakizaki rat with naturally occurring type 2 diabetes, we studied the influence of ileal exclusion (IE) and ileal resection (IR) on blood glucose, hemoglobin A1c (HbA1c), and GLP-1.. In six control (Ctrl), 10 IE, and 10 IR rats, over 12 weeks of follow-up, we determined blood glucose, HbA1c, and GLP-1.. Two animals in the IE and IR groups did not survive to week 13. Both operated groups weighed more than the Ctrl group at baseline and at 13 weeks; thus, IE and IR did not retard weight gain (p < 0.05). All three groups were equally hyperglycemic at week 13: 255 ± 10.2 Ctrl, 262 ± 11.0 IE, 292 ± 17.8 IR (mg/dl ± SEM). The three groups had statistically identical markedly elevated HbA1c percentages at week 13: 14.7 ± 28 Ctrl, 11.7 ± 3.4 IE, 13.8 ± 3.5 IR (% ± SEM). The end-study GLP-1 values (pM ± SEM) were 5 ± 0.9 Ctrl, 33 ± 8.9 IE, and 25 ± 6.7 IR. P values for intergroup differences were IE vs. Ctrl 0.02, IR vs. Ctrl 0.02, and IE vs. IR 0.59.. Neither IE nor IR resulted in a decrease in the mean GLP-1 level. On the contrary, the exclusion or resection of the L-cell rich ileum raised GLP-1 levels 5- to 6-fold. This increase in the GLP-1 was not associated with the mitigation of hyperglycemia or elevated HbA1c levels.

    Topics: Anastomosis, Roux-en-Y; Animals; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon-Like Peptide 1; Glycated Hemoglobin; Ileum; Male; Rats; Rats, Inbred Strains; Weight Gain

2014
Glucagon-like peptide-1 (7-36) but not (9-36) augments cardiac output during myocardial ischemia via a Frank-Starling mechanism.
    Basic research in cardiology, 2014, Volume: 109, Issue:5

    This study examined the cardiovascular effects of GLP-1 (7-36) or (9-36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7-36 or 9-36) at 1.5, 3.0, and 10.0 pmol/kg/min in sequence for 30 min at each dose, followed by ligation of the left circumflex artery during continued infusion at 10.0 pmol/kg/min. Systemic GLP-1 (9-36) had no effect on coronary flow, blood pressure, heart rate or indices of cardiac function before or during regional myocardial ischemia. Systemic GLP-1 (7-36) exerted no cardiometabolic or hemodynamic effects prior to ischemia. During ischemia, GLP-1 (7-36) increased cardiac output by approximately 2 L/min relative to vehicle-controls (p = 0.003). This response was not diminished by treatment with the non-depolarizing ganglionic blocker hexamethonium. Left ventricular pressure-volume loops measured during steady-state conditions with graded occlusion of the inferior vena cava to assess load-independent contractility revealed that GLP-1 (7-36) produced marked increases in end-diastolic volume (74 ± 1 to 92 ± 5 ml; p = 0.03) and volume axis intercept (8 ± 2 to 26 ± 8; p = 0.05), without any change in the slope of the end-systolic pressure-volume relationship vs. vehicle during regional ischemia. GLP-1 (9-36) produced no changes in any of these parameters compared to vehicle. These findings indicate that short-term systemic treatment with GLP-1 (7-36) but not GLP-1 (9-36) significantly augments cardiac output during regional myocardial ischemia, via increases in ventricular preload without changes in cardiac inotropy.

    Topics: Animals; Cardiac Output; Disease Models, Animal; Glucagon-Like Peptide 1; Myocardial Ischemia; Peptide Fragments; Peptides; Swine

2014
Novel coumarin modified GLP-1 derivatives with enhanced plasma stability and prolonged in vivo glucose-lowering ability.
    British journal of pharmacology, 2014, Volume: 171, Issue:23

    The short biological half-life limits the therapeutic use of glucagon-like peptide-1 (GLP-1) and chemical modification to improve the interaction of peptides with serum albumin represents an effective strategy to develop long-acting peptide analogues. Coumarin, a natural product, is known to bind tightly to plasma proteins and possesses many biological activities. Therefore, we designed and synthesized a series of coumarin-modified GLP-1 derivatives, hypothesizing that conjugation with coumarin would retain the therapeutic effects and prolong the biological half-life of the conjugates.. Four cysteine-modified GLP-1 analogues (1-4) were prepared using Gly8 -GLP-1(7-36)-NH2 peptide as a starting point. These analogues were conjugated with two coumarin maleimides to yield eight compounds (conjugates 6-13) for testing. Activation of human GLP-1 receptors, stability to enzymic inactivation in plasma and binding to human albumin were assessed in vitro. In vivo, effects on oral glucose tolerance tests (OGTT) in rats and on blood glucose levels in db/db mice were studied.. Most conjugates showed well preserved receptor activation efficacy, enhanced albumin-binding properties and improved in vitro plasma stability and conjugate 7 was selected to undergo further assessment. In rats, conjugate 7 had a longer circulating t1/2 than exendin-4 or liraglutide. A prolonged antidiabetic effect of conjugate 7 was observed after OGTT in rats and a prolonged hypoglycaemic effect in db/db mice.. Cysteine-specific coumarin conjugation with GLP-1 offers a useful approach to the development of long-acting incretin-based antidiabetic agents. Conjugate 7 is a promising long-lasting GLP-1 derivative deserving further investigation.

    Topics: Animals; Coumarins; Diabetes Mellitus, Type 2; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Glucose Tolerance Test; HEK293 Cells; Humans; Hypoglycemic Agents; Insulin; Insulin Secretion; Liraglutide; Male; Mice, Inbred C57BL; Peptides; Rats, Sprague-Dawley; Receptors, Glucagon; Serum Albumin; Venoms

2014
Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease.
    Neuropharmacology, 2014, Volume: 86

    Type 2 diabetes is a risk factor for developing Alzheimer's disease (AD). In the brains of AD patients, insulin signalling is desensitised. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and analogues such as liraglutide are on the market as treatments for type 2 diabetes. We have previously shown that liraglutide showed neuroprotective effects in the APPswe/PS1ΔE9 mouse model of AD. Here, we test the GLP-1 receptor agonist lixisenatide in the same mouse model and compare the effects to liraglutide. After ten weeks of daily i.p. injections with liraglutide (2.5 or 25 nmol/kg) or lixisenatide (1 or 10 nmol/kg) or saline of APP/PS1 mice at an age when amyloid plaques had already formed, performance in an object recognition task was improved in APP/PS1 mice by both drugs at all doses tested. When analysing synaptic plasticity in the hippocampus, LTP was strongly increased in APP/PS1 mice by either drug. Lixisenatide (1 nmol/kg) was most effective. The reduction of synapse numbers seen in APP/PS1 mice was prevented by the drugs. The amyloid plaque load and dense-core Congo red positive plaque load in the cortex was reduced by both drugs at all doses. The chronic inflammation response (microglial activation) was also reduced by all treatments. The results demonstrate that the GLP-1 receptor agonists liraglutide and lixisenatide which are on the market as treatments for type 2 diabetes show promise as potential drug treatments of AD. Lixisenatide was equally effective at a lower dose compared to liraglutide in some of the parameters measured.

    Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Glucagon-Like Peptide 1; Hippocampus; Liraglutide; Long-Term Potentiation; Male; Mice, Inbred C57BL; Mice, Transgenic; Neuroprotective Agents; Peptides; Plaque, Amyloid; Presenilin-1; Random Allocation; Recognition, Psychology; Synapses

2014
Role of capsaicin-sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY-(3-36), and glucagon-like peptide-1 in rats.
    American journal of physiology. Endocrinology and metabolism, 2014, Oct-15, Volume: 307, Issue:8

    Cholecystokinin (CCK)-induced suppression of feeding is mediated by vagal sensory neurons that are destroyed by the neurotoxin capsaicin (CAP). Here we determined whether CAP-sensitive neurons mediate anorexic responses to intravenous infusions of gut hormones peptide YY-(3-36) [PYY-(3-36)] and glucagon-like peptide-1 (GLP-1). Rats received three intraperitoneal injections of CAP or vehicle (VEH) in 24 h. After recovery, non-food-deprived rats received at dark onset a 3-h intravenous infusion of CCK-8 (5, 17 pmol·kg⁻¹·min⁻¹), PYY-(3-36) (5, 17, 50 pmol·kg⁻¹·min⁻¹), or GLP-1 (17, 50 pmol·kg⁻¹·min⁻¹). CCK-8 was much less effective in reducing food intake in CAP vs. VEH rats. CCK-8 at 5 and 17 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 39 and 71% in VEH rats and 7 and 18% in CAP rats. In contrast, PYY-(3-36) and GLP-1 were similarly effective in reducing food intake in VEH and CAP rats. PYY-(3-36) at 5, 17, and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 15, 33, and 70% in VEH rats and 13, 30, and 33% in CAP rats. GLP-1 at 17 and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 48 and 60% in VEH rats and 30 and 52% in CAP rats. These results suggest that anorexic responses to PYY-(3-36) and GLP-1 are not primarily mediated by the CAP-sensitive peripheral sensory neurons (presumably vagal) that mediate CCK-8-induced anorexia.

    Topics: Animals; Anorexia; Behavior, Animal; Capsaicin; Cholecystokinin; Disease Models, Animal; Energy Intake; Feeding Behavior; Glucagon-Like Peptide 1; Infusions, Intravenous; Injections, Intraperitoneal; Intestinal Mucosa; Intestine, Small; Male; Neuritis; Neurons, Afferent; Peptide Fragments; Peptide YY; Rats; Vagus Nerve; Vagus Nerve Diseases

2014
Leptin restores the insulinotropic effect of exenatide in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and high-fat diet.
    American journal of physiology. Endocrinology and metabolism, 2014, Oct-15, Volume: 307, Issue:8

    Leptin may reduce pancreatic lipid deposition, which increases with progression of obesity and can impair β-cell function. The insulinotropic effect of glucagon-like peptide-1 (GLP-1) and the efficacy of GLP-1 receptor agonist are reduced associated with impaired β-cell function. In this study, we examined whether leptin could restore the efficacy of exenatide, a GLP-1 receptor agonist, in type 2 diabetes with increased adiposity. We chronically administered leptin (500 μg·kg⁻¹·day⁻¹) and/or exenatide (20 μg·kg⁻¹·day⁻¹) for 2 wk in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and high-fat diet (STZ/HFD mice). The STZ/HFD mice exhibited hyperglycemia, overweight, increased pancreatic triglyceride level, and reduced glucose-stimulated insulin secretion (GSIS); moreover, the insulinotropic effect of exenatide was reduced. However, leptin significantly reduced pancreatic triglyceride level, and adding leptin to exenatide (LEP/EX) remarkably enhanced GSIS. These results suggested that the leptin treatment restored the insulinotropic effect of exenatide in the mice. In addition, LEP/EX reduced food intake, body weight, and triglyceride levels in the skeletal muscle and liver, and corrected hyperglycemia to a greater extent than either monotherapy. The pair-feeding experiment indicated that the marked reduction of pancreatic triglyceride level and enhancement of GSIS by LEP/EX occurred via mechanisms other than calorie restriction. These results suggest that leptin treatment may restore the insulinotropic effect of exenatide associated with the reduction of pancreatic lipid deposition in type 2 diabetes with increased adiposity. Combination therapy with leptin and exenatide could be an effective treatment for patients with type 2 diabetes with increased adiposity.

    Topics: Adiposity; Animals; Anti-Obesity Agents; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Drug Implants; Drug Synergism; Drug Therapy, Combination; Exenatide; Glucagon-Like Peptide 1; Hyperglycemia; Hypoglycemic Agents; Insulin; Insulin Secretion; Leptin; Male; Mice, Inbred C57BL; Overweight; Pancreas; Peptides; Recombinant Proteins; Streptozocin; Triglycerides; Venoms

2014
Does the hepatic branch of vagus mediate the secretion of glucagon-like peptide-1 during the Roux-en-Y gastric bypass surgery?
    Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract, 2014, Volume: 18, Issue:11

    The purpose of this study is to investigate the impact of the hepatic branch of the vagus and Roux-en-Y gastric bypass (RYGB) on the level of fasting and postprandial serum glucagon-like peptide-1 (GLP-1) in type 2 diabetic mellitus rats.. Randomized block design, factorial experiment. Forty-five type 2 diabetic rats were divided into four groups: sham operation (S, n = 10) and sham operation with the hepatic branch of the vagotomy (SV, n = 11), Roux-en-Y gastric bypass (RYGB, n = 12) and RYGB without preservation of the vagus (RYGBV, n = 12). Levels of fasting and postprandial serum GLP-1 30 min after 50 % glucose solution (2 g/kg) by gavage were determined before surgery and postoperatively at 1, 4, and 8 weeks. Interactions between RYGB and the common hepatic branch were also assessed.. Roux-en-Y gastric bypass surgery significantly increased the concentration of postprandial serum GLP-1 and maintained it at a higher level (P < 0.05). Preservation of vagus hepatic branch only increased the concentration of postprandial serum GLP-1 at the initial stage (P < 0.05), which gradually weakened over time (P > 0.05). Both RYGB and vagotomy of the hepatic branch had no influence on fasting serum GLP-1 (P > 0.05).. During RYGB surgery for the long-term treatment of T2DM, preservation of the hepatic branch of the vagus might have no impact on serum GLP-1 level.

    Topics: Analysis of Variance; Anastomosis, Roux-en-Y; Animals; Blood Glucose; Body Weight; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Bypass; Glucagon-Like Peptide 1; Insulin Resistance; Liver; Male; Random Allocation; Rats; Rats, Sprague-Dawley; Reference Values; Streptozocin; Survival Rate; Treatment Outcome; Vagotomy; Vagus Nerve

2014
The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss.
    The Journal of clinical investigation, 2014, Volume: 124, Issue:10

    Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1-producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r(-/-) mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.

    Topics: Animals; Arcuate Nucleus of Hypothalamus; Body Weight; Disease Models, Animal; Electrophysiology; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hypothalamus; Liraglutide; Male; Mice; Mice, Transgenic; Nerve Tissue Proteins; Neurons; Paraventricular Hypothalamic Nucleus; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Vagus Nerve; Weight Loss

2014
Maternal insulin resistance and transient hyperglycemia impact the metabolic and endocrine phenotypes of offspring.
    American journal of physiology. Endocrinology and metabolism, 2014, Nov-15, Volume: 307, Issue:10

    Studies in both humans and rodents suggest that maternal diabetes leads to a higher risk of the fetus developing impaired glucose tolerance and obesity during adulthood. However, the impact of hyperinsulinemia in the mother on glucose homeostasis in the offspring has not been fully explored. We aimed to determine the consequences of maternal insulin resistance on offspring metabolism and endocrine pancreas development using the LIRKO mouse model, which exhibits sustained hyperinsulinemia and transient increase in blood glucose concentrations during pregnancy. We examined control offspring born to either LIRKO or control mothers on embryonic days 13.5, 15.5, and 17.5 and postpartum days 0, 4, and 10. Control offspring born to LIRKO mothers displayed low birth weights and subsequently rapidly gained weight, and their blood glucose and plasma insulin concentrations were higher than offspring born to control mothers in early postnatal life. In addition, concentrations of plasma leptin, glucagon, and active GLP-1 were higher in control pups from LIRKO mothers. Analyses of the endocrine pancreas revealed significantly reduced β-cell area in control offspring of LIRKO mothers shortly after birth. β-Cell proliferation and total islet number were also lower in control offspring of LIRKO mothers during early postnatal days. Together, these data indicate that maternal hyperinsulinemia and the transient hyperglycemia impair endocrine pancreas development in the control offspring and induce multiple metabolic alterations in early postnatal life. The relatively smaller β-cell mass/area and β-cell proliferation in these control offspring suggest cell-autonomous epigenetic mechanisms in the regulation of islet growth and development.

    Topics: Animals; Animals, Newborn; Blood Glucose; Cell Proliferation; Diabetes, Gestational; Disease Models, Animal; Female; Glucagon; Glucagon-Like Peptide 1; Hyperglycemia; Hyperinsulinism; Insulin; Insulin Resistance; Insulin-Secreting Cells; Islets of Langerhans; Leptin; Mice; Organ Size; Phenotype; Pregnancy; Pregnancy Complications; Prenatal Exposure Delayed Effects; Weight Gain

2014
Intracoronary infusion of encapsulated glucagon-like peptide-1-eluting mesenchymal stem cells preserves left ventricular function in a porcine model of acute myocardial infarction.
    Circulation. Cardiovascular interventions, 2014, Volume: 7, Issue:5

    Engraftment and survival of stem cells in the infarcted myocardium remain problematic in cell-based therapy for cardiovascular disease. To overcome these issues, encapsulated mesenchymal stem cells (eMSCs) were developed that were transfected to produce glucagon-like peptide-1, an incretin hormone with known cardioprotective effects, alongside MSC endogenous paracrine factors. This study was designed to investigate the efficacy of different doses of intracoronary infusion of eMSC in a porcine model of acute myocardial infarction (AMI).. One hundred pigs were subjected to a moderate AMI (posterolateral AMI; n=50) or a severe AMI (anterior AMI; n=50), whereupon surviving animals (n=36 moderate, n=33 severe) were randomized to receive either intracoronary infusion of 3 incremental doses of eMSC or Ringers' lactate control. Cardiac function was assessed using invasive hemodynamics, echocardiography, and histological analysis. A trend was observed in the moderate AMI model, whereas in the severe AMI model, left ventricular ejection fraction improved by +9.3% (P=0.004) in the best responding eMSC group, because of a preservation of left ventricular end-systolic volume. Arteriolar density increased 3-fold in the infarct area (8.4±0.9/mm(2) in controls versus 22.2±2.6/mm(2) in eMSC group; P<0.001). Although not statistically significant, capillary density was 30% higher in the border zone (908.1±99.7/mm(2) in control versus 1209.0±64.6/mm(2) in eMSC group; P=ns).. eMSCs enable sustained local delivery of cardioprotective proteins to the heart, thereby enhancing angiogenesis and preserving contractile function in an animal AMI model.

    Topics: Animals; Coronary Vessels; Disease Models, Animal; Echocardiography; Glucagon-Like Peptide 1; Humans; Infusions, Intra-Arterial; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Myocardial Infarction; Myocardium; Swine; Transgenes; Ventricular Function, Left

2014
Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia.
    Neuroscience, 2014, Dec-05, Volume: 281

    Stroke is a leading cause of death and serious, long-term disability worldwide. We report that rats receiving liraglutide show markedly attenuated infarct volumes and neurological deficit following ischemic insult. We have also investigated the effect of liraglutide on apoptosis and oxidative stress pathways after ischemic injury in diabetic and non-diabetic rats. Male Sprague-Dawley rats weighing 300-350g were used. Diabetes was induced by streptozotocin. Rats were pretreated with either vehicle or liraglutide (50μg/kg, s.c.) for 14days and thereafter subjected to middle cerebral artery occlusion (MCAO). Twenty-four hours after occlusion, rats were assessed for neurological deficit, motor function and subsequently sacrificed for estimation of infarct volume, oxidative stress and apoptotic markers. Vehicle-treated non-diabetic and diabetic rats showed significant (p<0.001) neurological deficit following cerebral ischemia. Liraglutide pretreatment resulted in significantly (p<0.001) less neurological deficit compared to vehicle-treated MCAO rats. Cerebral ischemia produced significant (p<0.0001) infarction in vehicle-treated rats; however, the infarct volume was significantly (p<0.001) less in liraglutide-pretreated rats. Oxidative stress markers were increased following ischemia but were attenuated in liraglutide-treated rats. Anti-apoptotic protein Bcl-2 expression was decreased and pro-apoptotic protein Bax expression was increased in vehicle-treated MCAO rats compared to sham (p<0.0001). On the other hand liraglutide pretreatment showed significantly (p<0.01) increased expression of Bcl-2 and decreased expression of Bax in MCAO rats. In vehicle-treated group, the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells significantly (p<0.0001) increased in the ischemic hemisphere compared to sham-operated group. The number of TUNEL-positive cells in vehicle group was 73.5±3.3 and 85.5±5.2/750μm(2) in non-diabetic and diabetic vehicle-treated MCAO rats, respectively. Following liraglutide treatment the number of TUNEL-positive cells was remarkably attenuated to 25.5±2.8 and 41.5±4.1/750μm(2) (p<0.001) in non-diabetic and diabetic rats, respectively. The results demonstrate that glucagon-like peptide 1 (GLP-1) agonist, liraglutide, is a neuroprotective agent and attenuates the neuronal damage following cerebral ischemia in rats by preventing apoptosis and decreasing oxidative stress.

    Topics: Animals; Apoptosis; Brain Ischemia; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon-Like Peptide 1; Hypoglycemic Agents; Infarction, Middle Cerebral Artery; Liraglutide; Male; Neuroprotective Agents; Oxidative Stress; Rats; Rats, Sprague-Dawley

2014
[Extrapancreatic effects of GLP-1 receptor agonists: an open window towards new treatment goals in type 2 diabetes].
    Medicina clinica, 2014, Volume: 143 Suppl 2

    The wide ubiquity of GLP-1 receptors in the body has stimulated the search for different extrapancreatic actions of GLP-1 and its receptor agonists. Thus, severe cardioprotective effects directed on myocardial ischaemia and dysfunction as well as diverse antiaterogenic actions have been reported. Also, native and GLP-1 receptor agonists have demonstrated significant beneficial effects on liver steatosis and fibrosis and on neuronal protection in experimental models of Alzheimer, and Parkinson's disease as well as on cerebral ischaemia. Recent evidences suggest that these drugs may also be useful for prevention and treatment of diabetic retinopathy, nephropathy and peripheral neuropathy. Good results have also been reported in psoriasis. Despite we still need confirmation that these promising effects can be applied to clinical practice, they offer new interesting perspectives for treatment of type 2 diabetes associated complications and give to GLP-1 receptor agonists an even more integral position in diabetes therapy.

    Topics: Animals; Anti-Inflammatory Agents; Anti-Obesity Agents; Cardiotonic Agents; Cardiovascular Diseases; Clinical Trials as Topic; Diabetes Mellitus, Type 2; Disease Models, Animal; Endothelium, Vascular; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Insulin Resistance; Kidney Diseases; Lipid Metabolism; Liver Diseases; Multicenter Studies as Topic; Nervous System Diseases; Neuroprotective Agents; Organ Specificity; Receptors, Glucagon; Recombinant Proteins

2014
[Liraglutide protects against nonalcoholic fatty liver disease in ApoE knockout mice with high-fat diet and silenced Acrp30 by increasing AMPK].
    Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology, 2014, Volume: 22, Issue:11

    To investigate the mechanism of liraglutide-mediated protection against nonalcoholic fatty liver disease (NAFLD) using aApoE knockout (KO) mouse with high-fat diet (HFD) and Acrp30 knockdown.. Fifty-six male ApoE KO mice were divided into the following six modeling and experimental groups:regular chow fed (ApoE KO, n=10), HFD fed (HF, n=10), HFD+Adenovirus (Ad)-small hairpin (sh) Acrp30 (Ad-shAcrp30, n=10), HFD+Ad-shGreen Fluorescent Protein (GFP) (Ad-shGFP, n=6), HFD+Ad-shAcrp30+liraglutide (liraglutide, n=10), and HFD+Ad-shAcrp30+saline (saline, n=10). Weight-matched C57BL/6 mice on the regular chow diet were used as the control group (WT control, n=10).All mice were fed their assigned diet for 16 weeks.The Ad-shGFP or Ad-shAcrp30 was injected by tail vein at the end of 14 and 15 weeks.Mice in the liraglutide group received 1 mg/kg of the drug, twice daily, intraperitoneally for a total of 8 weeks (from the 9th to 16th week).Fasting blood samples were collected for testing levels of fasting plasma glucose (FPG), triglycerides (TGs), total cholesterol (TC), free fatty acid (FFA), alanine aminotransferase (ALT), Acrp30 and insulin.Liver tissue was procured for histological examination.Expression of mRNA was detected by real-time RT-PC and of protein was detected by western blot analysis.. The Ad-shAcrp30 treated mice had reduced expression of Acrp30 at both the mRNA and protein levels in adipose tissues and plasma, as compared with the AdshGFP treated mice (all P < 0.01).Compared to the WT and ApoE KO groups, the HF group showed higher levels of FPG, FFA, TGs and TC (all P < 0.01); furthermore, the Ad-shAcrp30 treatment compounded these changes.The Ad-shAcrp30 treated group had markedly higher hepatic TC and TGs than the HF group (P < 0.01 and P < 0.05).Oil Red O staining showed that there was more lipid droplets in the liver tissue of the Ad-shAcrp30 treated group than in that of the HF group (P < 0.01), and hematoxylin-eosin staining confirmed these results.Liraglutide treatment prevented the increase in body weight, FPG, FFA, TGs, TC and ALT levels, as compared to the saline controls (all P < 0.01), but the plasma Acrp30 levels and the Acrp30 mRNA and protein expression in adipose tissues were elevated (all P < 0.01).Oil-Red O staining indicated that the liraglutide group had a significantly lower hepatic lipid content than the saline group, and total hepatic TG and TC were reduced in the former group (P < 0.01 and P < 0.05).The liraglutide treatment significantly attenuated the mRNA expression of ACC and FAS (both P < 0.01) but increased AMPK phosphorylation (P < 0.01).. Administration of liraglutide prevented the development of HFD-and hypoadiponectinemia-induced metabolic disturbance and accumulation of hepatic lipids in this mouse model system of NAFLD.

    Topics: Adiponectin; Adipose Tissue; Alanine Transaminase; AMP-Activated Protein Kinases; Animals; Apolipoproteins E; Cholesterol; Diet, High-Fat; Disease Models, Animal; Glucagon-Like Peptide 1; Insulin; Liraglutide; Male; Metabolism, Inborn Errors; Mice; Mice, Inbred C57BL; Mice, Knockout; Non-alcoholic Fatty Liver Disease; Protective Agents; RNA, Messenger; Triglycerides

2014
Design, synthesis, and biological activity of novel dicoumarol glucagon-like peptide 1 conjugates.
    Journal of medicinal chemistry, 2013, Dec-27, Volume: 56, Issue:24

    Twelve novel dicoumarol glucagon-like peptide 1 (GLP-1) conjugates were designed, synthesized, and tested for biological activity. All derivatives retained receptor activation efficacy, and exhibited improved albumin affinity and in vitro stability in rat plasma. The in vivo elimination half-lives of 13c and 13 l (22.07 and 18.78 h, respectively) were much longer than those of the GLP-1 receptor agonists exendin-4 (2.82 h) and liraglutide (12.53 h). The prolonged in vivo antidiabetic effects of 13c and 13 l on db/db mice were confirmed by the hypoglycemic efficacy test and the multiple intraperitoneal glucose tolerance test. Importantly, a once daily administration of 13c to db/db mice for 7 weeks provided long-term beneficial effects by lowering glycated hemoglobin (HbA1c) levels to 5.05%, which was lower than with liraglutide treatment (5.41%). These results suggest that 13c is a promising long-lasting GLP-1 mimetic that may be suitable for clinical use following further research.

    Topics: Animals; Coumarins; Diabetes Mellitus, Experimental; Disease Models, Animal; Drug Design; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose Tolerance Test; Glycated Hemoglobin; Half-Life; HEK293 Cells; Humans; Hypoglycemic Agents; Male; Mice; Mice, Obese; Molecular Structure; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Serum Albumin

2013
Increased glucagon-like peptide-1 secretion may be involved in antidiabetic effects of ginsenosides.
    The Journal of endocrinology, 2013, Volume: 217, Issue:2

    Panax ginseng is one of the most popular herbal remedies. Ginsenosides, major bioactive constituents in P. ginseng, have shown good antidiabetic action, but the precise mechanism was not fully understood. Glucagon-like peptide-1 (GLP1) is considered to be an important incretin that can regulate glucose homeostasis in the gastrointestinal tract after meals. The aim of this study was to investigate whether ginseng total saponins (GTS) exerts its antidiabetic effects via modulating GLP1 release. Ginsenoside Rb1 (Rb1), the most abundant constituent in GTS, was selected to further explore the underlying mechanisms in cultured NCI-H716 cells. Diabetic rats were developed by a combination of high-fat diet and low-dose streptozotocin injection. The diabetic rats orally received GTS (150 or 300 mg/kg) daily for 4 weeks. It was found that GTS treatment significantly ameliorated hyperglycemia and dyslipidemia, accompanied by a significant increase in glucose-induced GLP1 secretion and upregulation of proglucagon gene expression. Data from NCI-H716 cells showed that both GTS and Rb1 promoted GLP1 secretion. It was observed that Rb1 increased the ratio of intracellular ATP to ADP concentration and intracellular Ca2+ concentration. The metabolic inhibitor azide (3 mM), the KATP channel opener diazoxide (340 μM), and the Ca2+ channel blocker nifedipine (20 μM) significantly reversed Rb1-mediated GLP1 secretion. All these results drew a conclusion that ginsenosides stimulated GLP1 secretion both in vivo and in vitro. The antidiabetic effects of ginsenosides may be a result of enhanced GLP1 secretion.

    Topics: Adenosine Diphosphate; Adenosine Triphosphate; Animals; Calcium; Cell Line; Cells, Cultured; Diabetes Mellitus, Experimental; Diet, High-Fat; Disease Models, Animal; Gastrointestinal Tract; Ginsenosides; Glucagon-Like Peptide 1; Glucose; Homeostasis; Humans; Hypoglycemic Agents; In Vitro Techniques; Male; Rats; Rats, Sprague-Dawley; Saponins; Streptozocin

2013
Antipsychotic-like effect of GLP-1 agonist liraglutide but not DPP-IV inhibitor sitagliptin in mouse model for psychosis.
    Physiology & behavior, 2013, Apr-10, Volume: 114-115

    Recent studies indicate a high comorbidity between type-2 diabetes mellitus (T2DM) and neurological disorders. Many are associated with abnormalities in dopamine neurotransmission such as schizophrenia. Because most of the antipsychotic drugs aggravate pre-existing insulin resistance in type-2 diabetics, there is a need to search for alternative antipsychotics. Glucagon like peptide-1 (GLP-1) is a gut hormone primarily involved in glucose homeostasis. GLP-1 agonist (liraglutide) and dipeptidyl peptidase-IV (DPP-IV) inhibitor (sitagliptin) are the US-FDA approved medications for the management of T2DM. However, little is known about their role in dopamine mediated neurological disorders like schizophrenia. To address this, we used apomorphine-induced cage climbing behavior as a murine model for psychosis and examined for potential antipsychotic-like effect of liraglutide and sitagliptin. While acute liraglutide treatment (50 μg/kg; i.p.) significantly attenuated apomorphine (3 mg/kg, s.c.) induced cage climbing, sitagliptin (50mg/kg; i.p.) failed to elicit such effect. This is the first preclinical evidence for antipsychotic-like effect of GLP-1 receptor agonist. These results open an opportunity to explore GLP-1 analogs for their potential to modulate spectrum of dopamine-mediated neurological disorders.

    Topics: Animals; Antipsychotic Agents; Apomorphine; Disease Models, Animal; Dopamine Agonists; Glucagon-Like Peptide 1; Liraglutide; Male; Mice; Psychotic Disorders; Pyrazines; Sitagliptin Phosphate; Statistics, Nonparametric; Triazoles

2013
Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model.
    PloS one, 2013, Volume: 8, Issue:3

    Neurogenesis is a life long process, but the rate of cell proliferation and differentiation decreases with age. In Alzheimer's patients, along with age, the presence of Aβ in the brain inhibits this process by reducing stem cell proliferation and cell differentiation. GLP-1 is a growth factor that has neuroprotective properties. GLP1 receptors are present on neuronal progenitor cells, and the GLP-1 analogue liraglutide has been shown to increase cell proliferation in an Alzheimer's disease (AD) mouse model. Here we investigated acute and chronic effects of liraglutide on progenitor cell proliferation, neuroblast differentiation and their subsequent differentiation into neurons in wild type and APP/PS-1 mice at different ages. APP/PS1 and their littermate controls, aged 3, 6, 12, 15 months were injected acutely or chronically with 25 nmol/kg liraglutide. Acute treatment with liraglutide showed an increase in cell proliferation in APP/PS1 mice, but not in controls whereas chronic treatment increased cell proliferation at all ages (BrdU and Ki67 markers). Moreover, numbers of immature neurons (DCX) were increased in both acute and chronic treated animals at all ages. Most newly generated cells differentiated into mature neurons (NeuN marker). A significant increase was observed with chronically treated 6, 12, 15 month APP/PS1 and WT groups. These results demonstrate that liraglutide, which is currently on the market as a treatment for type 2 diabetes (Victoza(TM)), increases neurogenesis, which may have beneficial effects in neurodegenerative disorders like AD.

    Topics: Age Factors; Alzheimer Disease; Animals; Cell Differentiation; Cell Proliferation; Cell Survival; Disease Models, Animal; Doublecortin Protein; Female; Glucagon-Like Peptide 1; Liraglutide; Mice; Neurogenesis; Neurons

2013
GLP-1(28-36) improves β-cell mass and glucose disposal in streptozotocin-induced diabetic mice and activates cAMP/PKA/β-catenin signaling in β-cells in vitro.
    American journal of physiology. Endocrinology and metabolism, 2013, Jun-15, Volume: 304, Issue:12

    Recent studies have demonstrated that the COOH-terminal fragment of the incretin hormone glucagon-like peptide-1 (GLP-1), a nonapeptide GLP-1(28-36)amide, attenuates diabetes and hepatic steatosis in diet-induced obese mice. However, the effect of this nonapeptide in pancreatic β-cells remains largely unknown. Here, we show that in a streptozotocin-induced mouse diabetes model, GLP-1(28-36)amide improved glucose disposal and increased pancreatic β-cell mass and β-cell proliferation. An in vitro investigation revealed that GLP-1(28-36)amide stimulates β-catenin (β-cat) Ser(675) phosphorylation in both the clonal INS-1 cell line and rat primary pancreatic islet cells. In INS-1 cells, the stimulation was accompanied by increased nuclear β-cat content. GLP-1(28-36)amide was also shown to increase cellular cAMP levels, PKA enzymatic activity, and cAMP response element-binding protein (CREB) and cyclic AMP-dependent transcription factor-1 (ATF-1) phosphorylation. Furthermore, GLP-1(28-36)amide treatment enhanced islet insulin secretion and increased the growth of INS-1 cells, which was associated with increased cyclin D1 expression. Finally, PKA inhibition attenuated the effect of GLP-1(28-36)amide on β-cat Ser(675) phosphorylation and cyclin D1 expression in the INS-1 cell line. We have thus revealed the beneficial effect of GLP-1(28-36)amide in pancreatic β-cells in vitro and in vivo. Our observations suggest that GLP-1(28-36)amide may exert its effect through the PKA/β-catenin signaling pathway.

    Topics: Animals; Blood Glucose; Cell Line; Cyclic AMP; Diabetes Mellitus, Experimental; Disease Models, Animal; Drug Design; Glucagon-Like Peptide 1; Hyperglycemia; In Vitro Techniques; Insulin-Secreting Cells; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Protein Kinase C beta; Rats; Signal Transduction

2013
Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer's disease.
    Neuropharmacology, 2013, Volume: 72

    Type 2 diabetes (T2D) is one of the major risk factors associated with Alzheimer's disease (AD). Recent studies have found similarities in molecular mechanisms that underlie the respective degenerative developments in the two diseases. Pharmacological agents, such as dipeptidyl peptidase-4 (DPP-4) inhibitors, which increase the level of glucagon-like peptide-1 (GLP-1) and ameliorate T2D, have become valuable candidates as disease modifying agents in the treatment of AD. In addition, endogenous GLP-1 levels decrease amyloid beta (Aβ) peptide and tau phosphorylation in AD. The present study examines the efficacy of Saxagliptin, a DPP-4 inhibitor in a streptozotocin (STZ) induced rat model of AD. Three months following induction of AD by intracerebral administration of streptozotocin, animals were orally administered Saxagliptin (0.25, 0.5 and 1 mg/kg) for 60 days. The effect of the DPP-4 inhibitor on hippocampal GLP-1 levels, Aβ burden, tau phosphorylation, inflammatory markers and memory retention were evaluated. The results reveal an attenuation of Aβ, tau phosphorylation and inflammatory markers and an improvement in hippocampal GLP-1 and memory retention following treatment. This remarkable therapeutic effect of Saxagliptin mediated through DPP-4 inhibition demonstrates a unique mechanism for Aβ and tau clearance by increasing GLP-1 levels and reverses the behavioural deficits and pathology observed in AD.

    Topics: Adamantane; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antibiotics, Antineoplastic; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Exploratory Behavior; Gene Expression Regulation; Glucagon-Like Peptide 1; Hippocampus; Interleukin-1beta; Male; Maze Learning; Rats; Rats, Wistar; Streptozocin; tau Proteins; Tumor Necrosis Factor-alpha

2013
The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE(-/-) mouse model.
    Diabetes & vascular disease research, 2013, Volume: 10, Issue:4

    Liraglutide, a once-daily glucagon-like peptide-1 receptor (GLP-1R) agonist, has been approved as a new treatment for type 2 diabetes and is the subject of a clinical trial programme to evaluate the effects on cardiovascular disease and safety. The current study aimed to determine the in vivo effect of liraglutide on progression of atherosclerotic vascular disease in the apolipoprotein E-deficient (ApoE(-/-)) mouse model and identify underlying mechanisms responsible. Liraglutide treatment inhibited progression of early onset, low-burden atherosclerotic disease in a partially GLP-1R-dependent manner in the ApoE(-/-) mouse model. In addition, liraglutide treatment inhibited progression of atherosclerotic plaque formation and enhanced plaque stability, again in a partially GLP-1R-dependent manner. No significant effect of liraglutide on progression of late onset, high-burden atherosclerotic disease was observed. In addition, no significant endothelial cell dysfunction was identified in ApoE(-/-) mice with early onset, low-burden atherosclerotic disease, although significant prevention of weight gain was observed in liraglutide-treated mice using this dietary protocol. Taken together, these results suggest a potential role for liraglutide in the prevention and stabilisation of atherosclerotic vascular disease together with possible protection against major cardiovascular events.

    Topics: Animals; Apolipoproteins E; Atherosclerosis; Diabetes Mellitus, Type 2; Disease Models, Animal; Disease Progression; Endothelial Cells; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hypoglycemic Agents; Liraglutide; Mice; Mice, Inbred C57BL; Mice, Knockout; Plaque, Atherosclerotic; Receptors, Glucagon

2013
Effect of sleeve gastrectomy on body weight, food intake, glucose tolerance, and metabolic hormone level in two different rat models: Goto-Kakizaki and diet-induced obese rat.
    The Journal of surgical research, 2013, Volume: 185, Issue:1

    It is still an important question whether sleeve gastrectomy (SG) is appropriate only in the context of obesity-the condition for which it was originally developed-or whether lean people with insulin-deficient diabetes might also benefit. The aim of this study is to evaluate the effects of SG in Goto-Kakizaki (GK) and diet-induced obese (DIO) rats that have distinct characteristics in beta-cell function and fat mass.. SG was performed in GK and DIO rats. Body weight, food intake, and fasting blood glucose were monitored after surgery. Des-acyl ghrelin in fasting condition and blood glucose, insulin, and glucagon-like peptide-1 levels during meal test were measured. Homeostatic model assessment and insulinogenic index were examined.. In both GK and DIO rats, SG improved glucose tolerance with increased glucagon-like peptide-1 and insulin secretion during meal test, and reduced fasting des-acyl ghrelin levels. Insulin sensitivity was enhanced after SG in DIO rats. The improvement in glucose tolerance after SG was shown earlier in DIO rats than in GK rats and weight regain after SG occurred faster and was more prominent in GK rats than in DIO rats.. In both DIO and GK rats, SG could improve glucose tolerance with increased insulin secretion and/or action. The improvement in glucose tolerance was shown earlier in DIO rats than in GK rats.

    Topics: Animals; Blood Glucose; Body Weight; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Eating; Gastrectomy; Ghrelin; Glucagon-Like Peptide 1; Glucose Intolerance; Glucose Tolerance Test; Hormones; Insulin; Male; Obesity; Rats; Rats, Mutant Strains; Rats, Wistar

2013
Intestinal GATA4 deficiency induces proximal fibroblast growth factor 15 expression and represses hepatic gluconeogenesis.
    Journal of hepatology, 2013, Volume: 59, Issue:5

    Topics: Animals; Diet, High-Fat; Disease Models, Animal; Fatty Liver; Fibroblast Growth Factors; GATA4 Transcription Factor; Glucagon-Like Peptide 1; Gluconeogenesis; Glucose; Intestinal Mucosa; Liver; Mice; Mice, Knockout

2013
Liraglutide ameliorates glycometabolism and insulin resistance through the upregulation of GLUT4 in diabetic KKAy mice.
    International journal of molecular medicine, 2013, Volume: 32, Issue:4

    Liraglutide, a long-lasting glucagon‑like peptide‑1 analogue, has been used for the treatment of patients with type 2 diabetes mellitus since 2009. In this study, we investigated the anti-diabetic effects and mechanisms of action of liraglutide in a spontaneous diabetic animal model, using KK/Upj-Ay/J (KKAy) mice. The KKAy mice were divided into 2 groups, the liraglutide group (mice were treated with 250 µg/kg/day liraglutide) and the model group (treated with an equivalent amount of normal saline). C57BL/6J mice were used as the controls (treated with an equivalent amount of normal saline). The treatment period lasted 6 weeks. During this treatment period, fasting blood glucose (FBG) levels and the body weight of the mice were measured on a weekly basis. Our results revealed that liraglutide significantly decreased FBG levels, the area under the curve following a oral glucose tolerance test and insulin tolerance test, increased serum insulin levels, reduced homeostasis model assessment of insulin resistance and increased the insulin sensitivity index. Furthermore, liraglutide ameliorated glycometabolism dysfunction by increasing glycolysis via hexokinase and glycogenesis via pyruvate kinase activation. An ultrastructural examination of the pancreas revealed that liraglutide improved the damaged state of islet β cells and increased the number of insulin secretory granules. The real-time PCR results revealed that the gene expression of glucose transporter 4 (GLUT4) increased following treatment with liraglutide. Liraglutide also upregulated the protein expression of GLUT4 in liver tissue and skeletal muscle. Our results suggest that liraglutide ameliorates glycometabolism and insulin resistance in diabetic KKAy mice by stimulating insulin secretion, increasing glycogenesis and glycolysis and upregulating the expression of GLUT4.

    Topics: Animals; Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose Tolerance Test; Glucose Transporter Type 4; Glycolysis; Hypoglycemic Agents; Immunohistochemistry; Insulin; Insulin Resistance; Liraglutide; Liver; Male; Mice; Mice, Inbred C57BL; Microscopy, Electron, Transmission; Muscle, Skeletal; Real-Time Polymerase Chain Reaction; Up-Regulation

2013
Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet.
    Diabetes, 2013, Volume: 62, Issue:10

    Eating a "Westernized" diet high in fat and sugar leads to weight gain and numerous health problems, including the development of type 2 diabetes mellitus (T2DM). Rodent studies have shown that resveratrol supplementation reduces blood glucose levels, preserves β-cells in islets of Langerhans, and improves insulin action. Although rodent models are helpful for understanding β-cell biology and certain aspects of T2DM pathology, they fail to reproduce the complexity of the human disease as well as that of nonhuman primates. Rhesus monkeys were fed a standard diet (SD), or a high-fat/high-sugar diet in combination with either placebo (HFS) or resveratrol (HFS+Resv) for 24 months, and pancreata were examined before overt dysglycemia occurred. Increased glucose-stimulated insulin secretion and insulin resistance occurred in both HFS and HFS+Resv diets compared with SD. Although islet size was unaffected, there was a significant decrease in β-cells and an increase in α-cells containing glucagon and glucagon-like peptide 1 with HFS diets. Islets from HFS+Resv monkeys were morphologically similar to SD. HFS diets also resulted in decreased expression of essential β-cell transcription factors forkhead box O1 (FOXO1), NKX6-1, NKX2-2, and PDX1, which did not occur with resveratrol supplementation. Similar changes were observed in human islets where the effects of resveratrol were mediated through Sirtuin 1. These findings have implications for the management of humans with insulin resistance, prediabetes, and diabetes.

    Topics: Animals; Blood Glucose; Body Weight; Cell Dedifferentiation; Densitometry; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Dietary Sucrose; Disease Models, Animal; Fluorescent Antibody Technique; Glucagon; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucose Tolerance Test; Glycated Hemoglobin; Homeobox Protein Nkx-2.2; Homeodomain Proteins; Insulin; Insulin Resistance; Insulin-Secreting Cells; Islets of Langerhans; Macaca mulatta; Nuclear Proteins; Protective Agents; Resveratrol; Sirtuin 1; Stilbenes; Transcription Factors

2013
Circulating dipeptidyl peptidase IV activity correlates with cardiac dysfunction in human and experimental heart failure.
    Circulation. Heart failure, 2013, Sep-01, Volume: 6, Issue:5

    The present study addresses the hypothesis that the activity of dipeptidyl peptidase IV (DPPIV), an enzyme that inactivates peptides that possess cardioprotective actions, correlates with adverse outcomes in heart failure (HF). The therapeutic potential of DPPIV inhibition in preventing cardiac dysfunction is also investigated.. Measurements of DPPIV activity in blood samples obtained from 190 patients with HF and 42 controls demonstrated that patients with HF exhibited an increase of ≈130% in circulating DPPIV activity compared with healthy subjects. Furthermore, an inverse correlation was observed between serum DPPIV activity and left ventricular (LV) ejection fraction in patients with HF. Similarly, radiofrequency LV ablation-induced HF rats displayed higher DPPIV activity in the plasma (≈50%) and heart tissue (≈3.5-fold) compared with sham-operated rats. Moreover, positive correlations were observed between the plasma DPPIV activity and LV end-diastolic pressure and lung congestion. Two days after surgery, 1 group of LV ablation-induced HF rats was treated with the DPPIV inhibitor sitagliptin (40 mg/kg BID) for 6 weeks, whereas the remaining rats were administered water. Hemodynamic measurements demonstrated that radiofrequency LV-ablated rats treated with sitagliptin exhibited a significant attenuation of HF-related cardiac dysfunction, including LV end-diastolic pressure, systolic performance, and chamber stiffness. Sitagliptin treatment also attenuated cardiac remodeling and cardiomyocyte apoptosis and minimized pulmonary congestion.. Collectively, the results presented herein associate circulating DPPIV activity with poorer cardiovascular outcomes in human and experimental HF. Moreover, the results demonstrate that long-term DPPIV inhibition mitigates the development and progression of HF in rats.

    Topics: Adult; Aged; Animals; Apoptosis; Biomarkers; Case-Control Studies; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Heart Failure; Hemodynamics; Humans; Male; Middle Aged; Myocardium; Natriuretic Peptide, Brain; Pulmonary Edema; Pyrazines; Rats; Rats, Wistar; Sitagliptin Phosphate; Triazoles; Up-Regulation; Ventricular Function, Left; Ventricular Remodeling

2013
Testing agents for prevention or reversal of type 1 diabetes in rodents.
    PloS one, 2013, Volume: 8, Issue:8

    We report the results of an independent laboratory's tests of novel agents to prevent or reverse type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse, BioBreeding diabetes prone (BBDP) rat, and multiple autoimmune disease prone (MAD) rat models. Methods were developed to better mimic human clinical trials, including: prescreening, randomization, blinding, and improved glycemic care of the animals. Agents were suggested by the research community in an open call for proposals, and selected for testing by an NIDDK appointed independent review panel. Agents selected for testing to prevent diabetes at later stages of progression in a rodent model were a STAT4 antagonist (DT22669), alpha1 anti-trypsin (Aralast NP), celastrol (a natural product with anti-inflammatory properties), and a Macrophage Inflammatory Factor inhibitor (ISO-092). Agents tested for reversal of established T1D in rodent models were: alpha1 anti-trypsin (Aralast NP), tolerogenic peptides (Tregitopes), and a long-acting formulation of GLP-1 (PGC-GLP-1). None of these agents were seen to prevent or reverse type 1 diabetes, while the positive control interventions were effective: anti-CD3 treatment provided disease reversal in the NOD mouse, dexamethasone prevented T1D induction in the MAD rat, and cyclosporin prevented T1D in the BBDP rat. For some tested agents, details of previous formulation, delivery, or dosing, as well as laboratory procedure, availability of reagents and experimental design, could have impacted our ability to confirm prior reports of efficacy in preclinical animal models. In addition, the testing protocols utilized here provided detection of effects in a range commonly used in placebo controlled clinical trials (for example, 50% effect size), and thus may have been underpowered to observe more limited effects. That said, we believe the results compiled here, showing good control and repeatability, confirm the feasibility of screening diverse test agents in an independent laboratory.

    Topics: Animals; Antibodies; Blood Glucose; CD3 Complex; Diabetes Mellitus, Type 1; Disease Models, Animal; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Mice; Mice, Inbred NOD; Pentacyclic Triterpenes; Rats; Remission Induction; Triterpenes

2013
Protective effects of sitagliptin on myocardial injury and cardiac function in an ischemia/reperfusion rat model.
    European journal of pharmacology, 2013, Oct-15, Volume: 718, Issue:1-3

    The purpose of this study is to investigate the effects and the underlying mechanisms of sitagliptin pretreatment on myocardial injury and cardiac function in myocardial ischemia/reperfusion (I/R) rat model. The rat model of myocardial I/R was constructed by coronary occlusion. Rats were pretreated with sitagliptin (300 mg/kg/day) for 2 weeks, and then subjected to 30 min ischemia and 2h reperfusion. The release of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB), cardiac function and cardiomyocyte apoptosis were evaluated. The levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in heart and glucagon-like peptide-1 (GLP-1) level in plasma were measured. Western blot analysis was performed to detect the target proteins of sitagliptin. Our results showed that sitagliptin pretreatment decreased LDH and CK-MB release, and MDA level in I/R rats. More importantly, we revealed for the first time that sitagliptin pretreatment decreased cardiomyocyte apoptosis while increased the levels of GSH-Px and SOD in heart. Sitagliptin also increased GLP-1 level and enhanced cardiac function in I/R rats. Furthermore, sitagliptin pretreatment up-regulated Akt(serine473) and Bad(serine136) phosphorylation, reduced the ratio of Bax/Bcl-2, and decreased expression levels of cleaved caspase-3 and caspase-3. Interestingly, the above observed effects of sitagliptin were all abolished when co-administered with GLP-1 receptor antagonist exendin-(9-39) or PI3K inhibitor LY294002. Taken together, our data indicate that sitagliptin pretreatment could reduce myocardial injury and improve cardiac function in I/R rats by reducing apoptosis and oxidative damage. The underlying mechanism might be the activation of PI3K/Akt signaling pathway by GLP-1/GLP-1 receptor.

    Topics: Animals; Apoptosis; Body Weight; Cardiotonic Agents; Creatine Kinase, MB Form; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Glutathione Peroxidase; Heart; Heart Ventricles; L-Lactate Dehydrogenase; Male; Malondialdehyde; Myocytes, Cardiac; Organ Size; Pyrazines; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Reperfusion Injury; Sitagliptin Phosphate; Superoxide Dismutase; Triazoles

2013
Novel fusion of GLP-1 with a domain antibody to serum albumin prolongs protection against myocardial ischemia/reperfusion injury in the rat.
    Cardiovascular diabetology, 2013, Oct-14, Volume: 12

    Glucagon-like peptide-1 (GLP-1) and its mimetics reduce infarct size in the setting of acute myocardial ischemia/reperfusion (I/R) injury. However, the short serum half-life of GLP-1 and its mimetics may limit their therapeutic use in acute myocardial ischemia. Domain antibodies to serum albumin (AlbudAbs) have been developed to extend the serum half-life of short lived therapeutic proteins, peptides and small molecules. In this study, we compared the effect of a long acting GLP-1 agonist, DPP-IV resistant GLP-1 (7-36, A8G) fused to an AlbudAb (GAlbudAb), with the effect of the GLP-1 mimetic, exendin-4 (short half-life GLP-1 agonist) on infarct size following acute myocardial I/R injury.. Male Sprague-Dawley rats (8-week-old) were treated with vehicle, GAlbudAb or exendin-4. Myocardial ischemia was induced 2 h following the final dose for GAlbudAb and 30 min post the final dose for exendin-4. In a subgroup of animals, the final dose of exendin-4 was administered (1 μg/kg, SC, bid for 2 days) 6 h prior to myocardial ischemia when plasma exendin-4 was at its minimum concentration (C(min)). Myocardial infarct size, area at risk and cardiac function were determined 24 h after myocardial I/R injury.. GAlbudAb and exendin-4 significantly reduced myocardial infarct size by 28% and 23% respectively, compared to vehicle (both p < 0.01 vs. vehicle) after I/R injury. Moreover, both GAlbudAb and exendin-4 markedly improved post-ischemic cardiac contractile function. Body weight loss and reduced food intake consistent with the activation of GLP-1 receptors was observed in all treatment groups. However, exendin-4 failed to reduce infarct size when administered 6 h prior to myocardial ischemia, suggesting continuous activation of the GLP-1 receptors is needed for cardioprotection.. Cardioprotection provided by GAlbudAb, a long acting GLP-1 mimetic, following myocardial I/R injury was comparable in magnitude, but more sustained in duration than that produced by short-acting exendin-4. Very low plasma concentrations of exendin-4 failed to protect the heart from myocardial I/R injury, suggesting that sustained GLP-1 receptor activation plays an important role in providing cardioprotection in the setting of acute myocardial I/R injury. Long-acting GLP-1 agonists such as GAlbudAb may warrant additional evaluation as novel therapeutic agents to reduce myocardial I/R injury during acute coronary syndrome.

    Topics: Animals; Cardiotonic Agents; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Immunoconjugates; Injections, Subcutaneous; Male; Myocardial Contraction; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Peptide Fragments; Peptides; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Serum Albumin; Single-Domain Antibodies; Venoms; Ventricular Function, Left

2013
Neuroprotective effects of liraglutide for stroke model of rats.
    International journal of molecular sciences, 2013, Oct-30, Volume: 14, Issue:11

    The number of diabetes mellitus (DM) patients is increasing, and stroke is deeply associated with DM. Recently, neuroprotective effects of glucagon-like peptide-1 (GLP-1) are reported. In this study, we explored whether liraglutide, a GLP-1 analogue exerts therapeutic effects on a rat stroke model. Wistar rats received occlusion of the middle cerebral artery for 90 min. At one hour after reperfusion, liraglutide or saline was administered intraperitoneally. Modified Bederson's test was performed at 1 and 24 h and, subsequently, rats were euthanized for histological investigation. Peripheral blood was obtained for measurement of blood glucose level and evaluation of oxidative stress. Brain tissues were collected to evaluate the level of vascular endothelial growth factor (VEGF). The behavioral scores of liraglutide-treated rats were significantly better than those of control rats. Infarct volumes of liraglutide-treated rats at were reduced, compared with those of control rats. The level of derivatives of reactive oxygen metabolite was lower in liraglutide-treated rats. VEGF level of liraglutide-treated rats in the cortex, but not in the striatum significantly increased, compared to that of control rats. In conclusion, this is the first study to demonstrate neuroprotective effects of liraglutide on cerebral ischemia through anti-oxidative effects and VEGF upregulation.

    Topics: Animals; Blood Glucose; Diabetes Complications; Disease Models, Animal; Glucagon-Like Peptide 1; Humans; Infarction, Middle Cerebral Artery; Liraglutide; Neuroprotective Agents; Oxidative Stress; Rats; Stroke; Vascular Endothelial Growth Factor A

2013
Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe⁻/⁻ mice.
    Atherosclerosis, 2013, Volume: 231, Issue:2

    [corrected] Glucagon-like peptide-1 (GLP-1) based therapies are new treatment options for patients with type 2 diabetes. Recent reports suggest vasoprotective actions of GLP-1. Similar beneficial effects might be reached by GLP-1(9-37) and the c-terminal GLP-1 split product (28-37) although both peptides do not activate the GLP-1 receptor. We therefore investigated the actions of GLP-1(7-37), GLP-1(9-37) as well as GLP-1(28-37) on vascular lesion formation in a mouse model of atherosclerosis.. GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) and LacZ (control) were overexpressed for a period of 12 weeks in apoe(-/-) mice on high-fat diet (n = 10/group) using an adeno-associated viral vector system. Neither of the constructs changed overall lesion size. However, GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) significantly reduced plaque macrophage infiltration (GLP-1(7-37): 40.6%, GLP-1(9-37): 47.0%, GLP-1(28-37): 40.1% decrease, p < 0.05) and plaque MMP-9 expression (GLP-1(7-37): 41.6%, GLP-1(9-37): 50.2%, GLP-1(28-37): 44.0% decrease, p < 0.05) compared to LacZ in the aortic arch. Moreover, all GLP-1 constructs increased plaque collagen content (GLP-1(7-37): 49.3%, GLP-1(9-37): 86.0%, GLP-1(28-37): 81.9% increase, p < 0.05) and increased fibrous cap thickness (GLP-1(7-37): 188.0%, GLP-1(9-37): 179.9% GLP-1(28-37): 111.0% increase, p < 0.05). These effects of GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) on plaque macrophage infiltration, MMP-9 expression and plaque collagen content were confirmed in the aortic root.. GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) reduce plaque inflammation and increase phenotypic characteristics of plaque stability in a murine model of atherosclerosis. Future studies are needed to determine whether these effects translate into improved plaque stability and less cardiovascular events in high-risk patients with type 2 diabetes.

    Topics: Animals; Apolipoproteins E; Atherosclerosis; Blood Glucose; Collagen; Diet, High-Fat; Disease Models, Animal; Gene Expression Regulation; Glucagon-Like Peptide 1; Incretins; Inflammation; Lipids; Macrophages; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Peptide Fragments; Phenotype; Plaque, Atherosclerotic; Transgenes

2013
Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms.
    PloS one, 2013, Volume: 8, Issue:10

    Myocardial fibrosis is a key process in diabetic cardiomyopathy. However, their underlying mechanisms have not been elucidated, leading to a lack of therapy. The glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, reduces hyperglycemia but may also trigger direct effects on the heart.. Goto-Kakizaki (GK) rats developed type-II diabetes and received sitagliptin, an anti-hyperglycemic drug (metformin) or vehicle (n=10, each). After cardiac structure and function assessment, plasma and left ventricles were isolated for biochemical studies. Cultured cardiomyocytes and fibroblasts were used for in vitro assays.. Untreated GK rats exhibited hyperglycemia, hyperlipidemia, plasma GLP-1 decrease, and cardiac cell-death, hypertrophy, fibrosis and prolonged deceleration time. Moreover, cardiac pro-apoptotic/necrotic, hypertrophic and fibrotic factors were up-regulated. Importantly, both sitagliptin and metformin lessened all these parameters. In cultured cardiomyocytes and cardiac fibroblasts, high-concentration of palmitate or glucose induced cell-death, hypertrophy and fibrosis. Interestingly, GLP-1 and its insulinotropic-inactive metabolite, GLP-1(9-36), alleviated these responses. In addition, despite a specific GLP-1 receptor was only detected in cardiomyocytes, GLP-1 isoforms attenuated the pro-fibrotic expression in cardiomyocytes and fibroblasts. In addition, GLP-1 receptor signalling may be linked to PPARδ activation, and metformin may also exhibit anti-apoptotic/necrotic and anti-fibrotic direct effects in cardiac cells.. Sitagliptin, via GLP-1 stabilization, promoted cardioprotection in type-II diabetic hearts primarily by limiting hyperglycemia e hyperlipidemia. However, GLP-1 and GLP-1(9-36) promoted survival and anti-hypertrophic/fibrotic effects on cultured cardiac cells, suggesting cell-autonomous cardioprotective actions.

    Topics: Animals; Apoptosis; Cardiomegaly; Cardiotonic Agents; Cells, Cultured; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Disease Models, Animal; Drug Evaluation, Preclinical; Fibroblasts; Fibronectins; Fibrosis; Glucagon-Like Peptide 1; Glucose Intolerance; Hypoglycemic Agents; Insulin; Male; Metformin; Myocardium; Myocytes, Cardiac; PPAR delta; Protein Isoforms; Pyrazines; Rats; Sitagliptin Phosphate; Triazoles

2013
Effect of the GLP-1 analog exendin-4 and oxaliplatin on intrahepatic cholangiocarcinoma cell line and mouse model.
    International journal of molecular sciences, 2013, Dec-13, Volume: 14, Issue:12

    The influence of Glucagon-like peptide-1 (GLP-1) and Exendin-4 on development of intrahepatic cholangiocarcinoma (ICC) is evaluated in the study. In vitro tests, including acute toxicity test, cell colony formation assays, cells proliferation and apoptosis, transwell assay, were performed. An ICC in situ tumor animal model was established. Then, animals were randomly divided into four groups (n = 6): control, Exendin-4 treatment, oxaliplatin treatment and Exendin-4-oxaliplatin treatment. Animals in the Exendin-4 treatment and Exendin-4-oxaliplatin treatment groups received a subcutaneous injection of Exendin-4 (100 μg/kg/day) for 1 week, and then received oxaliplatin (10 mg/kg/week) by tail vein injection. Animals in the control group received PBS. Immunohistochemistry tests were used for PCNA, Ki67, Caspase 3 expression in tumor tissue. Results show that that, after incubation of human cholangiocarcinoma cell lines, HuCCTI and GLP-1, or HuCCTI and Exendin-4, colony formation number was sharply decreased. However, GLP-1, HuCCTI or Exendin-4 did not affect the colony of normal cells. Combination treatment with oxaliplatin and Exendin-4 can significantly inhibit tumor cells' proliferation and promote apoptosis. The combined effect is stronger than that of oxaliplatin or Exendin-4. Combination treatment with oxaliplatin and Exendin4 can significantly decrease Ki67 and PCNA proteins' expression in subcutaneous tumors of nude mice. The inhibitory effect of Combination treatment with oxaliplatin and Exendin4 is clearly stronger than that of oxaliplatin. In addition, Combination treatment with oxaliplatin and Exendin4 can significantly increase Caspase3 protein positive expression. In short, these results show that combination treatment with oxaliplatin and Exendin4 can inhibit tumor cells' proliferation, and promote apoptosis.

    Topics: Animals; Apoptosis; Bile Duct Neoplasms; Bile Ducts, Intrahepatic; Caspase 3; Cell Line, Tumor; Cell Proliferation; Cholangiocarcinoma; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Humans; Ki-67 Antigen; Liver Neoplasms; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Organoplatinum Compounds; Oxaliplatin; Peptides; Proliferating Cell Nuclear Antigen; Toxicity Tests, Acute; Transplantation, Heterologous; Venoms

2013
A tripeptide Diapin effectively lowers blood glucose levels in male type 2 diabetes mice by increasing blood levels of insulin and GLP-1.
    PloS one, 2013, Volume: 8, Issue:12

    The prevalence of type 2 diabetes (T2D) is rapidly increasing worldwide. Effective therapies, such as insulin and Glucagon-like peptide-1 (GLP-1), require injections, which are costly and result in less patient compliance. Here, we report the identification of a tripeptide with significant potential to treat T2D. The peptide, referred to as Diapin, is comprised of three natural L-amino acids, GlyGlyLeu. Glucose tolerance tests showed that oral administration of Diapin effectively lowered blood glucose after oral glucose loading in both normal C57BL/6J mice and T2D mouse models, including KKay, db/db, ob/ob mice, and high fat diet-induced obesity/T2D mice. In addition, Diapin treatment significantly reduced casual blood glucose in KKay diabetic mice in a time-dependent manner without causing hypoglycemia. Furthermore, we found that plasma GLP-1 and insulin levels in diabetic models were significantly increased with Diapin treatment compared to that in the controls. In summary, our findings establish that a peptide with minimum of three amino acids can improve glucose homeostasis and Diapin shows promise as a novel pharmaceutical agent to treat patients with T2D through its dual effects on GLP-1 and insulin secretion.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon-Like Peptide 1; Hypoglycemic Agents; Insulin; Male; Mice; Mice, Inbred C57BL; Oligopeptides; Time Factors

2013
Exendin-4 induced glucagon-like peptide-1 receptor activation reverses behavioral impairments of mild traumatic brain injury in mice.
    Age (Dordrecht, Netherlands), 2013, Volume: 35, Issue:5

    Mild traumatic brain injury (mTBI) represents a major and increasing public health concern and is both the most frequent cause of mortality and disability in young adults and a chief cause of morbidity in the elderly. Albeit mTBI patients do not show clear structural brain defects and, generally, do not require hospitalization, they frequently suffer from long-lasting cognitive, behavioral, and emotional problems. No effective pharmaceutical therapy is available, and existing treatment chiefly involves intensive care management after injury. The diffuse neural cell death evident after mTBI is considered mediated by oxidative stress and glutamate-induced excitotoxicity. Prior studies of the long-acting GLP-1 receptor agonist, exendin-4 (Ex-4), an incretin mimetic approved for type 2 diabetes mellitus treatment, demonstrated its neurotrophic/protective activity in cellular and animal models of stroke, Alzheimer's and Parkinson's diseases, and, consequent to commonalities in mechanisms underpinning these disorders, Ex-4 was assessed in a mouse mTBI model. In neuronal cultures in this study, Ex-4 ameliorated H2O2-induced oxidative stress and glutamate toxicity. To evaluate in vivo translation, we administered steady-state Ex-4 (3.5 pM/kg/min) or saline to control and mTBI mice over 7 days starting 48 h prior to or 1 h post-sham or mTBI (30 g weight drop under anesthesia). Ex-4 proved well-tolerated and fully ameliorated mTBI-induced deficits in novel object recognition 7 and 30 days post-trauma. Less mTBI-induced impairment was evident in Y-maze, elevated plus maze, and passive avoidance paradigms, but when impairment was apparent Ex-4 induced amelioration. Together, these results suggest that Ex-4 may act as a neurotrophic/neuroprotective drug to minimize mTBI impairment.

    Topics: Alzheimer Disease; Animals; Behavior, Animal; Brain; Brain Injuries; Cell Line; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Male; Memory; Mice; Neuroprotective Agents; Oxidative Stress; Peptides; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Recognition, Psychology; Trauma Severity Indices; Venoms

2013
The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer's disease.
    Neuromolecular medicine, 2013, Volume: 15, Issue:1

    Alzheimer's disease (AD) has been shown to involve desensitised insulin receptor (IR) signalling. Liraglutide, a novel glucagon-like peptide 1 (GLP-1) analogue that facilitates insulin signalling, is currently approved for use in type 2 diabetes mellitus. In the present study, we show that distinctive alterations in the localisation and distribution of the IR and increased levels of insulin receptor substrate (IRS)-1 phosphorylated at serine 616 (IRS-1 pS(616)), a key marker of insulin resistance, are associated with amyloid-β plaque pathology in the frontal cortex of a mouse model of AD, APPSWE/PS1dE9. Altered IR status in APPSWE/PS1dE9 is most evident in extracellular deposits with the appearance of dystrophic neurites, with significantly increased IRS-1 pS(616) levels detected within neurons and neurites. The IR and IRS-1 pS(616) changes occur in the vicinity of all plaques in the APPSWE/PS1dE9 brain, and a significant upregulation of astrocytes and microglia surround this pathology. We show that liraglutide treatment for 8 weeks at 25 nmol/kg body weight i.p. once daily in 7-month-old mice significantly decreases IR aberrations in conjunction with a concomitant decrease in amyloid plaque load and levels of IRS-1 pS(616). Liraglutide also induces a highly significant reduction in astrocytosis and microglial number associated with both plaques and IR pathology. The amelioration of IR aberrations and attenuation of IRS-1 pS(616) upregulation, plaque and glial activation in APPSWE/PS1dE9 mice treated with liraglutide support the investigation of the therapeutic potential of liraglutide and long-lasting GLP-1 agonists in patients with AD.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Astrocytes; Disease Models, Animal; Female; Frontal Lobe; Glucagon-Like Peptide 1; Hypoglycemic Agents; Insulin Receptor Substrate Proteins; Insulin Resistance; Liraglutide; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microglia; Mutation, Missense; Neuroprotective Agents; Phosphorylation; Plaque, Amyloid; Presenilin-1; Protein Processing, Post-Translational; Protein Transport; Receptor, Insulin; Signal Transduction

2013
GLP-1 analog attenuates cocaine reward.
    Molecular psychiatry, 2013, Volume: 18, Issue:9

    Topics: Animals; Brain; Cocaine-Related Disorders; Conditioning, Operant; Disease Models, Animal; Dose-Response Relationship, Drug; Exenatide; Exploratory Behavior; Glucagon-Like Peptide 1; Male; Mice; Mice, Inbred C57BL; Peptides; Reward; Venoms

2013
A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity.
    Circulation, 2013, Jan-01, Volume: 127, Issue:1

    Cardiac consequences of obesity include inflammation, hypertrophy, and compromised energy metabolism. Glucagon-like peptide-1 is an incretin hormone capable of cytoprotective actions that reduces inflammation and endoplasmic reticulum stress in other tissues. Here we examine the cardiac effects of the glucagon-like peptide-1 analog liraglutide in a model of obesity, independent of changes in body weight.. C57Bl6 mice were placed on a 45% high-fat diet (HFD) or a regular chow diet. Mice on HFD developed 46±2% and 60±2% greater body weight relative to regular chow diet-fed mice at 16 and 32 weeks, respectively (both P<0.0001), manifesting impaired glucose tolerance, insulin resistance, and cardiac ceramide accumulation by 16 weeks. One-week treatment with liraglutide (30 µg/kg twice daily) did not reduce body weight, but reversed insulin resistance, cardiac tumor necrosis factor-α expression, nuclear factor kappa B translocation, obesity-induced perturbations in cardiac endothelial nitric oxide synthase, connexin-43, and markers of hypertrophy and fibrosis, in comparison with placebo-treated HFD controls. Liraglutide improved the cardiac endoplasmic reticulum stress response and also improved cardiac function in animals on HFD by an AMP-activated protein kinase-dependent mechanism. Supporting a direct mechanism of action, liraglutide (100 nmol/L) prevented palmitate-induced lipotoxicity in isolated mouse cardiomyocytes and primary human coronary smooth muscle cells and prevented adhesion of human monocytes to tumor necrosis factor-α-activated human endothelial cells in vitro.. Weight-neutral treatment with a glucagon-like peptide-1 analog activates several cardioprotective pathways, prevents HFD-induced insulin resistance and inflammation, reduces monocyte vascular adhesion, and improves cardiac function in vivo by activating AMP-activated protein kinase. These data support a role for glucagon-like peptide-1 analogs in limiting the cardiovascular risks of obesity.

    Topics: Animals; Blood Glucose; Cardiotonic Agents; Cell Line; Connexin 43; Coronary Vessels; Disease Models, Animal; Endoplasmic Reticulum Stress; Endothelial Cells; Gene Expression; Glucagon-Like Peptide 1; Heart Diseases; Humans; Hypercholesterolemia; Insulin Resistance; Liraglutide; Mice; Mice, Inbred C57BL; Monocytes; Muscle, Smooth, Vascular; Myocytes, Cardiac; Nitric Oxide Synthase Type III; Obesity; Risk Factors; Signal Transduction; Tumor Necrosis Factor-alpha

2013
Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats.
    Disease models & mechanisms, 2013, Volume: 6, Issue:2

    Post-operative increases in circulating bile acids have been suggested to contribute to the metabolic benefits of bariatric surgery; however, their mechanistic contributions remain undefined. We have previously reported that ileal interposition (IT) surgery delays the onset of type 2 diabetes in UCD-T2DM rats and increases circulating bile acids, independently of effects on energy intake or body weight. Therefore, we investigated potential mechanisms by which post-operative increases in circulating bile acids improve glucose homeostasis after IT surgery. IT, sham or no surgery was performed on 2-month-old weight-matched male UCD-T2DM rats. Animals underwent an oral fat tolerance test (OFTT) and serial oral glucose tolerance tests (OGTT). Tissues were collected at 1.5 and 4.5 months after surgery. Cell culture models were used to investigate interactions between bile acids and ER stress. IT-operated animals exhibited marked improvements in glucose and lipid metabolism, with concurrent increases in postprandial glucagon-like peptide-1 (GLP-1) secretion during the OFTT and OGTTs, independently of food intake and body weight. Measurement of circulating bile acid profiles revealed increases in circulating total bile acids in IT-operated animals, with a preferential increase in circulating cholic acid concentrations. Gut microbial populations were assessed as potential contributors to the increases in circulating bile acid concentrations, which revealed proportional increases in Gammaproteobacteria in IT-operated animals. Furthermore, IT surgery decreased all three sub-arms of ER stress signaling in liver, adipose and pancreas tissues. Amelioration of ER stress coincided with improved insulin signaling and preservation of β-cell mass in IT-operated animals. Incubation of hepatocyte, adipocyte and β-cell lines with cholic acid decreased ER stress. These results suggest that postoperative increases in circulating cholic acid concentration contribute to improvements in glucose homeostasis after IT surgery by ameliorating ER stress.

    Topics: Adipocytes; Animals; Bile Acids and Salts; Body Weight; Cecum; Cholic Acid; Diabetes Mellitus, Type 2; Disease Models, Animal; Eating; Endoplasmic Reticulum Stress; Energy Metabolism; Gammaproteobacteria; Glucagon-Like Peptide 1; Glucose; Glucose Tolerance Test; Hepatocytes; Ileum; Insulin; Insulin-Secreting Cells; Lipid Metabolism; Male; Organ Specificity; Rats; Signal Transduction

2013
Role of glucagon-like peptide-1 in the pathogenesis of experimental irritable bowel syndrome rat models.
    International journal of molecular medicine, 2013, Volume: 31, Issue:3

    Alterations in gut motility and visceral hypersensitivity are two major features of irritable bowel syndrome (IBS). The aim of this study was to investigate the roles of glucagon-like peptide-1 (GLP-1) in the pathogenesis of experimental IBS. Rat models of constipation-predominant IBS (IBS-C) and diarrhea-predominant IBS (IBS-D) were established. Fecal water content and behavioral responses to colorectal distention (CRD), using electromyography (EMG), were measured. The expression of glucagon-like peptide-1 receptor (GLP-1R) in the colon was detected by immunohistochemistry, and the serum concentration of GLP-1 was measured by ELISA assay. The movement of circular and longitudinal colonic muscle was detected using an organ bath recording technique. Compared to controls, the fecal water contents were lower in the IBS-C group, while they were higher in the IBS-D group (P<0.05). EMG response to CRD in the experimental IBS groups was increased compared with their respective controls (P<0.05). GLP-1R was localized in the mucosa layer, circular muscle and myenteric nerve plexus of the colon. Notably, the expression of GLP-1R in the IBS-C group was higher, but in the IBS-D group, it was lower compared with controls. The serum levels of GLP-1 in the IBS-C group were higher compared to those in the IBS-D group (P<0.05). In addition, administration of exogenous GLP-1 and exendin-4 inhibited colonic circular muscle contraction, particularly in the IBS-C group, while there was no significant effect on longitudinal muscle contraction. In conclusion, these results indicated that GLP-1 and GLP-1R are implicated in the pathogenesis of IBS-C and IBS-D.

    Topics: Animals; Colon; Constipation; Diarrhea; Disease Models, Animal; Exenatide; Feces; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Irritable Bowel Syndrome; Male; Muscle Contraction; Peptides; Peristalsis; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Venoms; Water

2013
Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism.
    Diabetes, 2013, Volume: 62, Issue:5

    Impaired cardiac microvascular function contributes to cardiovascular complications in diabetes. Glucagon-like peptide-1 (GLP-1) exhibits potential cardioprotective properties in addition to its glucose-lowering effect. This study was designed to evaluate the impact of GLP-1 on cardiac microvascular injury in diabetes and the underlying mechanism involved. Experimental diabetes was induced using streptozotocin in rats. Cohorts of diabetic rats received a 12-week treatment of vildagliptin (dipeptidyl peptidase-4 inhibitor) or exenatide (GLP-1 analog). Experimental diabetes attenuated cardiac function, glucose uptake, and microvascular barrier function, which were significantly improved by vildagliptin or exenatide treatment. Cardiac microvascular endothelial cells (CMECs) were isolated and cultured in normal or high glucose medium with or without GLP-1. GLP-1 decreased high-glucose-induced reactive oxygen species production and apoptotic index, as well as the levels of NADPH oxidase such as p47(phox) and gp91(phox). Furthermore, cAMP/PKA (cAMP-dependent protein kinase activity) was increased and Rho-expression was decreased in high-glucose-induced CMECs after GLP-1 treatment. In conclusion, GLP-1 could protect the cardiac microvessels against oxidative stress, apoptosis, and the resultant microvascular barrier dysfunction in diabetes, which may contribute to the improvement of cardiac function and cardiac glucose metabolism in diabetes. The protective effects of GLP-1 are dependent on downstream inhibition of Rho through a cAMP/PKA-mediated pathway.

    Topics: AMP-Activated Protein Kinases; Animals; Cardiotonic Agents; Cells, Cultured; Cyclic AMP; Diabetic Angiopathies; Diabetic Cardiomyopathies; Disease Models, Animal; Endothelium, Vascular; Exenatide; Glucagon-Like Peptide 1; Heart Ventricles; Hyperglycemia; Hypoglycemic Agents; Male; Microvessels; Oxidative Stress; Peptides; Random Allocation; Rats; Rats, Sprague-Dawley; rho GTP-Binding Proteins; Second Messenger Systems; Venoms

2013
Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats.
    The British journal of nutrition, 2012, Volume: 107, Issue:4

    There is a growing interest in modulating gut microbiota with diet in the context of obesity. The purpose of the present study was to evaluate the dose-dependent effects of prebiotics (inulin and oligofructose) on gut satiety hormones, energy expenditure, gastric emptying and gut microbiota. Male lean and obese JCR:LA-cp rats were randomised to either of the following: lean 0 % fibre (LC), lean 10 % fibre (LF), lean 20 % fibre (LHF), obese 0 % fibre (OC), obese 10 % fibre (OF) or obese 20 % fibre (OHF). Body composition, gastric emptying, energy expenditure, plasma satiety hormone concentrations and gut microbiota (using quantitative PCR) were measured. Caecal proglucagon and peptide YY mRNA levels were up-regulated 2-fold in the LF, OF and OHF groups and 3-fold in the LHF group. Ghrelin O-acyltransferase mRNA levels were higher in obese v. lean rats and decreased in the OHF group. Plasma ghrelin response was attenuated in the LHF group. Microbial species measured in the Bacteroidetes division decreased, whereas those in the Firmicutes increased in obese v. lean rats and improved with prebiotic intake. Bifidobacterium and Lactobacillus increased in the OHF v. OC group. Bacteroides and total bacteria negatively correlated with percentage of body fat and body weight. Enterobacteriaceae increased in conjunction with glucose area under the curve (AUC) and glucagon-like peptide-1 AUC. Bacteroides and total bacteria correlated positively with ghrelin AUC yet negatively with insulin AUC and energy intake (P < 0·05). Several of the mechanisms through which prebiotics act (food intake, satiety hormones and alterations in gut microbiota) are regulated in a dose-dependent manner. The combined effects of prebiotics may have therapeutic potential for obesity.

    Topics: Acyltransferases; Animals; Bacteroidetes; Disease Models, Animal; Gastrointestinal Tract; Gene Expression Regulation; Ghrelin; Glucagon-Like Peptide 1; Gram-Negative Bacteria; Gram-Positive Bacteria; Inulin; Male; Obesity; Oligosaccharides; Peptide YY; Prebiotics; Proglucagon; Random Allocation; Rats; Rats, Inbred Strains; RNA, Messenger; Satiety Response

2012
Effect of intravitreal cell-based produced glucagon-like peptide-1 on Bcl and BAX expression in the optic nerve crush model.
    Acta ophthalmologica, 2012, Volume: 90, Issue:3

    Topics: Animals; bcl-2-Associated X Protein; Disease Models, Animal; Drug Implants; Gene Expression Regulation; Glucagon-Like Peptide 1; Microspheres; Nerve Crush; Optic Nerve Injuries; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Retinal Ganglion Cells; Vitreous Body

2012
Effects of ileal interposition on glucose metabolism in obese rats with diabetes.
    Surgery, 2012, Volume: 151, Issue:6

    Ileal interposition (IT), in which the distal ileum is transposed isoperistaltically into the proximal jejunum, is considered as a procedure for metabolic or antidiabetes surgery. Our aim was to study the effects of IT on glycemic control, fat metabolism, and hormonal changes in obese rats with spontaneous diabetes.. Animals were divided into either an IT or a sham (SH) group. They underwent an oral glucose tolerance test (OGTT) before and 4 and 8 weeks after the operation. All animals were killed 10 weeks after operation for analyses of tissue weight (liver, pancreas, epididymal fat, brown fat), immunoblotting of uncoupling protein-1 (UCP1) protein in brown adipose tissue (BAT), and fasting plasma levels of glucose, insulin, glucagon-like peptide (GLP)-1, peptide YY (PYY), glucose-dependent insulinotropic polypeptide (GIP), and leptin.. Body weight increased postoperatively in both groups compared with preoperative weight, but it did not differ between the 2 groups. Eight weeks postoperatively, integrated blood glucose levels during the OGTT were decreased in IT compared with SH (P < .05). Fasting plasma levels of insulin, GLP-1, and GIP did not differ between the 2 groups, but PYY levels were higher in the IT animals (P < .01). The weight of epididymal and BATs, homeostasis model assessment insulin resistance, and fasting plasma leptin levels were decreased in the IT group (P < .05). Expression of UCP1 was higher in IT than SH animals (P < .05).. These results suggest that IT improves glucose and lipid metabolism by decreasing insulin resistance and epididymal fat, and increased expression of UCP1 in BAT might be among the mechanisms responsible.

    Topics: Adipose Tissue, Brown; Animals; Body Weight; Comorbidity; Diabetes Mellitus; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose; Ileum; Insulin Resistance; Ion Channels; Jejunum; Leptin; Lipid Metabolism; Male; Mitochondrial Proteins; Obesity; Peptide YY; Rats, Inbred OLETF; Uncoupling Protein 1

2012
Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis.
    PloS one, 2012, Volume: 7, Issue:2

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by a progressive loss of lower motor neurons in the spinal cord. The incretin hormone, glucagon-like peptide-1 (GLP-1), facilitates insulin signaling, and the long acting GLP-1 receptor agonist exendin-4 (Ex-4) is currently used as an anti-diabetic drug. GLP-1 receptors are widely expressed in the brain and spinal cord, and our prior studies have shown that Ex-4 is neuroprotective in several neurodegenerative disease rodent models, including stroke, Parkinson's disease and Alzheimer's disease. Here we hypothesized that Ex-4 may provide neuroprotective activity in ALS, and hence characterized Ex-4 actions in both cell culture (NSC-19 neuroblastoma cells) and in vivo (SOD1 G93A mutant mice) models of ALS. Ex-4 proved to be neurotrophic in NSC-19 cells, elevating choline acetyltransferase (ChAT) activity, as well as neuroprotective, protecting cells from hydrogen peroxide-induced oxidative stress and staurosporine-induced apoptosis. Additionally, in both wild-type SOD1 and mutant SOD1 (G37R) stably transfected NSC-19 cell lines, Ex-4 protected against trophic factor withdrawal-induced toxicity. To assess in vivo translation, SOD1 mutant mice were administered vehicle or Ex-4 at 6-weeks of age onwards to end-stage disease via subcutaneous osmotic pump to provide steady-state infusion. ALS mice treated with Ex-4 showed improved glucose tolerance and normalization of behavior, as assessed by running wheel, compared to control ALS mice. Furthermore, Ex-4 treatment attenuated neuronal cell death in the lumbar spinal cord; immunohistochemical analysis demonstrated the rescue of neuronal markers, such as ChAT, associated with motor neurons. Together, our results suggest that GLP-1 receptor agonists warrant further evaluation to assess whether their neuroprotective potential is of therapeutic relevance in ALS.

    Topics: Amyotrophic Lateral Sclerosis; Animals; Apoptosis; Cell Line; Choline O-Acetyltransferase; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucose Tolerance Test; Hydrogen Peroxide; Hypoglycemic Agents; Insulin; Male; Mice; Motor Neurons; Oxidative Stress; Peptides; Spinal Cord; Staurosporine; Superoxide Dismutase; Superoxide Dismutase-1; Venoms

2012
Neural and humoral changes associated with the adjustable gastric band: insights from a rodent model.
    International journal of obesity (2005), 2012, Volume: 36, Issue:11

    Bariatric surgical procedures, including the laparoscopic adjustable gastric band (LAGB), are currently the only effective treatments for morbid obesity, however, there is no clear understanding of the mechanisms underpinning the efficacy of LAGB. The aim of this study is to examine changes in activation of the sensory neuronal pathways and levels of circulating gut hormones associated with inflation of an AGB.. The trajectory within the central nervous system of polysynaptic projections of sensory neurons innervating the stomach was determined using the transsynaptically transported herpes simplex virus (HSV). Populations of HSV-infected neurons were present in the brainstem, hypothalamus and cortical regions associated with energy balance. An elevation of Fos protein was present within the nucleus of the solitary tract, a region of the brainstem involved in the control of food intake, following acute and chronic band inflation. Two approaches were used to test (1) the impact of inflation of the band alone (on a standard caloric background) or (2) the impact of a standard caloric meal (on the background of the inflated band) on circulating gut hormones. Importantly, there was a significant elevation of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) following oral gavage of a liquid meal in animals with pre-inflated bands. There was no impact of inflation of the band alone on circulating GLP-1, PYY or ghrelin in animals on a standard caloric background.. These data are consistent with the notion that the LAGB exerts its effects on satiety, reduced food intake and reduced body weight by the modulation of both neural and hormonal responses with the latter involving an elevation of meal-related levels of GLP-1 and PYY. These data are contrary to the view that the surgery is purely 'restrictive'.

    Topics: Animals; Brain; Caloric Restriction; Disease Models, Animal; Eating; Gastric Mucosa; Gastroplasty; Ghrelin; Glucagon-Like Peptide 1; Laparoscopy; Male; Obesity, Morbid; Peptide YY; Rats; Rats, Sprague-Dawley; Satiation; Sensory Receptor Cells; Signal Transduction; Simplexvirus; Stomach; Weight Loss

2012
Response of gut hormones after implantation of a reversible gastric restrictive device in different animal models.
    The Journal of surgical research, 2012, Volume: 178, Issue:1

    Variable responses of gut hormones have been observed after bariatric procedures. The aim of the present study was to evaluate the ghrelin, glucagon-like peptide 1 (GLP-1), and leptin levels in nonobese canine and obese rat models after weight loss owing to a reversible gastric restriction (RGR) device.. Mongrel dogs and obese Zucker rats were submitted to either surgical implantation or a sham operation and were followed up for 6 wk. The serum fasting ghrelin, GLP-1, and leptin levels in dogs were measured using enzyme-linked immunosorbent assay before and after surgical implantation and after implant removal. The protein expression of mucosa ghrelin, GLP-1, and leptin in the dog and rat stomach were measured using Western blotting.. The RGR implant in dogs and rats resulted in a significant decrease in food intake and body weight. In the nonobese dog, the serum ghrelin level and mucosa ghrelin expression were significantly increased after surgical implantation (P < 0.05) and tended to recover after implant removal. In the obese rat, mucosa ghrelin expression decreased by about 27% (P = 0.06) 6 wk after implantation. A lower serum leptin level in dogs and lower mucosa leptin expression in dogs and rats was observed after surgical implantation compared with the sham procedure (P < 0.05). The RGR implant had no influence on the serum GLP-1 level in dogs or mucosa GLP-1 expression in either animal model.. Our results showed that ghrelin levels are downregulated with short-term RGR implantation in obese rats but upregulated in nonobese dogs, implying that the energy balance could be an important determinant of ghrelin level. The marked suppression of leptin in both animal models might contribute to the weight-reducing effect of the RGR implant.

    Topics: Animals; Body Weight; Disease Models, Animal; Dogs; Energy Metabolism; Gastric Mucosa; Gastroplasty; Ghrelin; Glucagon-Like Peptide 1; Leptin; Obesity; Rats; Rats, Zucker; Weight Loss

2012
Intestinal GATA4 deficiency protects from diet-induced hepatic steatosis.
    Journal of hepatology, 2012, Volume: 57, Issue:5

    GATA4, a zinc finger domain transcription factor, is critical for jejunal identity. Mice with an intestine-specific GATA4 deficiency (GATA4iKO) are resistant to diet-induced obesity and insulin resistance. Although they have decreased intestinal lipid absorption, hepatic de novo lipogenesis is inhibited. Here, we investigated dietary lipid-dependent and independent effects on the development of steatosis and fibrosis in GATA4iKO mice.. GATA4iKO and control mice were fed a Western-type diet (WTD) or a methionine and choline-deficient diet (MCDD) for 20 and 3 weeks, respectively. Functional effects of GATA4iKO on diet-induced liver steatosis were investigated.. WTD-but not MCDD-fed GATA4iKO mice showed lower hepatic concentrations of triglycerides, free fatty acids, and thiobarbituric acid reactive species and had reduced expression of lipogenic as well as fibrotic genes compared with controls. Reduced nuclear sterol regulatory element-binding protein-1c protein levels were accompanied by lower lipogenic gene expression. Oil red O and Sirius Red staining of liver sections confirmed the observed reduction in hepatic lipid accumulation and fibrosis. Immunohistochemical staining revealed an increased number of jejunal glucagon-like peptide 1 (GLP-1) positive cells in GATA4iKO mice. Consequently, we found enhanced phosphorylation of hepatic AMP-activated protein kinase and acetyl-CoA carboxylase alpha.. Our results provide strong indications for a protective effect of intestinal GATA4 deficiency on the development of hepatic steatosis and fibrosis via GLP-1, thereby blocking hepatic de novo lipogenesis.

    Topics: AMP-Activated Protein Kinase Kinases; Animals; Choline Deficiency; Diet; Disease Models, Animal; Fatty Acids, Nonesterified; Fatty Liver; GATA4 Transcription Factor; Glucagon-Like Peptide 1; Jejunum; Lipid Metabolism; Liver Cirrhosis; Male; Methionine; Mice; Mice, Knockout; Protein Kinases; Sterol Regulatory Element Binding Protein 1; Thiobarbituric Acid Reactive Substances; Triglycerides

2012
The glucose-lowering effects of the PDE4 inhibitors roflumilast and roflumilast-N-oxide in db/db mice.
    Diabetologia, 2012, Volume: 55, Issue:10

    The cAMP-degrading phosphodiesterase 4 (PDE4) enzyme has recently been implicated in the regulation of glucagon-like peptide-1 (GLP-1), an incretin hormone with glucose-lowering properties. We investigated whether the PDE4 inhibitor roflumilast elevates GLP-1 levels in diabetic db/db mice and whether this elevation is accompanied by glucose-lowering effects.. Plasma GLP-1 was determined in db/db mice after single oral administration of roflumilast or its active metabolite roflumilast-N-oxide. Diabetes-relevant variables including HbA(1c), blood glucose, serum insulin, body weight, food and water intake, and pancreas morphology were determined in db/db mice treated daily for 28 days with roflumilast or roflumilast-N-oxide. Pharmacokinetic/pharmacodynamic analysis clarified the contribution of roflumilast vs its metabolite. In addition, the effect of roflumilast-N-oxide on insulin release was investigated in primary mouse islets.. Single treatment of db/db mice with 10 mg/kg roflumilast or roflumilast-N-oxide enhanced plasma GLP-1 2.5- and fourfold, respectively. Chronic treatment of db/db mice with roflumilast or roflumilast-N-oxide at 3 mg/kg showed prevention of disease progression. Roflumilast-N-oxide abolished the increase in blood glucose, reduced the increment in HbA(1c) by 50% and doubled fasted serum insulin compared with vehicle, concomitant with preservation of pancreatic islet morphology. Furthermore, roflumilast-N-oxide amplified forskolin-induced insulin release in primary islets. Roflumilast-N-oxide showed stronger glucose-lowering effects than its parent compound, consistent with its greater effect on GLP-1 secretion and explainable by pharmacokinetic/pharmacodynamic modelling.. Our results suggest that roflumilast and roflumilast-N-oxide delay the progression of diabetes in db/db mice through protection of pancreatic islet physiology potentially involving GLP-1 and insulin activities.

    Topics: Administration, Oral; Aminopyridines; Animals; Benzamides; Blood Glucose; Cyclopropanes; Diabetes Mellitus, Type 2; Disease Models, Animal; Disease Progression; Female; Glucagon-Like Peptide 1; Hypoglycemic Agents; Insulin; Mice; Mice, Mutant Strains; Phosphodiesterase 4 Inhibitors

2012
Glucagon-like peptide-1 agonist exendin-4 leads to reduction of weight and caloric intake in a rat model of hypothalamic obesity.
    Hormone research in paediatrics, 2012, Volume: 78, Issue:1

    Hypothalamic obesity caused by damage of medial hypothalamic nuclei presents a therapeutic challenge. Glucagon-like peptide-1 agonist exenatide (synthetic version of exendin-4 (Ex4)), used for treatment of diabetes, causes weight loss via hindbrain signaling.. We tested Ex4 in an established rat model of medial hypothalamic lesions. Lesion and control animals were administered either daily intraperitoneal injections of 1 µg·kg(-1) Ex4 or saline for 9 days.. In our rat model, a significant difference in percent baseline food intake (lesion -20.8%, control -13.6%; p < 0.001) and percent change in body weight (lesion -4.9%/9 days, control -3.2%/9 days; p < 0.05) was observed during Ex4 treatment compared with saline.. Ex4 resulted in reduction of food intake and body weight. Follow-up studies are required to further elucidate its effects on energy homeostasis and to establish Ex4 as a potential drug for treatment of hypothalamic obesity.

    Topics: Animals; Body Weight; Disease Models, Animal; Down-Regulation; Drug Evaluation, Preclinical; Energy Intake; Exenatide; Glucagon-Like Peptide 1; Hypoglycemic Agents; Hypothalamic Diseases; Male; Obesity; Peptides; Rats; Rats, Sprague-Dawley; Venoms; Weight Loss

2012
Dipeptidyl peptidase 4 inhibitor sitagliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism.
    Hypertension (Dallas, Tex. : 1979), 2012, Volume: 60, Issue:3

    Sitagliptin, a selective dipeptidyl peptidase 4 inhibitor, inhibits the inactivation and degradation of glucagon like peptide 1 (GLP-1), which is used for the treatment of type 2 diabetes mellitus. However, little is known about the role of GLP-1 in hypertension. This study investigated whether the activation of GLP-1 signaling protects endothelial function in hypertension. Two-week sitagliptin treatment (10 mg/kg per day, oral gavage) improved endothelium-dependent relaxation in renal arteries, restored renal blood flow, and reduced systolic blood pressure in spontaneously hypertensive rats. In vivo sitagliptin treatment elevated GLP-1 and GLP-1 receptor expressions, increased cAMP level, and subsequently activated protein kinase A, liver kinase B1, AMP-activated protein kinase-α and endothelial NO synthase in spontaneously hypertensive rat renal arteries. Inhibition of GLP-1 receptor, adenylyl cyclase, protein kinase A, AMP-activated protein kinase-α, or NO synthase reversed the protective effects of sitagliptin. We also demonstrate that GLP-1 receptor agonist exendin 4 in vitro treatment had similar vasoprotective effects in spontaneously hypertensive rat renal arteries and increased NO production in spontaneously hypertensive rat aortic endothelial cells. Studies using transient expressions of wild-type and dominant-negative AMP-activated protein kinase-α2 support the critical role of AMP-activated protein kinase-α in mediating the effect of GLP-1 in endothelial cells. Ex vivo exendin 4 treatment also improved endothelial function of renal arteries from hypertensive patients. Our results elucidate that upregulation of GLP-1 and related agents improve endothelial function in hypertension by restoring NO bioavailability, suggesting that GLP-1 signaling could be a therapeutic target in hypertension-related vascular events.

    Topics: Aged; Aged, 80 and over; Animals; Blood Pressure; Cells, Cultured; Cyclic AMP; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Endothelium, Vascular; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypertension; In Vitro Techniques; Kidney; Magnetic Resonance Imaging; Male; Middle Aged; Nitric Oxide; Peptides; Pyrazines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Glucagon; Regional Blood Flow; Renal Artery; Signal Transduction; Sitagliptin Phosphate; Triazoles; Venoms

2012
Phosphodiesterase III inhibition increases cAMP levels and augments the infarct size limiting effect of a DPP-4 inhibitor in mice with type-2 diabetes mellitus.
    Cardiovascular drugs and therapy, 2012, Volume: 26, Issue:6

    We assessed whether phosphodiesterase-III inhibition with cilostazol (Cil) augments the infarct size (IS)-limiting effects of MK0626 (MK), a dipeptidyl-peptidase-4 (DPP4) inhibitor, by increasing intracellular cAMP in mice with type-2 diabetes.. Db/Db mice received 3-day MK (0, 1, 2 or 3 mg/kg/d) with or without Cil (15 mg/kg/d) by oral gavage and were subjected to 30 min coronary artery occlusion and 24 h reperfusion.. Cil and MK at 2 and 3 mg/kg/d significantly reduced IS. Cil and MK had additive effects at all three MK doses. IS was the smallest in the MK-3+Cil. MK in a dose dependent manner and Cil increased cAMP levels (p < 0.001). cAMP levels were higher in the combination groups at all MK doses. MK-2 and Cil increased PKA activity when given alone; however, PKA activity was significantly higher in the MK-2+Cil group than in the other groups. Both MK-2 and Cil increased myocardial levels of Ser(133) P-CREB, Ser(523) P-5-lipoxygenase, Ser(473)P-Akt and Ser(633) P-eNOS. These levels were significantly higher in the MK-2+Cil group. Myocardial PTEN (Phosphatase and tensin homolog on chromosome ten) levels were significantly higher in the Db/Db mice compared to nondiabetic mice. MK-2 and Cil normalized PTEN levels. PTEN levels tended to be lower in the combination group than in the MK and Cil alone groups.. MK and Cil have additive IS-limiting effects in diabetic mice. The additive effects are associated with an increase in myocardial cAMP levels and PKA activity with downstream phosphorylation of Akt, eNOS, 5-lipoxygenase and CREB and downregulation of PTEN expression.

    Topics: Animals; Blood Glucose; Cilostazol; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Diabetes Mellitus, Type 2; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Glucagon-Like Peptide 1; Glycated Hemoglobin; Immunoblotting; Lipids; Lipoxins; Male; Membrane Proteins; Mice; Myocardial Infarction; Myocardium; Phosphodiesterase 3 Inhibitors; PTEN Phosphohydrolase; Tetrazoles; Triazoles

2012
Glucagon-like peptide-1 cleavage product GLP-1(9-36) amide rescues synaptic plasticity and memory deficits in Alzheimer's disease model mice.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012, Oct-03, Volume: 32, Issue:40

    Glucagon-like peptide-1 (GLP-1) is an endogenous intestinal peptide that enhances glucose-stimulated insulin secretion. Its natural cleavage product GLP-1(9-36)(amide) possesses distinct properties and does not affect insulin secretion. Here we report that pretreatment of hippocampal slices with GLP-1(9-36)(amide) prevented impaired long-term potentiation (LTP) and enhanced long-term depression induced by exogenous amyloid β peptide Aβ((1-42)). Similarly, hippocampal LTP impairments in amyloid precursor protein/presenilin 1 (APP/PS1) mutant mice that model Alzheimer's disease (AD) were prevented by GLP-1(9-36)(amide). In addition, treatment of APP/PS1 mice with GLP-1(9-36)(amide) at an age at which they display impaired spatial and contextual fear memory resulted in a reversal of their memory defects. At the molecular level, GLP-1(9-36)(amide) reduced elevated levels of mitochondrial-derived reactive oxygen species and restored dysregulated Akt-glycogen synthase kinase-3β signaling in the hippocampus of APP/PS1 mice. Our findings suggest that GLP-1(9-36)(amide) treatment may have therapeutic potential for AD and other diseases associated with cognitive dysfunction.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Association Learning; CA3 Region, Hippocampal; Disease Models, Animal; Drug Evaluation, Preclinical; Excitatory Postsynaptic Potentials; Fear; Female; Glucagon-Like Peptide 1; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Male; Memory Disorders; Mice; Mice, Transgenic; Mitochondria; Neuronal Plasticity; Nootropic Agents; Organophosphorus Compounds; Peptide Fragments; Peptides; Presenilin-1; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Signal Transduction; Ubiquinone

2012
Encapsulated glucagon-like peptide-1-producing mesenchymal stem cells have a beneficial effect on failing pig hearts.
    Stem cells translational medicine, 2012, Volume: 1, Issue:10

    Stem cell therapy is an exciting and emerging treatment option to promote post-myocardial infarction (post-MI) healing; however, cell retention and efficacy in the heart remain problematic. Glucagon-like peptide-1 (GLP-1) is an incretin hormone with cardioprotective properties but a short half-life in vivo. The effects of prolonged GLP-1 delivery from stromal cells post-MI were evaluated in a porcine model. Human mesenchymal stem cells immortalized and engineered to produce a GLP-1 fusion protein were encapsulated in alginate (bead-GLP-1 MSC) and delivered to coronary artery branches. Control groups were cell-free beads and beads containing unmodified MSCs (bead-MSC), n = 4-5 per group. Echocardiography confirmed left ventricular (LV) dysfunction at time of delivery in all groups. Four weeks after intervention, only the bead-GLP-1 MSC group demonstrated LV function improvement toward baseline and showed decreased infarction area compared with controls. Histological analysis showed reduced inflammation and a trend toward reduced apoptosis in the infarct zone. Increased collagen but fewer myofibroblasts were observed in infarcts of the bead-GLP-1 MSC and bead-MSC groups, and significantly more vessels per mm(2) were noted in the infarct of the bead-GLP-1 MSC group. No differences were observed in myocyte cross-sectional area between groups. Post-MI delivery of GLP-1 encapsulated genetically modified MSCs provided a prolonged supply of GLP-1 and paracrine stem cell factors, which improved LV function and reduced epicardial infarct size. This was associated with increased angiogenesis and an altered remodeling response. Combined benefits of paracrine stem cell factors and GLP-1 were superior to those of stem cells alone. These results suggest that encapsulated genetically modified MSCs would be beneficial for recovery following MI.

    Topics: Alginates; Anatomy, Cross-Sectional; Animals; Apoptosis; Cardiotonic Agents; Cell Survival; Disease Models, Animal; Drug Delivery Systems; Echocardiography; Glucagon-Like Peptide 1; Glucuronic Acid; Heart Failure; Hexuronic Acids; Humans; In Situ Nick-End Labeling; Inflammation; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Myocardial Infarction; Myofibroblasts; Neovascularization, Pathologic; Recombinant Fusion Proteins; Sus scrofa; Ventricular Function, Left

2012
[Effect of dendrobium mixture on hypoglycemic and the apoptosis of islet in rats with type 2 diabetic mellitus].
    Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials, 2012, Volume: 35, Issue:5

    To study the effect of Dendrobium mixture on hypoglycemic and the apoptosis of islet in rats with type 2 diabetic mellitus.. Type 2 diabetes mellitus models were induced by high sugar and fat diet and low dose intraperitoneal injection of streptozotocin (STZ) in rats, and treated with Dendrobium mixture (5, 10, 20 g/kg) by intragastric administration. Observed islet cell morphology with histopathological techniques and tested the apoptosis of islet cells by MTT and Annexin V/PI method.. Dendrobium mixture could reduce the levels of blood glucose, triglyceride and glucosylated serum protein effectively and significantly improve the modeling structure and function of rat pancreatic tissue. The apoptotic islet cells was significantly reduced (P < 0.01) in treatment group compared with the model group.. Dendrobium mixture have a hypoglycemic effect on rat models of type 2 diabetes. It can protect and restore the structure and function of pancreatic tissue.

    Topics: Administration, Oral; Animals; Apoptosis; Blood Glucose; Cells, Cultured; Dendrobium; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Drug Combinations; Drugs, Chinese Herbal; Female; Glucagon-Like Peptide 1; Hypoglycemic Agents; Insulin; Islets of Langerhans; Plants, Medicinal; Rats; Rats, Sprague-Dawley; Streptozocin; Triglycerides

2012
GLP-1 secretion by microglial cells and decreased CNS expression in obesity.
    Journal of neuroinflammation, 2012, Dec-23, Volume: 9

    Type 2 diabetes (T2D) is a strong risk factor for developing neurodegenerative pathologies. T2D patients have a deficiency in the intestinal incretin hormone GLP-1, which has been shown to exert neuroprotective and anti-inflammatory properties in the brain.. Here we investigate potential sources of GLP-1 in the CNS and the effect of diabetic conditions on the proglucagon mRNA expression in the CNS. The obese mouse model ob/ob, characterized by its high levels of free fatty acids, and the microglia cell line BV-2 were used as models. mRNA expression and protein secretion were analyzed by qPCR, immunofluorescence and ELISA.. We show evidence for microglia as a central source of GLP-1 secretion. Furthermore, we observed that expression and secretion are stimulated by cAMP and dependent on microglial activation state. We also show that insulin-resistant conditions reduce the central mRNA expression of proglucagon.. The findings that microglial mRNA expression of proglucagon and GLP-1 protein expression are affected by high levels of free fatty acids and that both mRNA expression levels of proglucagon and secretion levels of GLP-1 are affected by inflammatory stimuli could be of pathogenic importance for the premature neurodegeneration and cognitive decline commonly seen in T2D patients, and they may also be harnessed to advantage in therapeutic efforts to prevent or treat such disorders.

    Topics: Animals; Arginase; CD11b Antigen; Cell Line, Transformed; Central Nervous System; Chitinases; Cyclic AMP; Disease Models, Animal; Gene Expression Regulation; Glucagon-Like Peptide 1; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Microglia; Obesity; Palmitates; Plant Proteins; Polysaccharides; Proglucagon; RNA, Messenger; Statistics, Nonparametric; Transfection; Tumor Necrosis Factor-alpha

2012
PPARβ/δ activation induces enteroendocrine L cell GLP-1 production.
    Gastroenterology, 2011, Volume: 140, Issue:5

    Glucagon-like peptide (GLP)-1, an intestinal incretin produced by L cells through proglucagon processing, is secreted after nutrient ingestion and acts on endocrine pancreas beta cells to enhance insulin secretion. Peroxisome proliferator-activated receptor (PPAR) β/δ is a nuclear receptor that improves glucose homeostasis and pancreas islet function in diabetic animal models. Here, we investigated whether PPARβ/δ activation regulates L cell GLP-1 production.. Proglucagon regulation and GLP-1 release were evaluated in murine GLUTag and human NCI-H716 L cells and in vivo using wild-type, PPARβ/δ-null, and ob/ob C57Bl/6 mice treated with the PPARβ/δ synthetic agonists GW501516 or GW0742.. PPARβ/δ activation increased proglucagon expression and enhanced glucose- and bile acid-induced GLP-1 release by intestinal L cells in vitro and ex vivo in human jejunum. In vivo treatment with GW0742 increased proglucagon messenger RNA levels in the small intestine in wild-type but not in PPARβ/δ-deficient mice. Treatment of wild-type and ob/ob mice with GW501516 enhanced the increase in plasma GLP-1 level after an oral glucose load and improved glucose tolerance. Concomitantly, proglucagon and GLP-1 receptor messenger RNA levels increased in the small intestine and pancreas, respectively. Finally, PPARβ/δ agonists activate the proglucagon gene transcription by interfering with the β-catenin/TCF-4 pathway.. Our data show that PPARβ/δ activation potentiates GLP-1 production by the small intestine. Pharmacologic targeting of PPARβ/δ is a promising approach in the treatment of patients with type 2 diabetes mellitus, especially in combination with dipeptidyl peptidase IV inhibitors.

    Topics: Animals; Blood Glucose; Blotting, Western; Cells, Cultured; Diabetes Mellitus, Experimental; Disease Models, Animal; Enteroendocrine Cells; Gene Expression Regulation; Glucagon-Like Peptide 1; Humans; Male; Mice; Polymerase Chain Reaction; PPAR-beta; Rats; RNA, Messenger

2011
Novel GLP-1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain.
    Journal of neuroscience research, 2011, Volume: 89, Issue:4

    One of the symptoms of diabetes is the progressive development of neuropathies. One mechanism to replace neurons in the CNS is through the activation of stem cells and neuronal progenitor cells. We have tested the effects of the novel GLP-1 mimetics exenatide (exendin-4; Byetta) and liraglutide (NN2211; Victoza), which are already on the market as treatments for type 2 diabetes, on the proliferation rate of progenitor cells and differentiation into neurons in the dentate gyrus of brains of mouse models of diabetes. GLP-1 analogues were injected subcutaneously for 4, 6, or 10 weeks once daily in three mouse models of diabetes: ob/ob mice, db/db mice, or high-fat-diet-fed mice. Twenty-four hours before perfusion, animals were injected with 5'-bromo-2'-deoxyuridine (BrdU) to mark dividing progenitor cells. By using immunohistochemistry and stereological methods, the number of progenitor cells or doublecortin-positive young neurons in the dentate gyrus was estimated. We found that, in all three mouse models, progenitor cell division was enhanced compared with nondiabetic controls after chronic i.p. injection of either liraglutide or exendin-4 by 100-150% (P < 0.001). We also found an increase in young neurons in the DG of high-fat-diet-fed mice after drug treatment (P < 0.001). The GLP-1 receptor antagonist exendin(9-36) reduced progenitor cell proliferation in these mice. The results demonstrate that GLP-1 mimetics show promise as a treatment for neurodegenerative diseases such as Alzheimer's disease, because these novel drugs cross the blood-brain barrier and increase neuroneogenesis.

    Topics: Animals; Brain; Cell Differentiation; Cell Proliferation; Dentate Gyrus; Diabetes Mellitus, Type 2; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Hypoglycemic Agents; Immunohistochemistry; Liraglutide; Male; Mice; Neural Stem Cells; Neurogenesis; Neurons; Peptides; Venoms

2011
Sitagliptin lowers glucagon and improves glucose tolerance in prediabetic obese SHROB rats.
    Experimental biology and medicine (Maywood, N.J.), 2011, Volume: 236, Issue:3

    The SHROB (spontaneously hypertensive rat - obese strain) is a model of prediabetes and metabolic syndrome with insulin resistance, glucose intolerance and hypertension. Inhibitors of dipeptidyl dipeptidase IV (DPP-IV) are effective hypoglycemic agents in type 2 diabetes through potentiation of incretin hormones that act in the pancreas to increase insulin and decrease glucagon release. We sought to determine whether the DPP-IV inhibitor sitagliptin might be effective in prediabetes relative to standard therapy with the sulfonylurea glyburide, by using the SHROB model. SHROB show normal fasting glucose but are insulin resistant and hyperglucagonemic. SHROB were treated for six weeks with vehicle, sitagliptin (30 mg/kg/d) or glyburide (1 mg/kg/d) and compared with untreated lean spontaneously hypertensive rats. Body weight, food intake and fasting glucose were all unchanged in all three SHROB groups, but glucagon was reduced by 33% by sitagliptin while remaining unchanged following glyburide or vehicle. In oral glucose (6 g/kg) tolerance testing, both sitagliptin and glyburide lowered plasma glucose. Both sitagliptin and glyburide shifted peak insulin secretion earlier (30 min for glyburide and 60 min for sitagliptin but 240 min for vehicle). Only sitagliptin significantly enhanced insulin secretion. Sitagliptin is effective in normalizing excess glucagon levels and delaying exaggerated insulin secretion in response to a glucose challenge in a prediabetic model.

    Topics: Animals; Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Disease Models, Animal; Feeding Behavior; Glucagon; Glucagon-Like Peptide 1; Glyburide; Hypoglycemic Agents; Insulin; Insulin Secretion; Pyrazines; Rats; Sitagliptin Phosphate; Triazoles

2011
Upregulation of alpha cell glucagon-like peptide 1 (GLP-1) in Psammomys obesus--an adaptive response to hyperglycaemia?
    Diabetologia, 2011, Volume: 54, Issue:6

    The hormone glucagon-like peptide 1 (GLP-1) is released in response to a meal from the intestinal L-cells, where it is processed from proglucagon by the proconvertase (PC)1/3. In contrast, in the adult islets proglucagon is processed to glucagon by the PC2 enzyme. The aim of the study was to evaluate if, during the development of diabetes, alpha cells produce GLP-1 that, in turn, might trigger beta cell growth.. Beta cell mass, GLP-1 and insulin levels were measured in the gerbil Psammomys obesus (P. obesus), a rodent model of nutritionally induced diabetes. Furthermore, the presence of biologically active forms of GLP-1 and PC1/3 in alpha cells was demonstrated by immunofluorescence, and the release of GLP-1 from isolated P. obesus, mouse and human islets was investigated.. During the development of diabetes in P. obesus, a significant increase in GLP-1 was detected in the portal vein (9.8 ± 1.5 vs 4.3 ± 0.7 pmol/l, p < 0.05), and in pancreas extracts (11.4 ± 2.2 vs 5.1 ± 1.3 pmol/g tissue, p < 0.05). Freshly isolated islets from hyperglycaemic animals released more GLP-1 following 24 h culture than islets from control animals (28.2 ± 4.4 pmol/l vs 5.8 ± 2.4, p < 0.01). GLP-1 release was increased from healthy P. obesus islets following culture in high glucose for 6 days (91 ± 9.1 pmol/l vs 28.8 ± 6.6, p < 0.01). High levels of GLP-1 were also found to be released from human islets. PC1/3 colocalised weakly with alpha cells.. GLP-1 release from alpha cells is upregulated in P. obesus during the development of diabetes. A similar response is seen in islets exposed to high glucose, which supports the hypothesis that GLP-1 released from alpha cells promotes an increase in beta cell mass and function during metabolic challenge such as diabetes.

    Topics: Adaptation, Physiological; Adult; Animals; Cell Proliferation; Cells, Cultured; Diabetes Mellitus; Diet; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Gerbillinae; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucose; Humans; Hyperglycemia; Insulin; Insulin-Secreting Cells; Islets of Langerhans; Male; Mice; Middle Aged; Obesity; Up-Regulation

2011
Glucagon-like peptide-1 (GLP-1), immediately prior to reperfusion, decreases neutrophil activation and reduces myocardial infarct size in rodents.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2011, Volume: 43, Issue:5

    Glucagon-like peptide-1 (GLP-1) is an incretin that has glucoregulatory effects as well as protective effects in a variety of tissues, including the heart. We hypothesized that GLP-1 may have a direct effect on neutrophils (PMNs) after myocardial ischemia, to ameliorate reperfusion injury. Deeply anesthetized Sprague-Dawley rats underwent 30 min of left coronary artery occlusion followed by 120 min of reperfusion. Immediately prior to reperfusion, rats were treated with either GLP-1 (human rGLP-1, 30 pM/kg/min) or PBS as placebo. GLP-1 significantly decreased myocardial infarct size [73.2±11.7% INF/AAR in PBS (n=4) vs. 15.7 ±5.52% INF/AAR in GLP-1-treated animals (n=5),  p<0.05], PMN activation in blood in vivo (fMLP-stimulated CD11b surface expression: PBS 2.78±1.14 vs. GLP-1 1.7±0.21, TFI, p<0.05), and accumulation in myocardium (PBS: 6.52±0.31 vs. GLP-1: 4.78±0.90, n=4-6 animals/group, p<0.05). In addition, we found that GLP-1 mitigated PMN CD11b surface expression in whole rat blood in vitro, an effect that was abolished by GLP-1 receptor blockade (PBS 6.52±0.31 vs. GLP-1 4.78±0.90, TFI, p<0.05). These findings suggest that one mechanism by which GLP-1 decreases reperfusion injury may be the attenuation of PMN-mediated reperfusion injury.

    Topics: Animals; Disease Models, Animal; Glucagon-Like Peptide 1; Humans; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Neutrophil Activation; Rats; Rats, Sprague-Dawley

2011
Neuroprotective effect of intravitreal cell-based glucagon-like peptide-1 production in the optic nerve crush model.
    Acta ophthalmologica, 2011, Volume: 89, Issue:4

    To examine the effect of intraocularly produced glucagon-like peptide-1 (GLP-1) on the survival rate of retinal ganglion cells in an optic nerve crush model.. Forty-one Sprague--Dawley rats were divided into a study group (21 animals) in which 4 beads with 3000 genetically modified cells to produce GLP-1 were intravitreally implanted into the right eye; a saline control group (n = 12) with intravitreal saline injection; and a GLP-1 negative bead control group (n = 8) in which 4 beads with 3000 cells without GLP-1 production were intravitreally implanted. The right optic nerves of all animals were crushed in a standardized manner. After labeling the retinal ganglion cells by injecting 3% fluorogold into the superior colliculus, the animals were sacrificed, and the ganglion cells were counted on retinal flat mounts.. The retinal ganglion cell density of the right eyes was significantly higher in the study group (median: 2081 cells/mm(2) ; range: 1182-2953 cells/mm(2) ) than in the GLP-1 bead negative control group (median: 1328 cells/mm(2) ; range: 1007-2068 cells/mm(2) ; p = 0.002) and than in the saline control group (median: 1777 cells/mm(2) ; range: 1000-2405 cells/mm(2) ; p = 0.07). Correspondingly, the survival rate (ratio of retinal ganglion cell density of right eye/left eye) was significantly higher in the study group (median: 0.72; range: 0.40-1.04) than in the GLP-1 bead negative control group (median: 0.44; range: 0.36-0.68; p = 0.003) and than in the saline control group (median: 0.56; range: 0.36-0.89; p = 0.03).. Glucagon-like peptide-1 produced by intravitreally implanted cell beads was associated with a higher survival rate of retinal ganglion cells after an experimental optic nerve crush in rats.

    Topics: Animals; Cell Count; Cell Survival; Cell Transplantation; Disease Models, Animal; Drug Implants; Glucagon-Like Peptide 1; Microspheres; Nerve Crush; Neuroprotective Agents; Optic Nerve Diseases; Rats; Rats, Sprague-Dawley; Recombinant Fusion Proteins; Retinal Diseases; Retinal Ganglion Cells; Vitreous Body

2011
Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer's disease.
    Neuroscience letters, 2011, Jun-15, Volume: 497, Issue:1

    Encapsulated human mesenchymal stem cells(MSC) are studied in a double transgenic mouse model of Alzheimer's disease (AD) after intraventricular implantation at 3 months of age. Abeta 40/42 deposition, and glial (GFAP) and microglial (CD11b) immunoreactivity were investigated 2 months after transplantation of either native MSC or MSC transfected with glucagon-like peptide-1 (GLP-1). CD11b immunostaining in the frontal lobes was significantly decreased in the GLP-1 MSC group compared to the untreated controls. Also, the plaque associated GFAP immunoreactivity was only observed in one of four animals in the GLP-1 MSC group. Abeta 40 whole brain ELISA was decreased in the MSC group: 86.06±5.2 pg/ml (untreated control) vs. 78.67±11.2 pg/ml (GLP-1 MSC group) vs.70.9±11.1 pg/ml (MSC group, p<0.05). Intraventricular transplantation of native and GLP-1 transfected MSC has been shown effective. Decreased amyloid deposition or suppression of glial and microglial responses were observed. However, encapsulation of MSC may alter their biological activity.

    Topics: Alginates; Alzheimer Disease; Amyloid beta-Peptides; Animals; Biocompatible Materials; Capsules; Cell Line; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Genetic Therapy; Glucagon-Like Peptide 1; Glucuronic Acid; Hexuronic Acids; Humans; Male; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Mice; Mice, Transgenic; Transfection

2011
The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011, Apr-27, Volume: 31, Issue:17

    Type 2 diabetes is a risk factor for Alzheimer's disease, most likely linked to an impairment of insulin signaling in the brain. The incretin hormone glucagon-like peptide-1 (GLP-1) facilitates insulin signaling, and novel long-lasting GLP-1 analogs, such as liraglutide, are on the market as diabetes therapeutics. GLP-1 has been shown to have neuroprotective properties in vitro and in vivo. Here we tested the effects of peripherally injected liraglutide in an Alzheimer mouse model, APP(swe)/PS1(ΔE9) (APP/PS1). Liraglutide was shown to cross the blood-brain barrier in an acute study. Liraglutide was injected for 8 weeks at 25 nmol/kg body weight i.p. once daily in 7-month-old APP/PS1 and wild-type littermate controls. In APP/PS1 mice, liraglutide prevented memory impairments in object recognition and water maze tasks, and prevented synapse loss and deterioration of synaptic plasticity in the hippocampus, commonly observed in this model. Overall β-amyloid plaque count in the cortex and dense-core plaque numbers were reduced by 40-50%, while levels of soluble amyloid oligomers were reduced by 25%. The inflammation response as measured by activated microglia numbers was halved in liraglutide-treated APP/PS1 mice. Numbers of young neurons in the dentate gyrus were increased in APP/PS1 mice with treatment. Liraglutide treatment had little effect on littermate control mice, whose behavior was comparable to wild-type saline controls; however, synaptic plasticity was enhanced in the drug group. Our results show that liraglutide prevents key neurodegenerative developments found in Alzheimer's disease, suggesting that GLP-1 analogs represent a novel treatment strategy for Alzheimer's disease.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Analysis of Variance; Animals; Blood-Brain Barrier; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Female; Glucagon-Like Peptide 1; Hippocampus; Humans; Hypoglycemic Agents; Liraglutide; Long-Term Potentiation; Male; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Transgenic; Nerve Degeneration; Presenilin-1; Recognition, Psychology; Synaptophysin

2011
A diabetes drug, sitagliptin, also has a potential to prevent diabetes.
    Experimental biology and medicine (Maywood, N.J.), 2011, Volume: 236, Issue:3

    Topics: Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Hypoglycemic Agents; Insulin; Insulin Secretion; Pyrazines; Rats; Sitagliptin Phosphate; Triazoles

2011
A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model.
    Diabetes & vascular disease research, 2011, Volume: 8, Issue:2

    The glucagon like peptide-1 receptor (GLP-1R) agonist liraglutide attenuates induction of plasminogen activator inhibitor type-1 (PAI-1) and vascular adhesion molecule (VAM) expression in human vascular endothelial cells (hVECs) in vitro and may afford protection against endothelial cell dysfunction (ECD), an early abnormality in diabetic vascular disease. Our study aimed to establish the dependence of the in vitro effects of liraglutide on the GLP-1R and characterise its in vivo effects in a mouse model of ECD. In vitro studies utilised the human vascular endothelial cell line C11-STH and enzyme-linked immunosorbent assays (ELISA) for determination of PAI-1 and VAM expression. In vivo studies of vascular reactivity and immunohistochemical analysis were performed in the ApoE(-/-) mouse model. In vitro studies demonstrated GLP-1R-dependent liraglutide-mediated inhibition of stimulated PAI-1 and VAM expression. In vivo studies demonstrated significant improvement in endothelial function in liraglutide treated mice, a GLP-1R dependent effect. Liraglutide treatment also increased endothelial nitric oxide synthase (eNOS) and reduced intercellular adhesion molecule-1 (ICAM-1) expression in aortic endothelium, an effect again dependent on the GLP-1R. Together these studies identify in vivo protection, by the GLP-1R agonist liraglutide, against ECD and provide a potential molecular mechanism responsible for these effects.

    Topics: Animals; Apolipoproteins E; Atherosclerosis; Cell Line, Transformed; Cyclic AMP-Dependent Protein Kinases; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelial Cells; Endothelium, Vascular; Enzyme-Linked Immunosorbent Assay; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Immunohistochemistry; Intercellular Adhesion Molecule-1; Liraglutide; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; NF-kappa B; Nitric Oxide Synthase Type III; Plasminogen Activator Inhibitor 1; Receptors, Glucagon; RNA, Messenger; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1; Vasodilation; Vasodilator Agents

2011
Dietary-resistant starch improves maternal glycemic control in Goto-Kakizaki rat.
    Molecular nutrition & food research, 2011, Volume: 55, Issue:10

    Dietary prebiotics show potential in anti-diabetes. Dietary resistant starch (RS) has a favorable impact on gut hormone profiles, including glucagon-like peptide-1 (GLP-1) consistently released, a potent anti-diabetic incretin. Also RS reduced body fat and improved glucose tolerance in rats and mice. In the current project, we hypothesize that dietary-resistant starch can improve insulin sensitivity and pancreatic β cell mass in a type 2 diabetic rat model. Altered gut fermentation and microbiota are the initial mechanisms, and enhancement in serum GLP-1 is the secondary mechanism.. In this study, GK rats were fed an RS diet with 30% RS and an energy control diet. After 10 wk, these rats were mated and went through pregnancy and lactation. At the end of the study, pancreatic β cell mass, insulin sensitivity, pancreatic insulin content, total GLP-1 levels, cecal short-chain fatty acid concentrations and butyrate producing bacteria in cecal contents were greatly improved by RS feeding. The offspring of RS-fed dams showed improved fasting glucose levels and normal growth curves.. Dietary RS is potentially of great therapeutic importance in the treatment of diabetes and improvement in outcomes of pregnancy complicated by diabetes.

    Topics: Animals; Animals, Newborn; Blood Glucose; Body Weight; Butyrates; Cecum; Diabetes Mellitus, Type 2; Disease Models, Animal; Eating; Fatty Acids, Volatile; Female; Glucagon-Like Peptide 1; Hydrogen-Ion Concentration; Hyperglycemia; Insulin Resistance; Insulin-Secreting Cells; Intestinal Mucosa; Ion Channels; Mitochondrial Proteins; Pregnancy; Pregnancy in Diabetics; Rats; Starch; Uncoupling Protein 1

2011
Dynamics of plasma active GLP-1 versus insulin and glucose concentrations during GLP-1 infusion in rat model of postprandial hyperglycemia.
    Endocrine journal, 2011, Volume: 58, Issue:8

    In vitro studies in isolated pancreas and islets have shown that glucagon-like peptide-1 (GLP-1) promotes insulin release in a typical concentration-dependent manner. In contrast, the relationship between plasma GLP-1 and insulin concentrations in vivo is complicated, because GLP-1-promoted insulin release lowers blood glucose, which influences glucose-dependent insulinotropic ability of GLP-1. GLP-1 also stimulates insulin release via hepatoportal neuronal mechanism. Hence, the dynamic relationship between plasma active GLP-1 vs. insulin and glucose concentrations is obscure. In this study, we aimed to determine in vivo relationships between these parameters in rats. To mimic postprandial state, intraduodenal glucose challenge in anesthetized rats was performed, which can minimize the release of endogenous GLP-1. The glucose challenge induced the 1st phase and 2nd phase insulin release. GLP-1 infusion from jugular vein significantly and concentration-dependently enhanced area under the curve (AUC) of the 1st phase insulin, in which the minimum effective active GLP-1 concentration was 6.6 pmol/l. In contrast, bell-shaped dose responses were observed for both the 2nd phase and total insulin AUCs, in which a significant increase was obtained only with 11 pmol/l of active GLP-1 for total insulin AUC. A statistically significant reduction in the plasma glucose AUC was observed when active GLP-1 concentration was 11 pmol/l and 21 pmol/l. These results indicate that GLP-1 markedly enhances the 1st phase insulin release while less potently the 2nd phase insulin release, possibly due to a negative feedback regulation of β-cells via reduced plasma glucose levels by the enhanced 1st phase insulin release.

    Topics: Animals; Area Under Curve; Blood Glucose; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose Tolerance Test; Hyperglycemia; Infusions, Intravenous; Insulin; Kinetics; Male; Osmolar Concentration; Rats; Rats, Wistar

2011
Chronic treatment with a glucagon receptor antagonist lowers glucose and moderately raises circulating glucagon and glucagon-like peptide 1 without severe alpha cell hypertrophy in diet-induced obese mice.
    Diabetologia, 2011, Volume: 54, Issue:9

    Antagonism of the glucagon receptor (GCGR) represents a potential approach for treating diabetes. Cpd-A, a potent and selective GCGR antagonist (GRA) was studied in preclinical models to assess its effects on alpha cells.. Studies were conducted with Cpd-A to examine the effects on glucose-lowering efficacy, its effects in combination with a dipeptidyl peptidase-4 (DPP-4) inhibitor, and the extent and reversibility of alpha cell hypertrophy associated with GCGR antagonism in mouse models.. Chronic treatment with Cpd-A resulted in effective and sustained glucose lowering in mouse models in which endogenous murine Gcgr was replaced with human GCGR (hGCGR). Treatment with Cpd-A also led to stable, moderate elevations in both glucagon and glucagon-like peptide 1 (GLP-1) levels, which were completely reversible and not associated with a hyperglycaemic overshoot following termination of treatment. When combined with a DPP-4 inhibitor, Cpd-A led to additional improvement of glycaemic control correlated with elevated active GLP-1 levels after glucose challenge. In contrast to Gcgr-knockout mice in which alpha cell hypertrophy was detected, chronic treatment with Cpd-A in obese hGCGR mice did not result in gross morphological changes in pancreatic tissue.. A GRA lowered glucose effectively in diabetic models without significant alpha cell hypertrophy during or following chronic treatment. Treatment with a GRA may represent an effective approach for glycaemic control in patients with type 2 diabetes, which could be further enhanced when combined with DPP-4 inhibitors.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Dietary Fats; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Glucagon; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Hypertrophy; In Vitro Techniques; Male; Mice; Mice, Knockout; Obesity; Receptors, Glucagon; Streptozocin

2011
Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats.
    Gastroenterology, 2011, Volume: 141, Issue:3

    Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) reduce weight and improve glucose metabolism in obese patients, although it is not clear if metabolic changes are independent of weight loss. We investigated alterations in glucose metabolism in rats following RYGB or VSG.. Rats underwent RYGB or VSG and were compared to sham-operated rats fed ad lib or pair-fed to animals that received RYGB. Intraperitoneal glucose tolerance and insulin sensitivity tests were performed to assess glycemic function independent of incretin response. A hyperinsulinemic euglycemic clamp was used to compare tissue-specific changes in insulin sensitivity following each procedure. A mixed-meal tolerance test was used to assess the effect of each surgery on postprandial release of glucagon-like peptide 1 (GLP-1)(7-36) and glucose tolerance, and was also performed in rats given GLP-1 receptor antagonist exendin(9-39).. Following RYGB or VSG, glucose tolerance and insulin sensitivity improved in proportion to weight loss. Hepatic insulin sensitivity was significantly better in rats that received RYGB or VSG compared with rats fed ad lib or pair-fed, whereas glucose clearance was similar in all groups. During the mixed-meal tolerance test, plasma levels of GLP-1(7-36) and insulin were greatly and comparably increased in rats that received RYGB and VSG compared with those that were pair-fed or fed ad lib. Administration of a GLP-1 receptor antagonist prevented improvements in glucose and insulin responses after a meal among rats that received RYGB or VSG.. In obese rats, VSG is as effective as RYGB for increasing secretion of GLP-1 and insulin and improving hepatic sensitivity to insulin; these effects are independent of weight loss.

    Topics: Animals; Blood Glucose; Body Weight; Dietary Fats; Disease Models, Animal; Eating; Gastrectomy; Gastric Bypass; Glucagon-Like Peptide 1; Homeostasis; Insulin; Insulin Resistance; Male; Obesity; Postprandial Period; Rats; Rats, Long-Evans; Stomach

2011
Improved outcome of islet transplantation in partially pancreatectomized diabetic mice by inhibition of dipeptidyl peptidase-4 with sitagliptin.
    Pancreas, 2011, Volume: 40, Issue:6

    Glucagon-like peptide-1 (GLP-1) is known to promote beta cell proliferation, and dipeptidyl peptidase-4 (DPP-4) inhibitor increases GLP-1 levels by preventing its degradation. This study was designed to evaluate the effects of sitagliptin (sita), a DPP-4 inhibitor, on the outcome of islet transplantation (ITx) in diabetic mice after partial pancreatectomy (Px).. A diabetic mouse model was prepared by performing 70% Px in C57BL/6 mice. The diabetic mice were treated with sita, subjected to ITx, or both treated with sita and subjected to ITx. After 12 days of sita treatment, the pancreatic remnants and transplanted islets were histologically examined.. Dipeptidyl peptidase-4 inhibitor increased the concentration of plasma active GLP-1 regardless of ITx and improved glycemic control in the ITx group. The beta cell mass of the pancreatic remnants increased in the ITx group, and mice that received combined treatment with ITx and sita showed a greater increase in the beta cell mass. Dipeptidyl peptidase-4 inhibitor seems to induce proliferation and inhibit apoptosis of beta cells in pancreatic remnants.. The DPP-4 inhibitor favorably affects ITx in partially pancreatectomized diabetic mice by increasing the beta cell mass through cell proliferation and inhibition of beta cell apoptosis.

    Topics: Animals; Apoptosis; Blood Glucose; Cell Proliferation; Diabetes Mellitus, Experimental; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon-Like Peptide 1; Insulin-Secreting Cells; Islets of Langerhans Transplantation; Male; Mice; Mice, Inbred C57BL; Pancreatectomy; Pyrazines; Sitagliptin Phosphate; Triazoles

2011
DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion.
    Naunyn-Schmiedeberg's archives of pharmacology, 2011, Volume: 384, Issue:2

    Dipeptidyl peptidase-4 (DPP4) enzyme inhibition has been reported to increase plasma glucagon-like peptide-1 (GLP-1) level for controlling postprandial glucose concentration. Both DPP4 inhibitors and GLP-1 analog have been approved for antihyperglycemic agents. In addition to the insulinotropic effect, GLP-1 signaling was reported to modulate cardiac function. DPP4 inhibition was shown to improve survival rate after myocardial infarction in mice, but the precise mechanism remains unknown. We aimed to compare the cardiovascular responses of ischemia/reperfusion (I/R) between wild-type and DPP4-deficient rats and investigate the underlying mechanism. Rats were subjected to 45 min of coronary artery occlusion, followed by reperfusion for 2 h. Cardiac function was characterized by analyzing pressure-volume loops. As compared to wild-type rats, after I/R, DPP4-deficient rats had better cardiac performance in association with less infarct size and cardiac injury markers (LDH, ANP, and BNP), which could be attenuated by exendin-(9-39), a GLP-1 receptor antagonist. Exendin-(9-39) could diminish the increased phosphorylation levels of myocardial AKT and GSK-3β as well as the higher expression of GLUT4 in post-infarcted DPP4-deficient rats. However, exendin-(9-39) could not completely abrogate the less infarct size in DPP4-deficient rats as compared with that in wild-type rats, implicating the involvement of GLP-1 receptor-independent pathway. In summary, this study demonstrated that the benefit of cardiac protective action against I/R injury was demonstrated in DPP4-deficient rats, which is mediated through both GLP-1 receptor-dependent and receptor-independent mechanisms.

    Topics: Animals; Blotting, Western; Dipeptidyl Peptidase 4; Disease Models, Animal; Glucagon-Like Peptide 1; Heart Function Tests; Hemodynamics; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Peptide Fragments; Rats; Rats, Inbred F344; Rats, Mutant Strains; Signal Transduction

2011
cAMP-secretion coupling is impaired in diabetic GK/Par rat β-cells: a defect counteracted by GLP-1.
    American journal of physiology. Endocrinology and metabolism, 2011, Volume: 301, Issue:5

    cAMP-raising agents with glucagon-like peptide-1 (GLP-1) as the first in class, exhibit multiple actions that are beneficial for the treatment of type 2 diabetic (T2D) patients, including improvement of glucose-induced insulin secretion (GIIS). To gain additional insight into the role of cAMP in the disturbed stimulus-secretion coupling within the diabetic β-cell, we examined more thoroughly the relationship between changes in islet cAMP concentration and insulin release in the GK/Par rat model of T2D. Basal cAMP content in GK/Par islets was significantly higher, whereas their basal insulin release was not significantly different from that of Wistar (W) islets. Even in the presence of IBMX or GLP-1, their insulin release did not significantly change despite further enhanced cAMP accumulation in both cases. The high basal cAMP level most likely reflects an increased cAMP generation in GK/Par compared with W islets since 1) forskolin dose-dependently induced an exaggerated cAMP accumulation; 2) adenylyl cyclase (AC)2, AC3, and G(s)α proteins were overexpressed; 3) IBMX-activated cAMP accumulation was less efficient and PDE-3B and PDE-1C mRNA were decreased. Moreover, the GK/Par insulin release apparatus appears less sensitive to cAMP, since GK/Par islets released less insulin at submaximal cAMP levels and required five times more cAMP to reach a maximal secretion rate no longer different from W. GLP-1 was able to reactivate GK/Par insulin secretion so that GIIS became indistinguishable from that of W. The exaggerated cAMP production is instrumental, since GLP-1-induced GIIS reactivation was lost in the presence the AC blocker 2',5'-dideoxyadenosine. This GLP-1 effect takes place in the absence of any improvement of the [Ca(2+)](i) response and correlates with activation of the cAMP-dependent PKA-dependent pathway.

    Topics: Animals; Cells, Cultured; Cyclic AMP; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose; Insulin; Insulin Secretion; Insulin-Secreting Cells; Male; Rats; Rats, Wistar; Secretory Pathway; Streptozocin

2011
Diabetes as a risk factor for Alzheimer's disease: insulin signalling impairment in the brain as an alternative model of Alzheimer's disease.
    Biochemical Society transactions, 2011, Volume: 39, Issue:4

    Surprisingly little is known about the mechanisms that trigger the onset of AD (Alzheimer's disease) in sporadic forms. A number of risk factors have been identified that may shed light on the mechanisms that may trigger or facilitate the development of AD. Recently, T2DM (Type 2 diabetes mellitus) has been identified as a risk factor for AD. A common observation for both conditions is the desensitization of insulin receptors in the brain. Insulin acts as a growth factor in the brain and is neuroprotective, activates dendritic sprouting, regeneration and stem cell proliferation. The impairment of this important growth factor signal may facilitate the development of AD. Insulin as well as other growth factors have shown neuroprotective properties in preclinical and clinical trials. Several drugs have been developed to treat T2DM, which re-sensitize insulin receptors and may be of use to prevent neurodegenerative processes in the brain. In particular, the incretins GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insolinotropic polypeptide) are hormones that re-sensitize insulin signalling. Incretins also have similar growth-factor-like properties as insulin and are neuroprotective. In mouse models of AD, GLP-1 receptor agonists reduce amyloid plaque formation, reduce the inflammation response in the brain, protect neurons from oxidative stress, induce neurite outgrowth, and protect synaptic plasticity and memory formation from the detrimental effects caused by β-amyloid production and inflammation. Other growth factors such as BDNF (brain-derived neurotrophic factor), NGF (nerve growth factor) or IGF-1 (insulin-like growth factor 1) also have shown a range of neuroprotective properties in preclinical studies. These results show that these growth factors activate similar cell signalling mechanisms that are protective and regenerative, and suggest that the initial process that may trigger the cascade of neurodegenerative events in AD could be the impairment of growth factor signalling such as early insulin receptor desensitization.

    Topics: Alzheimer Disease; Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Insulin; Intercellular Signaling Peptides and Proteins; Mice; Mice, Transgenic; Neuroprotective Agents; Receptors, Glucagon; Signal Transduction

2011
Adverse metabolic effects of a hypercaloric, high-fat diet in rodents precede observable changes in body weight.
    Nutrition research (New York, N.Y.), 2011, Volume: 31, Issue:9

    Although a high-fat diet (HFD) is recognized as an important contributor to obesity, human research is limited by confounders such as income, whereas animal research has typically examined diet during specific developmental periods rather than throughout the lifespan. We hypothesized that the use of an HFD in short-term studies as has been commonly done in animals does not adequately reflect the lifelong dietary patterns seen frequently in humans with consequent metabolic disturbances. We examined the impact of HFD from weaning until 39 weeks (middle age) on the metabolism of male rats. At 7, 26, and 39 weeks, glucose tolerance tests were performed, a subset of animals was euthanized, and serum and tissues were collected. After 4 weeks, preceding increased body weight, HFD animals had increased intra-abdominal fat, triglycerides, and hyperglycemia. Hyperinsulinemia was insufficient to maintain normoglycemia, and beta cell mass and glucagon-like peptide 1 decreased over time in HFD and control animals. Despite lacking significant lipid abnormalities, nonalcoholic fatty liver disease was evident by 39 weeks. Our HFD model demonstrated that significant metabolic abnormalities may go undetected by current standard screening such as weighing and biochemistry.

    Topics: Adiposity; Animals; Blood Glucose; Body Weight; Diet, High-Fat; Dietary Fats; Disease Models, Animal; Fatty Liver; Glucagon-Like Peptide 1; Glucose Tolerance Test; Glycemic Index; Hyperglycemia; Hyperinsulinism; Insulin; Intra-Abdominal Fat; Male; Non-alcoholic Fatty Liver Disease; Obesity; Rats; Rats, Wistar; Triglycerides

2011
Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells.
    Nature medicine, 2011, Oct-30, Volume: 17, Issue:11

    Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes.

    Topics: Animals; Blood Glucose; Cells, Cultured; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Enteroendocrine Cells; Female; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucose Tolerance Test; Humans; Insulin; Insulin Secretion; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Physical Conditioning, Animal; Signal Transduction

2011
Effects of DPP-4 inhibitors on the heart in a rat model of uremic cardiomyopathy.
    PloS one, 2011, Volume: 6, Issue:11

    Uremic cardiomyopathy contributes substantially to mortality in chronic kidney disease (CKD) patients. Glucagon-like peptide-1 (GLP-1) may improve cardiac function, but is mainly degraded by dipeptidyl peptidase-4 (DPP-4).. In a rat model of chronic renal failure, 5/6-nephrectomized [5/6N] rats were treated orally with DPP-4 inhibitors (linagliptin, sitagliptin, alogliptin) or placebo once daily for 4 days from 8 weeks after surgery, to identify the most appropriate treatment for cardiac dysfunction associated with CKD. Linagliptin showed no significant change in blood level AUC(0-∞) in 5/6N rats, but sitagliptin and alogliptin had significantly higher AUC(0-∞) values; 41% and 28% (p = 0.0001 and p = 0.0324), respectively. No correlation of markers of renal tubular and glomerular function with AUC was observed for linagliptin, which required no dose adjustment in uremic rats. Linagliptin 7 µmol/kg caused a 2-fold increase in GLP-1 (AUC 201.0 ng/l*h) in 5/6N rats compared with sham-treated rats (AUC 108.6 ng/l*h) (p = 0.01). The mRNA levels of heart tissue fibrosis markers were all significantly increased in 5/6N vs control rats and reduced/normalized by linagliptin.. DPP-4 inhibition increases plasma GLP-1 levels, particularly in uremia, and reduces expression of cardiac mRNA levels of matrix proteins and B-type natriuretic peptides (BNP). Linagliptin may offer a unique approach for treating uremic cardiomyopathy in CKD patients, with no need for dose-adjustment.

    Topics: Animals; Area Under Curve; Cardiomyopathies; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Gene Expression Regulation; Glomerular Filtration Rate; Glucagon-Like Peptide 1; Heart; Humans; Kidney Failure, Chronic; Linagliptin; Myocardium; Natriuretic Peptide, Brain; Nephrectomy; Piperidines; Purines; Pyrazines; Quinazolines; Rats; Reverse Transcriptase Polymerase Chain Reaction; Sitagliptin Phosphate; Triazoles; Uracil; Uremia

2011
Mate tea (Ilex paraguariensis) promotes satiety and body weight lowering in mice: involvement of glucagon-like peptide-1.
    Biological & pharmaceutical bulletin, 2011, Volume: 34, Issue:12

    We previously investigated the effects of an aqueous extract of maté (mate) tea, made from the leaves of Ilex paraguariensis, on the diabesity and metabolic syndrome features in a mouse model. Mate induced significant decreases in body weight (BW), body mass index, and food intake (FI). In this study, to verify the mode of action of mate on FI and consequently on BW, we examined the anorexic effects of mate on the appetite and satiety markers glucagon-like peptide 1 (GLP-1) and leptin in high-fat diet-fed ddY mice. GLP-1 is a peptide signal generated by the gastrointestinal tract, which regulates appetite and influences BW, whereas leptin is an afferent signal from the periphery to the brain in a homeostatic feedback loop that regulates adipose tissue mass, thus leading to decreased appetite and FI and increased energy expenditure. Chronic administration of mate (50, 100 mg/kg) for 3 weeks significantly reduced FI, BW, and ameliorated blood fats, liver fats, and adipose tissue. Mate induced significant increases in GLP-1 levels and leptin levels compared with the control. Acute administration of major constituents of mate showed significant increases in GLP-1 levels by dicaffeoyl quinic acids and matesaponins, and significant induction of satiety by caffeoyl quinic acids and caffeine in ddY mice. These findings suggest that mate may induce anorexic effects by direct induction of satiety and by stimulation of GLP-1 secretion and modulation of serum leptin levels.

    Topics: Animals; Anti-Obesity Agents; Beverages; Diet, High-Fat; Dipeptidyl Peptidase 4; Disease Models, Animal; Eating; Fatty Acids; Glucagon-Like Peptide 1; Ilex paraguariensis; Leptin; Liver; Male; Mice; Obesity; Phytotherapy; Plant Extracts; Plant Leaves; Satiation; Triglycerides; Weight Gain

2011
The dipeptidyl peptidase IV inhibitor NVP-DPP728 reduces plasma glucagon concentration in cats.
    Veterinary journal (London, England : 1997), 2010, Volume: 183, Issue:3

    Glucagon-like peptide-1 (GLP-1) analogues and inhibitors of its degrading enzyme, dipeptidyl peptidase IV (DPPIV), are interesting therapy options in human diabetics because they increase insulin secretion and reduce postprandial glucagon secretion. Given the similar pathophysiology of human type 2 and feline diabetes mellitus, this study investigated whether the DPPIV inhibitor NVP-DPP728 reduces plasma glucagon levels in cats. Intravenous glucose tolerance tests (ivGTT; 0.5 g/kg glucose after 12 h fasting) and a meal response test (test meal of 50% of average daily food intake, offered after 24 h fasting) were performed in healthy experimental cats. NVP-DPP728 (0.5-2.5 mg/kg i.v. or s.c.) significantly reduced glucagon output in all tests and increased insulin output in the ivGTT. Follow-up studies will investigate the potential usefulness as therapy in diabetic cats.

    Topics: Animals; Cats; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Humans; Insulin; Insulin Secretion; Male; Nitriles; Pyrrolidines

2010
Glucagon-like peptide-1 therapy and the exocrine pancreas: innocent bystander or friendly fire?
    Diabetologia, 2010, Volume: 53, Issue:1

    Topics: Animals; Disease Models, Animal; Glucagon-Like Peptide 1; Humans; Hyperplasia; Pancreas, Exocrine; Pancreatic Ducts; Pancreatitis; Pancreatitis, Chronic; Rats; United States; United States Food and Drug Administration

2010
Liraglutide, but not vildagliptin, restores normoglycaemia and insulin content in the animal model of type 2 diabetes, Psammomys obesus.
    Regulatory peptides, 2010, Feb-25, Volume: 160, Issue:1-3

    In order to investigate the effect and mechanism of liraglutide and vildagliptin in diabetic Psammomys obesus, we examined proliferation and apoptosis of beta-cells, beta-cell mass (BCM), and pancreatic insulin content after zero, six and fourteen days of treatment compared to control groups. One group of animals was kept on low-energy diet and seven groups were given high-energy diet (HED) that induced diabetes over a four week period. Non-fasting morning blood glucose, body weight, HbA(1C) and pancreatic insulin content were measured and beta cell mass (BCM), proliferation and apoptosis frequencies were determined using stereological point counting. Liraglutide significantly reduced blood glucose and even normalized it in all animals treated for six days and in 11 out of 17 animals treated for fourteen days. HED increased BCM and treatment with liraglutide did not change this. However, compared to the vehicle-treated animals pancreatic insulin content was normalized in animals treated for six and fourteen days with liraglutide. In contrast, vildagliptin, in doses causing full inhibition of plasma DPP-IV activity, neither reduced blood glucose nor altered HED-induced increases in BCM or pancreatic insulin content. These results suggest that liraglutide restores normoglycaemia and improves glycaemic control in P. obesus by increasing their insulin content and improving the function of the beta-cells. In contrast, vildagliptin does not improve glycaemic control in P. obesus nor affect beta-cell insulin content.

    Topics: Adamantane; Animals; Blood Glucose; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Gerbillinae; Glucagon-Like Peptide 1; Immunohistochemistry; Insulin; Liraglutide; Male; Nitriles; Pancreas; Pyrrolidines; Reference Standards; Vildagliptin

2010
Amelioration of hyperglycemia by intestinal overexpression of glucagon-like peptide-1 in mice.
    Journal of molecular medicine (Berlin, Germany), 2010, Volume: 88, Issue:4

    To investigate whether the local production of glucagon-like peptide-1 (GLP-1) in the intestine can differentiate intestinal stem/progenitor cells into insulin-producing cells, we intra-intestinally injected a recombinant adenovirus expressing GLP-1 (rAd-GLP-1) into diabetic mice. There were no significant differences in body weight or food intake between rAd-GLP-1- and rAd-betaGAL-treated control mice. rAd-GLP-1-treated mice showed intestinal insulin mRNA expression, insulin- and glucagon-positive cells in the intestine, and significantly increased serum insulin, but not glucagon. rAd-GLP-1 injection significantly reduced blood glucose levels and improved glucose tolerance compared with controls. Expression of transcription factors related to beta cell differentiation, neurogenin 3 (ngn3) and neurogenin differentiation factor (NeuroD), was detected in the intestine at 2 weeks after rAd-GLP-1 injection. We suggest that expression of GLP-1 in the intestine by intra-intestinal delivery of rAd-GLP-1 may induce differentiation of intestinal stem/progenitor cells into insulin-producing cells, mediated by ngn3 and NeuroD expression, contributing to lowered blood glucose levels in diabetic mice.

    Topics: Adenoviridae; Animals; Cell Differentiation; Diabetes Mellitus, Type 1; Disease Models, Animal; Glucagon-Like Peptide 1; Hyperglycemia; Insulin-Secreting Cells; Intestines; Male; Mice; Mice, Inbred NOD; Reverse Transcriptase Polymerase Chain Reaction; Stem Cells; Time Factors

2010
Dipeptidyl peptidase expression during experimental colitis in mice.
    Inflammatory bowel diseases, 2010, Volume: 16, Issue:8

    We have previously demonstrated that inhibition of dipeptidyl peptidase (DP) activity partially attenuates dextran sulfate sodium (DSS) colitis in mice. The aim of this study was to further investigate the mechanisms of this protection.. Wildtype (WT) and DPIV(-/-) mice consumed 2% DSS in drinking water for 6 days to induce colitis. Mice were treated with saline or the DP inhibitors Ile-Pyrr-(2-CN)*TFA or Ile-Thia. DP mRNA and enzyme levels were measured in the colon. Glucagon-like peptide (GLP)-2 and GLP-1 concentrations were determined by radioimmunoassay, regulatory T-cells (Tregs) by fluorescence activated cell sorting (FACS) on FOXp3+T cells in blood, and neutrophil infiltration assessed by myeloperoxidase (MPO) assay.. DP8 and DP2 mRNA levels were increased (P < 0.05) in WT+saline mice compared to untreated WT mice with colitis. Cytoplasmic DP enzyme activity was increased (P < 0.05) in DPIV(-/-) mice at day 6 of DSS, while DP2 activity was increased (P < 0.05) in WT mice with colitis. GLP-1 (63%) and GLP-2 (50%) concentrations increased in WT+Ile-Pyrr-(2-CN)*TFA mice compared to day-0 controls. MPO activity was lower in WT+Ile-Thia and WT+Ile-Pyrr-(2-CN)*TFA treated mice compared to WT+saline (P < 0.001) at day 6 colitis.. DP expression and activity are differentially regulated during DSS colitis, suggesting a pathophysiological role for these enzymes in human inflammatory bowel disease (IBD). DP inhibitors impaired neutrophil recruitment and maintenance of the Treg population during DSS-colitis, providing further preclinical evidence for the potential therapeutic use of these inhibitors in IBD. Finally, DPIV appears to play a critical role in mediating the protective effect of DP inhibitors.

    Topics: Animals; Colitis; Colon; Dextran Sulfate; Dipeptidyl-Peptidase IV Inhibitors; Dipeptidyl-Peptidases and Tripeptidyl-Peptidases; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Humans; Mice; Mice, Inbred C57BL; Mice, Knockout; Neutrophil Infiltration; Peroxidase; T-Lymphocytes, Regulatory

2010
Decrease in {beta}-cell proliferation precedes apoptosis during diabetes development in bio-breeding/worcester rat: beneficial role of Exendin-4.
    Endocrinology, 2010, Volume: 151, Issue:6

    In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.

    Topics: Animals; Antibodies; Apoptosis; Cell Proliferation; Diabetes Mellitus, Type 1; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucose Tolerance Test; Hypoglycemic Agents; Immunohistochemistry; Insulin-Secreting Cells; Interferon-gamma; Peptides; Random Allocation; Rats; Rats, Wistar; Venoms

2010
Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A.
    Arteriosclerosis, thrombosis, and vascular biology, 2010, Volume: 30, Issue:7

    Endothelial cell senescence is an important contributor to vascular aging and is increased under diabetic conditions. Here we investigated whether the antidiabetic hormone glucagon-like peptide 1 (GLP-1) could prevent oxidative stress-induced cellular senescence in endothelial cells.. In Zucker diabetic fatty rats, a significant 2-fold higher level of vascular senescence was observed compared with control lean rats. Dipeptidyl-peptidase 4 (DPP-4) inhibition significantly increased GLP-1 levels in these animals and reduced senescence almost to lean animal levels. In vitro studies with human umbilical vein endothelial cells showed that GLP-1 had a direct protective effect on oxidative stress (H(2)O(2))-induced senescence and was able to attenuate oxidative stress-induced DNA damage and cellular senescence. The GLP-1 analogue exendin-4 provided similar results, whereas exendin fragment 9-39, a GLP-1 receptor antagonist, abolished this effect. Intracellular signaling by the phosphoinositide 3-kinase (PI3K)/Akt survival pathway did not appear to be involved. Further analysis revealed that GLP-1 activates the cAMP response element-binding (CREB) transcription factor in a cAMP/protein kinase A (PKA)-dependent manner, and inhibition of the cAMP/PKA pathway abolished the GLP-1 protective effect. Expression analysis revealed that GLP-1 can induce the oxidative defense genes HO-1 and NQO1.. Dipeptidyl-peptidase 4 inhibition protects against vascular senescence in a diabetic rat model. In vitro studies with human umbilical vein endothelial cells showed that reactive oxygen species-induced senescence was attenuated by GLP-1 in a receptor-dependent manner involving downstream PKA signaling and induction of antioxidant genes.

    Topics: Adamantane; Animals; Cells, Cultured; Cellular Senescence; Cyclic AMP; Cyclic AMP Response Element-Binding Protein; Cyclic AMP-Dependent Protein Kinases; Diabetes Mellitus; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; DNA Damage; Dose-Response Relationship, Drug; Endothelial Cells; Enzyme Activation; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Heme Oxygenase-1; Humans; Hydrogen Peroxide; Hypoglycemic Agents; Male; NAD(P)H Dehydrogenase (Quinone); Nitriles; Oxidants; Oxidative Stress; Peptides; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Pyrrolidines; Rats; Rats, Zucker; Reactive Oxygen Species; Receptors, Glucagon; Signal Transduction; Venoms; Vildagliptin

2010
Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy.
    Circulation. Heart failure, 2010, Volume: 3, Issue:4

    We have shown that glucagon-like peptide-1 (GLP-1[7-36] amide) stimulates myocardial glucose uptake in dilated cardiomyopathy (DCM) independent of an insulinotropic effect. The cellular mechanisms of GLP-1-induced myocardial glucose uptake are unknown.. Myocardial substrates and glucoregulatory hormones were measured in conscious, chronically instrumented dogs at control (n=6), DCM (n=9) and DCM after treatment with a 48-hour infusion of GLP-1 (7-36) amide (n=9) or vehicle (n=6). GLP-1 receptors and cellular pathways implicated in myocardial glucose uptake were measured in sarcolemmal membranes harvested from the 4 groups. GLP-1 stimulated myocardial glucose uptake (DCM: 20+/-7 nmol/min/g; DCM+GLP-1: 61+/-12 nmol/min/g; P=0.001) independent of increased plasma insulin levels. The GLP-1 receptors were upregulated in the sarcolemmal membranes (control: 98+/-2 density units; DCM: 256+/-58 density units; P=0.046) and were expressed in their activated (65 kDa) form in DCM. The GLP-1-induced increases in myocardial glucose uptake did not involve adenylyl cyclase or Akt activation but was associated with marked increases in p38alpha MAP kinase activity (DCM+vehicle: 97+/-22 pmol ATP/mg/min; DCM+GLP-1: 170+/-36 pmol ATP/mg/min; P=0.051), induction of nitric oxide synthase 2 (DCM+vehicle: 151+/-13 density units; DCM+GLP-1: 306+/-12 density units; P=0.001), and GLUT-1 translocation (DCM+vehicle: 21+/-3% membrane bound; DCM+GLP-1: 39+/-3% membrane bound; P=0.005). The effects of GLP-1 on myocardial glucose uptake were blocked by pretreatment with the p38alpha MAP kinase inhibitor or the nonspecific nitric oxide synthase inhibitor nitro-l-arginine.. GLP-1 stimulates myocardial glucose uptake through a non-Akt-1-dependent mechanism by activating cellular pathways that have been identified in mediating chronic hibernation and the late phase of ischemic preconditioning.

    Topics: Analysis of Variance; Animals; Blood Glucose; Cardiomyopathy, Dilated; Consciousness; Disease Models, Animal; Dogs; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose Transporter Type 4; Hemodynamics; Male; Mitochondria, Heart; Myocardium; Nitric Oxide Synthase; p38 Mitogen-Activated Protein Kinases; Probability; Random Allocation; Receptors, Glucagon; Signal Transduction; Ventricular Function, Left

2010
Long-term characterization of the diet-induced obese and diet-resistant rat model: a polygenetic rat model mimicking the human obesity syndrome.
    The Journal of endocrinology, 2010, Volume: 206, Issue:3

    The availability of useful animal models reflecting the human obesity syndrome is crucial in the search for novel compounds for the pharmacological treatment of obesity. In the current study, we have performed an extensive characterization of the obesity syndrome in a polygenetic animal model, namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization including blood biochemistry and glucose homeostasis was examined at 2, 3, 6, and 9 months of age. Furthermore, in 6-month-old HE-fed DIO rats, the anti-obesity effects of liraglutide and sibutramine were examined in a 28-day study. Only HE-fed DIO rats developed visceral obesity, hyperleptinemia, hyperinsulinemia, and dyslipidemia, and showed a worsening of glucose tolerance over time. In line with the hyperlipidemic profile, a severe hepatic fat infiltration was observed in DIO rats at 6 months of age. The effects of liraglutide and sibutramine were tested in 6-month-old DIO rats. Both compounds effectively reduced food intake and body weight in DIO rats. Liraglutide furthermore improved glucose tolerance when compared with sibutramine. Our data highlights the usefulness of a polygenetic animal model for screening of compounds affecting food intake, body weight, and glucose homeostasis. Furthermore, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents.

    Topics: Analysis of Variance; Animals; Appetite Depressants; Blood Glucose; Cyclobutanes; Diet; Disease Models, Animal; Eating; Enzyme-Linked Immunosorbent Assay; Feeding Behavior; Glucagon-Like Peptide 1; Insulin; Insulin Resistance; Leptin; Liraglutide; Metabolic Syndrome; Obesity; Rats; Rats, Sprague-Dawley

2010
Identification of glycosylated exendin-4 analogue with prolonged blood glucose-lowering activity through glycosylation scanning substitution.
    Bioorganic & medicinal chemistry letters, 2010, Aug-01, Volume: 20, Issue:15

    Exendin-4, a glucagon-like peptide 1 receptor agonist, is a potent therapeutic xenopeptide hormone for the treatment of type 2 diabetes. In order to further improve in vivo activity, we examined the introduction of sialyl N-acetyllactosamine (sialyl LacNAc) to exendin-4. The glycosylated analogue having sialyl LacNAc at position 28 was found to have improved in vivo activity with prolonged glucose-lowering activity.

    Topics: Amino Acid Sequence; Animals; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glycosylation; Hypoglycemic Agents; Mice; Molecular Sequence Data; Peptides; Venoms

2010
Glucagon receptor antagonist-mediated improvements in glycemic control are dependent on functional pancreatic GLP-1 receptor.
    American journal of physiology. Endocrinology and metabolism, 2010, Volume: 299, Issue:4

    Antagonism of the glucagon receptor (GCGR) is associated with increased circulating levels of glucagon-like peptide-1 (GLP-1). To investigate the contribution of GLP-1 to the antidiabetic actions of GCGR antagonism, we administered an anti-GCGR monoclonal antibody (mAb B) to wild-type mice and GLP-1 receptor knockout (GLP-1R KO) mice. Treatment of wild-type mice with mAb B lowered fasting blood glucose, improved glucose tolerance, and enhanced glucose-stimulated insulin secretion during an intraperitoneal glucose tolerance test (ipGTT). In contrast, treatment of GLP-1R KO mice with mAb B had little efficacy during an ipGTT. Furthermore, pretreatment with the GLP-1R antagonist exendin-(9-39) diminished the antihyperglycemic effects of mAb B in wild-type mice. To determine the mechanism whereby mAb B improves glucose tolerance, we generated a monoclonal antibody that specifically antagonizes the human GLP-1R. Using a human islet transplanted mouse model, we demonstrated that pancreatic islet GLP-1R signaling is required for the full efficacy of the GCGR antagonist. To identify the source of the elevated GLP-1 observed in GCGR mAb-treated mice, we measured active GLP-1 content in pancreas and intestine from db/db mice treated with anti-GCGR mAb for 8 wk. Elevated GLP-1 in GCGR mAb-treated mice was predominantly derived from increased pancreatic GLP-1 synthesis and processing. All together, these data show that pancreatic GLP-1 is a significant contributor to the glucose-lowering effects observed in response to GCGR antagonist treatment.

    Topics: Animals; Antibodies, Monoclonal; Disease Models, Animal; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose Tolerance Test; Islets of Langerhans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Peptide Fragments; Receptors, Glucagon; Signal Transduction

2010
Novel GLP-1 fusion chimera as potent long acting GLP-1 receptor agonist.
    PloS one, 2010, Sep-15, Volume: 5, Issue:9

    GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2<2 min). To circumvent this, we developed a long-lasting GLP-1 receptor agonist by the fusion of GLP-1 with human IgG2 Fc (GLP-1/hIgG2). ELISA-based receptor binding assay demonstrated that GLP-1/hIgG2 had high binding affinity to the GLP-1R in INS-1 cells (Kd = 13.90±1.52 nM). Upon binding, GLP-1/hIgG2 was rapidly internalized by INS-1 cells in a dynamin-dependent manner. Insulin RIA showed that GLP-1/IgG2 dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (i.p.), the GLP-1/hIgG2 peaked at 30 minutes in circulation and maintained a plateau for >168 h. Intraperitoneal glucose tolerance test (IPGTT) in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1/hIgG2 was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Together, the long-lasting bioactive GLP-1/hIgG2 retains native GLP-1 activities and thus may serve as a potent GLP-1 receptor agonist.

    Topics: Animals; Cell Line, Tumor; Diabetes Mellitus; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Immunoglobulin G; Insulin; Kinetics; Male; Mice; Protein Binding; Rats; Receptors, Glucagon; Recombinant Fusion Proteins

2010
Role of glucocorticoids in tuning hindbrain stress integration.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2010, Nov-03, Volume: 30, Issue:44

    The nucleus of the solitary tract (NTS) is a critical integrative site for coordination of autonomic and endocrine stress responses. Stress-excitatory signals from the NTS are communicated by both catecholaminergic [norepinephrine (NE), epinephrine (E)] and noncatecholaminergic [e.g., glucagon-like peptide-1 (GLP-1)] neurons. Recent studies suggest that outputs of the NE/E and GLP-1 neurons of the NTS are selectively engaged during acute stress. This study was designed to test mechanisms of chronic stress integration in the paraventricular nucleus, focusing on the role of glucocorticoids. Our data indicate that chronic variable stress (CVS) causes downregulation of preproglucagon (GLP-1 precursor) mRNA in the NTS and reduction of GLP-1 innervation to the paraventricular nucleus of the hypothalamus. Glucocorticoids were necessary for preproglucagon (PPG) reduction in CVS animals and were sufficient to lower PPG mRNA in otherwise unstressed animals. The data are consistent with a glucocorticoid-mediated withdrawal of GLP-1 in key stress circuits. In contrast, expression of tyrosine hydroxylase mRNA, the rate-limiting enzyme in catecholamine synthesis, was increased by stress in a glucocorticoid-independent manner. These suggest differential roles of ascending catecholamine and GLP-1 systems in chronic stress, with withdrawal of GLP-1 involved in stress adaptation and enhanced NE/E capacity responsible for facilitation of responses to novel stress experiences.

    Topics: Adaptation, Physiological; Animals; Catecholamines; Disease Models, Animal; Down-Regulation; Glucagon-Like Peptide 1; Glucocorticoids; Male; Neural Pathways; Paraventricular Hypothalamic Nucleus; Rats; Rats, Sprague-Dawley; Rhombencephalon; RNA, Messenger; Solitary Nucleus; Stress, Psychological; Tyrosine 3-Monooxygenase

2010
Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure.
    Cardiovascular diabetology, 2010, Nov-16, Volume: 9

    Accumulating evidence suggests glucagon-like peptide-1 (GLP-1) exerts cardioprotective effects in animal models of myocardial infarction (MI). We hypothesized that chronic treatment with GLP-1 or the exenatide analog AC3174 would improve cardiac function, cardiac remodeling, insulin sensitivity, and exercise capacity (EC) in rats with MI-induced chronic heart failure (CHF) caused by coronary artery ligation.. Two weeks post-MI, male Sprague-Dawley rats were treated with GLP-1 (2.5 or 25 pmol/kg/min), AC3174 (1.7 or 5 pmol/kg/min) or vehicle via subcutaneous infusion for 11 weeks. Cardiac function and morphology were assessed by echocardiography during treatment. Metabolic, hemodynamic, exercise-capacity, and body composition measurements were made at study end.. Compared with vehicle-treated rats with CHF, GLP-1 or AC3174 significantly improved cardiac function, including left ventricular (LV) ejection fraction, and end diastolic pressure. Cardiac dimensions also improved as evidenced by reduced LV end diastolic and systolic volumes and reduced left atrial volume. Vehicle-treated CHF rats exhibited fasting hyperglycemia and hyperinsulinemia. In contrast, GLP-1 or AC3174 normalized fasting plasma insulin and glucose levels. GLP-1 or AC3174 also significantly reduced body fat and fluid mass and improved exercise capacity and respiratory efficiency. Four of 16 vehicle control CHF rats died during the study compared with 1 of 44 rats treated with GLP-1 or AC3174. The cellular mechanism by which GLP-1 or AC3174 exert cardioprotective effects appears unrelated to changes in GLUT1 or GLUT4 translocation or expression.. Chronic treatment with either GLP-1 or AC3174 showed promising cardioprotective effects in a rat model of CHF. Hence, GLP-1 receptor agonists may represent a novel approach for the treatment of patients with CHF or cardiovascular disease associated with type 2 diabetes.

    Topics: Animals; Blood Glucose; Cardiotonic Agents; Chronic Disease; Disease Models, Animal; Echocardiography, Doppler, Pulsed; Exercise Tolerance; Glucagon-Like Peptide 1; Glucose Transporter Type 1; Glucose Transporter Type 4; Heart Failure; Hemodynamics; Infusions, Subcutaneous; Insulin; Male; Myocardial Infarction; Myocardium; Peptides; Rats; Rats, Sprague-Dawley; Stroke Volume; Time Factors; Ventricular Function, Left; Ventricular Pressure; Ventricular Remodeling

2010
[Effects of Gastric bypass surgery on the apoptosis of islet β-cells in type 2 nonobese diabetic (NOD) rats and its mechanism].
    Zhonghua wai ke za zhi [Chinese journal of surgery], 2010, Dec-01, Volume: 48, Issue:23

    To investigate the effects of Gastric bypass surgery on the apoptosis of islet β-cells in type 2 nonobese diabetic (NOD) rats and its mechanisms.. Seventy-two 8-week-old GK rats were randomly divided into four groups:operation group (group O, n = 18), sham operation group (group S, n = 18), diet control group (group F, n = 18) and control group (group C, n = 18). The levels of fasting, postprandial blood glucose, insulin and glucagon-like peptide-1 (GLP-1) were measured and compared among the 4 groups before the operation and at 1, 2, 4 and 8 weeks following the operation. The blood samples were collected at 2, 4 and 8 weeks after the operation for the measurement of postprandial blood glucose, and then the rats in batches (6 rats in each group) were decapitated to retrieve the pancreas. The apoptosis of the islet β-cells was detected by using TUNEL assay, and the expression of apoptosis-related proteins Bcl-2, Bax was measured with immunohistochemistry.. As for group O, the fasting blood glucose level decreased from (16.2 ± 0.8) mmol/L before the operation to respectively (9.2 ± 0.6) mmol/L and (9.7 ± 0.7) mmol/L at 4 and 8 weeks after the operation; postprandial blood glucose decreased from (31.1 ± 1.1) mmol/L before the operation to respectively (13.1 ± 0.7) mmol/L and (12.3 ± 0.7) mmol/L at 4 and 8 weeks after the operation. Fasting insulin level increased from (28.0 ± 1.2) mU/L before the operation to respectively (62.8 ± 1.9) mU/L and (61.7 ± 1.4) mU/L at 4 and 8 weeks after the operation; and at 4 and 8 weeks after the operation postprandial insulin level was (77.4 ± 1.1) mU/L and (77.1 ± 1.0) mU/L. At 2 weeks from the operation, the fasting GLP-1 in group O increased from (10.7 ± 1.0) pmol/L to (13.5 ± 0.8) pmol/L, and respectively to (26.1 ± 0.9) pmol/L and (25.3 ± 1.2) pmol/L at 4 and 8 weeks after the operation. The differences in the above-mentioned items before and after the operation were all significant in group O (P < 0.05), and the differences in the items among group O and the other three groups (P < 0.05) were all significant as well. In group O, the apoptosis rate of pancreatic islet cell decreased to (5.9 ± 0.7)% at 4 weeks from the operation, and (6.3 ± 1.1)% at 8 weeks from the operation (P < 0.05). The expression of Bcl-2 protein in group O was 31.3 ± 1.5, 35.7 ± 1.0 and 35.8 ± 0.8 at 2, 4 and 8 weeks post operation, which was significantly higher in statistics than those of the same time point in the other three groups (P < 0.05). The expression of Bax protein in group O was 13.3 ± 0.9, 10.8 ± 0.9 and 10.9 ± 1.1 at 2, 4 and 8 weeks from the operation, which was significantly lower in statistics than those of the same time point in the other three groups (P < 0.05).. Gastric bypass surgery can significantly reduce the blood glucose level and promote the secretion of GLP-1, and therefore inhibit the apoptosis of the islet β cells in diabetic rats through the Bcl-2 pathway.

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Bypass; Glucagon-Like Peptide 1; Insulin; Islets of Langerhans; Proto-Oncogene Proteins c-bcl-2; Rats

2010
Chronic treatment with the dipeptidyl peptidase-4 inhibitor BI 1356 [(R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione] increases basal glucagon-like peptide-1 and improves glycemic contro
    The Journal of pharmacology and experimental therapeutics, 2009, Volume: 328, Issue:2

    Antidiabetic effects of dipeptidyl peptidase-4 (DPP-4) inhibitors are exerted by potentiation of the biological activity of incretin hormones like glucagon-like peptide (GLP)-1. BI 1356 [proposed trade name Ondero; (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione] is a novel competitive, selective, potent, and long-acting DPP-4 inhibitor under clinical development for the treatment of type 2 diabetes. The effect of 1 to 2 months of chronic dosing of BI 1356 in two different animal models was investigated. The first is a primarily genetic model (Zucker diabetic fatty rats), and the second is a nongenetic model (mice with diabetes induced by a combination of high-fat diet and low-dose streptozotocin). BI 1356 was shown to lower HbA1c after multiple dosing in both models. The improvement of glycemic control achieved in disease models of different etiology suggests that BI 1356 would also be efficacious in treating a broad spectrum of type 2 diabetic patients. In addition, multiple dosing of BI 1356 leads to a sustained increase in basal levels of active GLP-1 in the systemic circulation, with expected long-term benefits on pancreatic alpha- and beta-cells. The effects on HbA1c and GLP-1 were superior to the short-acting DPP-4 inhibitor vildagliptin, demonstrating the potential of BI 1356 as a once daily treatment for type 2 diabetes at low therapeutic doses.

    Topics: Animals; Diabetes Mellitus; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Glycemic Index; Humans; Hypoglycemic Agents; Linagliptin; Male; Mice; Purines; Quinazolines; Rats; Rats, Zucker; Tumor Cells, Cultured

2009
Berberine promotes glucagon-like peptide-1 (7-36) amide secretion in streptozotocin-induced diabetic rats.
    The Journal of endocrinology, 2009, Volume: 200, Issue:2

    Berberine (BBR), a hypoglycemic agent, has shown beneficial metabolic effects for anti-diabetes, but its precise mechanism was unclear. Glucagon-like peptide-1 (GLP-1) is considered to be an important incretin that can decrease hyperglycemia in the gastrointestinal tract after meals. The aim of this study was to investigate whether BBR exerts its anti-diabetic effects via modulating GCG secretion. Diabetes-like rats induced by streptozotocin received BBR (120 mg/kg per day, i.g) for 5 weeks. Two hours following the last dose, the rats were anaesthetized and received 2.5 g/kg glucose by gavage. At 15-minute and 30-minute after glucose load, blood samples, pancreas, and intestines were obtained to measure insulin and GCG using ELISA kit. The number of L cells in the ileum and beta-cells in the pancreas were identified using immunohistology. The expression of proglucagon mRNA in the ileum was measured by RT-PCR. The results indicated that BBR treatment significantly increased GCG levels in plasma and intestine (P<0.05) accompanied with the increase of proglucagon mRNA expression and the number of L-cell compared with the controls (P<0.05). Furthermore, BBR increased insulin levels in plasma and pancreas as well as beta-cell number in pancreas. The data support the hypothesis that the anti-diabetic effects of BBR may partly result from enhancing GCG secretion.

    Topics: Animals; Antibiotics, Antineoplastic; Berberine; Diabetes Mellitus; Disease Models, Animal; Gene Expression; Glucagon-Like Peptide 1; Hypoglycemic Agents; Insulin; Intestinal Mucosa; Peptide Fragments; Proglucagon; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Streptozocin

2009
Nutrient-driven incretin secretion into intestinal lymph is different between diabetic Goto-Kakizaki rats and Wistar rats.
    American journal of physiology. Gastrointestinal and liver physiology, 2009, Volume: 296, Issue:2

    The incretin hormones gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) augment postprandial glucose-mediated insulin release from pancreatic beta-cells. The Goto-Kakizaki (GK) rat is a widely used, lean rodent model of Type 2 diabetes; however, little is known regarding the incretin secretion profile to different nutrients in these rats. We have recently shown that lymph is a sensitive medium to measure incretin secretion in rodents and probably the preferred compartment for GLP-1 monitoring. To characterize the meal-induced incretin profile, we compared lymphatic incretin concentrations in the GK and Wistar rat after enteral macronutrient administration. After cannulation of the major mesenteric lymphatic duct and duodenum, each animal received an intraduodenal bolus of either a fat emulsion, dextrin, a mixed meal, or saline. Lymph was collected for 3 h and analyzed for triglyceride, glucose, GLP-1, and GIP content. There was no statistical difference in GIP or GLP-1 secretion after a lipid bolus between GK and Wistar rats. Dextrin and a mixed meal both increased incretin concentration area under the curve, however, significantly less in GK rats compared with Wistar rats (dextrin GIP: 707 +/- 106 vs. 1,373 +/- 114 pg ml(-1) h, respectively, P < 0.001; dextrin GLP-1: 82.7 +/- 24.3 vs. 208.3 +/- 26.3 pM/h, respectively, P = 0.001). After administration of a carbohydrate-containing meal, GK rats were unable to mount as robust a response of both GIP and GLP-1 compared with Wistar rats, a phenomenon not seen after a lipid meal. We propose a similar, glucose-mediated incretin secretion pathway defect of both K and L cells in GK rats.

    Topics: Animals; Dextrins; Diabetes Mellitus, Type 2; Diet; Dietary Carbohydrates; Dietary Fats; Disease Models, Animal; Duodenum; Enteroendocrine Cells; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose; Intestinal Secretions; Lymph; Male; Postprandial Period; Rats; Rats, Wistar; Sodium Chloride, Dietary; Time Factors; Triglycerides

2009
GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice.
    Diabetes, 2009, Volume: 58, Issue:4

    Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear.. We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide.. Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 +/- 2% versus 29 +/- 3%, P = 0.02) and improved cardiac output (12.4 +/- 0.6 versus 9.7 +/- 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R-dependent manner in vitro.. These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo.

    Topics: Animals; Blood Glucose; Body Weight; Cardiomegaly; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Disease Models, Animal; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Heart; Humans; Liraglutide; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Organ Size; Receptors, Glucagon

2009
Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states.
    Calcified tissue international, 2009, Volume: 84, Issue:6

    It has been suggested that hormones released after nutrient absorption, such as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide 2 (GLP-2), could be responsible for changes in bone resorption. However, information about the role of GLP-1 in this regard is scanty. Diabetes-related bone loss occurs as a consequence of poor control of glucose homeostasis, but the relationship between osteoporosis and type 2 diabetes remains unclear. Since GLP-1 is decreased in the latter condition, we evaluated some bone characteristics in streptozotocin-induced type 2 diabetic (T2D) and fructose-induced insulin-resistant (IR) rat models compared to normal (N) and the effect of GLP-1 or saline (control) treatment (3 days by osmotic pump). Blood was taken before and after treatment for plasma measurements; tibiae and femora were collected for gene expression of bone markers (RT-PCR) and structure (microCT) analysis. Compared to N, plasma glucose and insulin were, respectively, higher and lower in T2D; osteocalcin (OC) and tartrate-resistant alkaline phosphatase 5b were lower; phosphate in IR showed a tendency to be higher; PTH was not different in T2D and IR; all parameters were unchanged after GLP-1 infusion. Bone OC, osteoprotegerin (OPG) and RANKL mRNA were lower in T2D and IR; GLP-1 increased OC and OPG in all groups and RANKL in T2D. Compared to N, trabecular bone parameters showed an increased degree of anisotropy in T2D and IR, which was reduced after GLP-1. These findings show an insulin-independent anabolic effect of GLP-1 and suggest that GLP-1 could be a useful therapeutic agent for improving the deficient bone formation and bone structure associated with glucose intolerance.

    Topics: Acid Phosphatase; Animals; Bone and Bones; Bone Resorption; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon-Like Peptide 1; Glucose; Insulin; Insulin Resistance; Isoenzymes; Male; Osteocalcin; Osteoprotegerin; Parathyroid Hormone; Peptide Fragments; RANK Ligand; Rats; Rats, Wistar; Tartrate-Resistant Acid Phosphatase

2009
Exenatide improves hypertension in a rat model of the metabolic syndrome.
    Metabolic syndrome and related disorders, 2009, Volume: 7, Issue:4

    Exenatide is a peptide incretin mimetic that has glucoregulatory actions associated with weight reduction. Previous reports demonstrated acute increases in blood pressure after systemic or intracerebroventricular administration of exenatide or glucagon like peptide 1 (GLP 1) in rats. However, there are limited studies testing the chronic effects of these peptides on arterial pressure and no reports showing the effects of these peptides to reverse hypertension in the context of the metabolic syndrome.. Thus, we examined the response to peripheral exenatide using telemetry in conscious, unrestrained rats under normotensive conditions and in a model of hypertension/metabolic syndrome induced by corticosterone. Rats were implanted with either corticosterone or wax (control) pellets, followed 14 days later by the additional implantation of pumps to deliver exenatide (1 microg/kg per day) or vehicle for 7 days.. The 21-day corticosterone treatment produced hypertriglyceridemia, visceral fat deposition, hyperglycemia, insulin resistance, and an elevation of mean arterial blood pressure (MAP) by 14 +/- 1 mmHg. Exenatide significantly reversed corticosterone-induced increases in blood pressure and this normalization occurred independently from change in body weight. Additionally, exenatide reduced MAP by 5 +/- 3 mmHg in normotensive control rats.. These results are the first demonstration of a durable antihypertensive effect of exenatide in a glucocorticoid-induced model of the metabolic syndrome.

    Topics: Animals; Blood Pressure; Body Weight; Corticosterone; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Hypertension; Hypoglycemic Agents; Injections, Intraventricular; Male; Metabolic Syndrome; Peptides; Rats; Rats, Sprague-Dawley; Telemetry; Time Factors; Venoms

2009
Phenotyping of congenic dipeptidyl peptidase 4 (DP4) deficient Dark Agouti (DA) rats suggests involvement of DP4 in neuro-, endocrine, and immune functions.
    Clinical chemistry and laboratory medicine, 2009, Volume: 47, Issue:3

    Treatment of diabetes type 2 using chronic pharmacological inhibition of dipeptidyl peptidase 4 (DP4) still requires an in-depth analysis of models for chronic DP4 deficiency, because adverse reactions induced by some DP4 inhibitors have been described.. In the present study, a novel congenic rat model of DP4 deficiency on a "DP4-high" DA rat genetic background was generated (DA.F344-Dpp4(m)/ SvH rats) and comprehensively phenotyped.. Similar to chronic pharmacological inhibition of DP4, DP4 deficient rats exhibited a phenotype involving reduced diet-induced body weight gain and improved glucose tolerance associated with increased levels of glucagon-like peptide-1 (GLP-1) and bound leptin as well as decreased aminotransferases and triglycerides. Additionally, DA.F344-Dpp4(m)/SvH rats showed anxiolytic-like and reduced stress-like responses, a phenomenon presently not targeted by DP4 inhibitors. However, several immune alterations, such as differential leukocyte subset composition at baseline, blunted natural killer cell and T-cell functions, and altered cytokine levels were observed.. While this animal model confirms a critical role of DP4 in GLP-1-dependent glucose regulation, genetically induced chronic DP4 deficiency apparently also affects stress-regulatory and immuneregulatory systems, indicating that the use of chronic DP4 inhibitors might have the potential to interfere with central nervous system and immune functions in vivo.

    Topics: Animals; Animals, Congenic; Body Weight; Cytokines; Dipeptidyl Peptidase 4; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Killer Cells, Natural; Leptin; Phenotype; Rats; Rats, Inbred F344; T-Lymphocytes; Transaminases; Triglycerides

2009
Chemoenzymatic synthesis of glycosylated glucagon-like peptide 1: effect of glycosylation on proteolytic resistance and in vivo blood glucose-lowering activity.
    Journal of the American Chemical Society, 2009, May-06, Volume: 131, Issue:17

    Glucagon-like peptide 1 (7-36) amide (GLP-1) has been attracting considerable attention as a therapeutic agent for the treatment of type 2 diabetes. In this study, we applied a glycoengineering strategy to GLP-1 to improve its proteolytic stability and in vivo blood glucose-lowering activity. Glycosylated analogues with N-acetylglucosamine (GlcNAc), N-acetyllactosamine (LacNAc), and alpha2,6-sialyl N-acetyllactosamine (sialyl LacNAc) were prepared by chemoenzymatic approaches. We assessed the receptor binding affinity and cAMP production activity in vitro, the proteolytic resistance against dipeptidyl peptidase-IV (DPP-IV) and neutral endopeptidase (NEP) 24.11, and the blood glucose-lowering activity in diabetic db/db mice. Addition of sialyl LacNAc to GLP-1 greatly improved stability against DPP-IV and NEP 24.11 as compared to the native type. Also, the sialyl LacNAc moiety extended the blood glucose-lowering activity in vivo. Kinetic analysis of the degradation reactions suggested that the sialic acid component played an important role in decreasing the affinity of peptide to DPP-IV. In addition, the stability of GLP-1 against both DPP-IV and NEP24.11 incrementally improved with an increase in the content of sialyl LacNAc in the peptide. The di- and triglycosylated analogues with sialyl LacNAc showed greatly prolonged blood glucose-lowering activity of up to 5 h after administration (100 nmol/kg), although native GLP-1 showed only a brief duration. This study is the first attempt to thoroughly examine the effect of glycosylation on proteolytic resistance by using synthetic glycopeptides having homogeneous glycoforms. This information should be useful for the design of glycosylated analogues of other bioactive peptides as desirable pharmaceuticals.

    Topics: Animals; Blood Glucose; Carbohydrate Conformation; Carbohydrate Sequence; Diabetes Mellitus, Experimental; Dipeptidyl Peptidase 4; Disease Models, Animal; Glucagon-Like Peptide 1; Glycosylation; Mice; Mice, Obese; Molecular Sequence Data; Neprilysin; Protein Processing, Post-Translational; Protein Stability; Time Factors

2009
Glucagon-like peptide-1 receptor activation modulates pancreatitis-associated gene expression but does not modify the susceptibility to experimental pancreatitis in mice.
    Diabetes, 2009, Volume: 58, Issue:9

    Clinical reports link use of the glucagon-like peptide-1 receptor (GLP-1R) agonists exenatide and liraglutide to pancreatitis. However, whether these agents act on the exocrine pancreas is poorly understood.. We assessed whether the antidiabetic agents exendin (Ex)-4, liraglutide, the dipeptidyl peptidase-4 inhibitor sitagliptin, or the biguanide metformin were associated with changes in expression of genes associated with the development of experimental pancreatitis. The effects of Ex-4 when administered before or after the initiation of caerulein-induced experimental pancreatitis were determined. The importance of endogenous GLP-1R signaling for gene expression in the exocrine pancreas and the severity of pancreatitis was assessed in Glp1r(-/-) mice.. Acute administration of Ex-4 increased expression of egr-1 and c-fos in the exocrine pancreas. Administration of Ex-4 or liraglutide for 1 week increased pancreas weight and induced expression of mRNA transcripts encoding the anti-inflammatory proteins pancreatitis-associated protein (PAP) (RegIIIbeta) and RegIIIalpha. Chronic Ex-4 treatment of high-fat-fed mice increased expression of PAP and reduced pancreatic expression of mRNA transcripts encoding for the proinflammatory monocyte chemotactic protein-1, tumor necrosis factor-alpha, and signal transducer and activator of transcription-3. Sitagliptin and metformin did not significantly change pancreatic gene expression profiles. Ex-4 administered before or after caerulein did not modify the severity of experimental pancreatitis, and levels of pancreatic edema and serum amylase were comparable in caerulein-treated Glp1r(-/-) versus Glp1r(+/+) mice.. These findings demonstrate that GLP-1 receptor activation increases pancreatic mass and selectively modulates the expression of genes associated with pancreatitis. However, activation or genetic elimination of GLP-1R signaling does not modify the severity of experimental pancreatitis in mice.

    Topics: Animals; Ceruletide; Dietary Fats; Disease Models, Animal; Early Growth Response Protein 1; Exenatide; Gene Expression; Genes, fos; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hypoglycemic Agents; Liraglutide; Male; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Pancreas, Exocrine; Pancreatitis; Pancreatitis-Associated Proteins; Peptides; Receptors, Glucagon; Severity of Illness Index; Signal Transduction; Venoms

2009
Synergistic effect of the human GLP-1 analogue liraglutide and a dual PPARalpha/gamma agonist on glycaemic control in Zucker diabetic fatty rats.
    Diabetes, obesity & metabolism, 2009, Volume: 11, Issue:8

    Combination therapies are increasingly common in the clinical management of type 2 diabetes. We investigated to what extent combined treatment with the human glucagon-like peptide-1 (GLP-1) analogue liraglutide and the dual PPARalpha/gamma agonist ragaglitazar would improve glycaemic control in overtly diabetic Zucker diabetic fatty (ZDF) rats.. Ninety overtly diabetic male ZDF rats were stratified into groups with matched haemoglobin A1c (HbA1c) (9.0+/-0.1%). Liraglutide (15 and 50 microg/kg subcutaneously twice daily), ragaglitazar (1 and 3 mg/kg perorally once daily) and their vehicles were studied as monotherapy and in combination in a 3x3 factorial design.. After 4-week treatment, synergistic effects on HbA1c, non-fasting morning blood glucose (BG) and/or 24-h BG profiles were observed with three of the four combinations. The relationship between plasma insulin and BG in combination-treated animals approached that of historical lean ZDF rats representing normal glucose homeostasis, suggesting that insulin secretion and insulin sensitivity were markedly improved. Increased insulin immunostaining in islets further supports the improved beta-cell function and/or insulin sensitivity in combination-treated animals. The synergistic effect on glycaemic control was found without a similar synergistic increase in beta-cell mass in the combination groups.. Our data demonstrate that combination treatment with a human GLP-1 analogue and a dual PPARalpha/gamma agonist through distinct mechanism of actions synergistically improves glycaemic control in the ZDF rat.

    Topics: Animals; Blood Glucose; Cell Proliferation; Diabetes Mellitus; Disease Models, Animal; Drug Synergism; Glucagon-Like Peptide 1; Glycated Hemoglobin; Homeodomain Proteins; Homeostasis; Hypoglycemic Agents; Immunohistochemistry; Insulin; Insulin-Secreting Cells; Liraglutide; Oxazines; Phenylpropionates; Rats; Rats, Zucker; Trans-Activators

2009
Lack of cardioprotection from subcutaneously and preischemic administered liraglutide in a closed chest porcine ischemia reperfusion model.
    BMC cardiovascular disorders, 2009, Jul-23, Volume: 9

    Glucagon-like peptide 1 (GLP1) analogues are promising new treatment options for patients with type 2 diabetes, but may have both potentially beneficial and harmful cardiovascular effects. This may also be the case for the analogues of GLP1 for clinical use. The present study examined the effect of treatment with liraglutide, a long-acting GLP1 analogue, on myocardial ischemia and reperfusion in a porcine model.. Danish Landrace Pigs (70-80 kg) were randomly assigned to liraglutide (10 mug/kg) or control treatment given daily for three days before ischemia-reperfusion. Ischemia was induced by balloon occlusion of the left anterior descending artery for 40 minutes followed by 2.5 hours of reperfusion. The primary outcome parameter was infarct size in relation to the ischemic region at risk. Secondary endpoints were the hemodynamic parameters mean pulmonary pressure, cardiac output, pulmonary capillary wedge pressure as measured by a Swan-Ganz catheter as well as arterial pressure and heart rate.. The infarct size in relation to ischemic risk region in the control versus the liraglutide group did not differ significantly: 0.46 +/- 0.14 and 0.54 +/- 0.12) (mean and standard deviation (SD), p = 0.21). Heart rate was significantly higher in the liraglutide group during the experiment, while the other hemodynamic parameters did not differ significantly.. Liraglutide has a neutral effect on myocardial infarct size in a porcine ischemia-reperfusion model.

    Topics: Animals; Blood Pressure; Cardiac Output; Cardiovascular Agents; Catheterization, Swan-Ganz; Disease Models, Animal; Drug Administration Schedule; Glucagon-Like Peptide 1; Heart Rate; Hemodynamics; Injections, Subcutaneous; Liraglutide; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Pulmonary Wedge Pressure; Swine

2009
Pancreatic function of spontaneously diabetic torii rats in pre-diabetic stage.
    Experimental animals, 2009, Volume: 58, Issue:4

    The Spontaneously Diabetic Torii (SDT) rat is a new model for non-obese type 2 diabetes. In the present study, we investigated changes in insulin secretion from the pancreas of male SDT rats aged 8, 16, and 24 weeks in order to analyze pancreatic function. An analysis of glucose-stimulated insulin secretion (GSIS) in isolated islets showed a marked reduction in insulin secretion in pre-diabetic 16-week-old SDT rats. When the islets were treated with tolbutamide or glucagon-like peptide-1 (7-36) amide (tGLP-1) in the presence of 11.2 mM glucose, however, insulin levels were restored to levels of normal rats. In vivo study, SDT rats exhibited a marked reduction in GSIS from 16 weeks of age. However, tolbutamide or JTP-76209, which is a novel dipeptidyl peptidase IV (DPP IV) inhibitor, increased insulin release after glucose loading and improved glucose tolerance. A marked reduction in GSIS was observed in pre-diabetic SDT rats and the reduction was improved by tolbutamide, tGLP-1, and the DPP IV inhibitor. Therefore, we concluded that the SDT rat is useful, as a model of non-obese insulin secretory disorder, for the analysis of the onset of type 2 diabetes and the development of antidiabetic agents.

    Topics: Animals; Arginine; Benzoates; Body Weight; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Enzyme Inhibitors; Glucagon; Glucagon-Like Peptide 1; Glucose Tolerance Test; Hypoglycemic Agents; Insulin; Insulin Secretion; Islets of Langerhans; Male; Obesity; Organ Culture Techniques; Pancreas; Peptide Fragments; Rats; Rats, Sprague-Dawley; Tolbutamide

2009
Clozapine and quetiapine acutely reduce glucagon-like peptide-1 production and increase glucagon release in obese rats: implications for glucose metabolism and food choice behaviour.
    Schizophrenia research, 2009, Volume: 115, Issue:1

    Second generation antipsychotic drug (SGA) treatment is associated with detrimental effects on glucose metabolism which is often attributed to the development of obesity and insulin resistance. However, we have recently demonstrated that clozapine and quetiapine also have direct effects of glucose metabolism in animals. This study compares clozapine and quetiapine and investigates the effects of these on the development of obesity and the direct effects of these drugs on glucose metabolism compared with those caused by the obesity per se.. Three groups of male Sprague-Dawley rats were fed a high fat/high sugar diet to induce obesity while another three groups were fed a chow diet. One group on each diet was injected daily with vehicle, clozapine or quetiapine and effects on glucose metabolism were monitored.. Clozapine and quetiapine treatment did not directly cause obesity or potentiate diet induced obesity but did induce a preference for the high fat/high sugar diet. Neither drug caused a impairment in insulin tolerance over that caused by obesity but both drugs acutely induced impairments in glucose tolerance that were additive with the effects induced by the diet induced obesity. Both drugs caused increases in glucagon levels and a suppression of GLP-1. We investigated two strategies for restoring GLP-1 signalling. The DPP-IV inhibitor sitagliptin only partially restored GLP-1 levels and did not overcome the deleterious effects on glucose tolerance whereas the GLP-1 receptor agonist exendin-4 normalised both glucagon levels and glucose metabolism.. Our findings indicate that the clozapine and quetiapine induced impairments in glucose tolerance in rats are independent of insulin resistance caused by obesity and that these defects are linked with a suppression of GLP-1 levels. These studies suggest the need to perform follow up studies in humans to determine whether clozapine and quetiapine induce acute derangements in glucose metabolism and whether GLP-1 replacement therapy might be the most appropriate therapeutic strategy for treating derangements in glucose metabolism in subjects taking these drugs.

    Topics: Analysis of Variance; Animals; Antipsychotic Agents; Body Composition; Body Weight; Clozapine; Dibenzothiazepines; Dietary Fats; Disease Models, Animal; Eating; Exenatide; Food Preferences; Gene Expression Regulation; Glucagon; Glucagon-Like Peptide 1; Glucose; Glucose Tolerance Test; Hypoglycemic Agents; Insulin Resistance; Male; Obesity; Peptides; Pyrazines; Quetiapine Fumarate; Rats; Rats, Sprague-Dawley; Sitagliptin Phosphate; Triazoles; Venoms

2009
Letter by Nguyen and Doenst regarding article "Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart-failure prone rat".
    Circulation. Heart failure, 2009, Volume: 2, Issue:3

    Topics: Animals; Cardiovascular Agents; Disease Models, Animal; Dogs; Glucagon-Like Peptide 1; Glucose Transporter Type 4; Heart Failure; Hypertension; Infusions, Parenteral; Insulin; Myocardium; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Inbred SHR; Signal Transduction; Systole; Ventricular Function, Left

2009
Age dependence of glucose tolerance in adult KK-Ay mice, a model of non-insulin dependent diabetes mellitus.
    Lab animal, 2009, Volume: 38, Issue:11

    Yellow KK mice carrying the 'yellow obese' gene Ay are a well established polygenic model for human non-insulin dependent diabetes mellitus. These animals develop marked adiposity and decreased glucose tolerance relative to their control littermates, KK mice. The authors monitored glucose tolerance in KK-Ay mice over time and observed a significant (P

    Topics: Age Factors; Amyloid; Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glucose; Insulin; Islet Amyloid Polypeptide; Leptin; Male; Mice; Mice, Inbred ICR

2009
Discovery of 3-aryl-4-isoxazolecarboxamides as TGR5 receptor agonists.
    Journal of medicinal chemistry, 2009, Dec-24, Volume: 52, Issue:24

    A series of 3-aryl-4-isoxazolecarboxamides identified from a high-throughput screening campaign as novel, potent small molecule agonists of the human TGR5 G-protein coupled receptor is described. Subsequent optimization resulted in the rapid identification of potent exemplars 6 and 7 which demonstrated improved GLP-1 secretion in vivo via an intracolonic dose coadministered with glucose challenge in a canine model. These novel TGR5 receptor agonists are potentially useful therapeutics for metabolic disorders such as type II diabetes and its associated complications.

    Topics: Amides; Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Dogs; Glucagon-Like Peptide 1; Glucose; Humans; Isoxazoles; Rats; Receptors, G-Protein-Coupled

2009
Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1.
    Annals of surgery, 2008, Volume: 247, Issue:6

    Modified duodenal jejunal bypass (MDJB) and ileal transposition (IT) were compared as surgeries for glucose control. Initial conclusions might be formed with respect to the possibility of (1) whether duodenal exclusion is essential for the control of diabetes and (2) application as a low morbid procedure.. IT, MDJB, sham-IT, and sham-MDJB procedures were performed on 10- to 12-week-old Goto-Kakizaki (GK) rats, nonobese animals who spontaneously develop type 2 diabetes. Rats were observed for 24 weeks after surgery. Glucose, insulin, glucagon-like peptide-1 (GLP-1), glucose tolerance, insulin sensitivity, cholesterol, triglycerides, and free fatty acid levels were measured.. MDJB and IT rats, when compared with sham-operated rats, showed reduced blood-glucose levels (P < 0.001); but IT- and MDJB did not differ from one another (P < 0.05). Compared with sham-operated rats, IT- and MDJB rats showed increased GLP-1 secretion (P < 0.01), with a more rapid and higher secretion in IT operated than in MDJB rats (P < 0.05). After 6 months, sham-operated rats weighed more than IT or MDJB rats (P < 0.01), but the weights of IT- and MDJB rats were similar to one another (P > 0.05). In terms of both operative time (P < 0.001) and postoperative recovery time (P < 0.001), MDJB took longer than did IT.. In nonobese spontaneously diabetic rats, IT is equivalent to MDJB in terms of glucose control and weight secondary to significant increases of GLP-1. IT is faster to perform and yields a shorter recovery period than does MDJB.

    Topics: Analysis of Variance; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Disease Models, Animal; Duodenum; Glucagon-Like Peptide 1; Glucose Tolerance Test; Ileum; Jejunum; Lipids; Male; Rats; Rats, Inbred Strains

2008
Pharmacokinetic, pharmacodynamic, and efficacy profiles of alogliptin, a novel inhibitor of dipeptidyl peptidase-4, in rats, dogs, and monkeys.
    European journal of pharmacology, 2008, Jul-28, Volume: 589, Issue:1-3

    The aim of the present research was to characterize the pharmacokinetic, pharmacodynamic, and efficacy profiles of alogliptin, a novel quinazolinone-based dipeptidyl peptidase-4 (DPP-4) inhibitor. Alogliptin potently inhibited human DPP-4 in vitro (mean IC(50), ~ 6.9 nM) and exhibited > 10,000-fold selectivity for DPP-4 over the closely related serine proteases DPP-2, DPP-8, DPP-9, fibroblast activation protein/seprase, prolyl endopeptidase, and tryptase (IC(50) > 100,000 nM). Absolute oral bioavailability of alogliptin in rats, dogs, and monkeys was 45%, 86%, and 72% to 88%, respectively. After a single oral dose of alogliptin, plasma DPP-4 inhibition was observed within 15 min and maximum inhibition was > 90% in rats, dogs, and monkeys; inhibition was sustained for 12 h in rats (43%) and dogs (65%) and 24 h in monkeys (> 80%). From E(max) modeling, 50% inhibition of DPP-4 activity was observed at a mean alogliptin plasma concentration (EC(50)) of 3.4 to 5.6 ng/ml (10.0 to 16.5 nM) in rats, dogs, and monkeys. In Zucker fa/fa rats, a single dose of alogliptin (0.3, 1, 3, and 10 mg/kg) inhibited plasma DPP-4 (91% to 100% at 2 h and 20% to 66% at 24 h), increased plasma GLP-1 (2- to 3-fold increase in AUC(0-20 min)) and increased early-phase insulin secretion (1.5- to 2.6-fold increase in AUC(0-20 min)) and reduced blood glucose excursion (31%-67% decrease in AUC(0-90 min)) after oral glucose challenge. Alogliptin (30 and 100 mg/kg) had no effect on fasting plasma glucose in normoglycemic rats. In summary, these data suggest that alogliptin is a potent and highly selective DPP-4 inhibitor with demonstrated efficacy in Zucker fa/fa rats and potential for once-daily dosing in humans.

    Topics: Administration, Oral; Animals; Biological Availability; Blood Glucose; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Drug Administration Schedule; Glucagon-Like Peptide 1; Glucose Metabolism Disorders; Humans; Hypoglycemic Agents; Insulin; Insulin Resistance; Macaca fascicularis; Male; Piperidines; Rats; Rats, Sprague-Dawley; Rats, Zucker; Uracil

2008
Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat.
    Circulation. Heart failure, 2008, Volume: 1, Issue:3

    Glucagon-like peptide-1 (GLP-1) treatment leads to short-term improvements in myocardial function in ischemic and nonischemic cardiomyopathy. It is unknown whether GLP-1 improves survival when administered over a longer time period. Spontaneously hypertensive, heart failure-prone (SHHF) rats progress to advanced heart failure and death over a 15-month period. The authors sought to determine whether a continuous infusion of GLP-1 would reduce mortality in this model.. At 9 months of age, 50 SHHF rats were randomized to receive a 3-month, continuous infusion of either GLP-1 or saline. Metabolic parameters were measured and cardiac ultrasounds performed at study initiation and completion of treatment. Surviving rats were euthanized at 12 months. Hearts were perfused in an isolated, isovolumic heart preparation, and Tunel staining of myocardial samples was performed. Baseline metabolic and cardiac functional parameters were comparable. GLP-1-treated SHHF rats had greater survival (72% versus 44%, P=0.008) at 12 months of age. In addition, GLP-1 treatment led to higher plasma insulin, lower plasma triglycerides, and preserved left ventricular (LV) function. GLP-1-treated rats demonstrated decreased myocyte apoptosis by Tunel staining as well as reduced caspase-3 activation. No increase in p-BAD expression was seen. In isolated hearts, the LV systolic pressure and LV-developed pressure were greater in the GLP-1 group. Myocardial glucose uptake was also increased in GLP-1-treated SHHF rats.. Chronic GLP-1 treatment prolongs survival in obese SHHF rats. This is associated with preserved LV function and LV mass index, increased myocardial glucose uptake, and reduced myocyte apoptosis.

    Topics: Animals; Disease Models, Animal; Glucagon-Like Peptide 1; Heart Failure; Incretins; Infusions, Intravenous; Prone Position; Rats; Rats, Inbred SHR; Survival Rate; Systole; Treatment Outcome; Ventricular Function, Left

2008
Influence of sleeve gastrectomy on several experimental models of obesity: metabolic and hormonal implications.
    Obesity surgery, 2008, Volume: 18, Issue:1

    Ghrelin is an important factor in the regulation of intake. Most ghrelin is synthesized in the gastric fundus, but this is not the only location. The aim of this experimental study was to analyze the effect of sleeve gastrectomy (removing fundus) on the volume of intake in four experimental models and determine how this relates to changes in weight, plasmatic levels of glycemia, ghrelin, GLP-1, and insulin.. Sleeve gastrectomy was performed on four experimental models: (1) non-obesity; (2) exogenous obesity caused by excessive calorie intake; (3) genetically determined obesity (Zucker rats); and (4) genetically determined obesity and type 2 diabetes mellitus (Zucker diabetic fatty; ZDF rats). Model 2 had a control group on which sleeve gastrectomy was not performed.. In the non-obese group, there were few changes after intervention, but in model 2, sleeve gastrectomy led to normalization of weight and endocrine-metabolic parameters that were the same as those for non-obese rats. The exception was for GLP-1, which has an anorexigenic effect: GLP-1 remained higher. In Zucker rats, sleeve gastrectomy had a slight effect on all parameters. In ZDF rats, sleeve gastrectomy led to a reduction in intake and a stabilization of weight.. Sleeve gastrectomy is a very good option for exogenous obesity. Normalization of hormonal levels led us to find an extragastric ghrelin production.

    Topics: Animals; Biomarkers; Blood Glucose; Disease Models, Animal; Gastrectomy; Ghrelin; Glucagon-Like Peptide 1; Insulin; Obesity; Rats; Rats, Sprague-Dawley; Rats, Zucker; Weight Loss

2008
Role of central glucagon-like peptide-1 in hypothalamo-pituitary-adrenocortical facilitation following chronic stress.
    Experimental neurology, 2008, Volume: 210, Issue:2

    Central glucagon-like peptide-1 (GLP-1) regulates food intake, glucose homeostasis, and behavioral and neuroendocrine responses to acute stress. Given its pronounced role in acute stress regulation, the GLP-1 system is a prime candidate for mediating the prolonged drive of the hypothalamo-pituitary-adrenocortical axis by chronic stress. To test this hypothesis, we evaluated the necessity and sufficiency of GLP-1 for production of chronic stress-induced changes in HPA axis function. Exogenous GLP-1 or the GLP-1 receptor antagonist, dHG-exendin, were delivered into the 3rd ventricle of control animals or animals exposed to chronic variable stress (CVS) for 7 days. Animals in the CVS groups received GLP-1 or dHG-exendin immediately prior to each stress exposure. Prior to and at the end of the 7-day trial, chronically-stressed animals were subjected to a novel stressor to test for HPA axis facilitation. Neither GLP-1 nor dHG-exendin affected CVS-associated increases in adrenal weight or decreases in basal plasma glucose levels. In addition, neither exogenous GLP-1 nor dHG-exendin altered any index of HPA axis activity in unstressed rats. However, GLP-1 enhanced CVS-induced facilitation of corticosterone (but not ACTH) response to an acute stress, whereas dHG-exendin inhibited facilitation. In addition, GLP-1 decreased body weight in chronically-stressed animals. dHG-exendin increased food intake and body weight in unstressed animals, consistent with a tonic role for GLP-1 in body weight regulation. Overall, our data suggest that brain GLP-1 modulates HPA axis activity within the context of chronic stress, perhaps at the level of the adrenal gland.

    Topics: Adrenocorticotropic Hormone; Analysis of Variance; Animals; Behavior, Animal; Body Weight; Chronic Disease; Corticosterone; Disease Models, Animal; Eating; Glucagon-Like Peptide 1; Glycosaminoglycans; Hypothalamo-Hypophyseal System; Male; Pituitary-Adrenal System; Rats; Rats, Sprague-Dawley; Restraint, Physical; Stress, Psychological

2008
Glucose tolerance, lipids, and GLP-1 secretion in JCR:LA-cp rats fed a high protein fiber diet.
    Obesity (Silver Spring, Md.), 2008, Volume: 16, Issue:1

    We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1).. Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain.. Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined.. Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels.. Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia.

    Topics: Animals; Blood Glucose; Body Weight; Dietary Fiber; Dietary Proteins; Disease Models, Animal; Duodenum; Glucagon-Like Peptide 1; Glucose Tolerance Test; Insulin Resistance; Inulin; Jejunum; Lipids; Male; Obesity; Proglucagon; Rats; Rats, Inbred Strains; RNA, Messenger; Weight Gain

2008
Differential secretion of satiety hormones with progression of obesity in JCR:LA-corpulent rats.
    Obesity (Silver Spring, Md.), 2008, Volume: 16, Issue:4

    To characterize the gastrointestinal tract at the onset and in well-established obesity.. Lean (+/?) and obese (cp/cp) male JCR:LA-cp rats lacking a functional leptin receptor were killed at 3.5 weeks and 9 months of age and plasma concentrations of satiety hormones determined. The small intestine, colon, and stomach were measured, weighed, and mRNA levels of satiety genes quantified.. At the onset of obesity, obese rats had greater intestine, colon, and liver mass when adjusted for body weight compared to lean rats. Conversely, adult rats with established obesity had lower intestine and colon mass and length after adjustment for body weight. Early changes in gene expression included decreased ghrelin mRNA levels in stomach and increased peptide YY (PYY) mRNA levels in duodenum of young obese rats. After massive accumulation of adipose tissue had occurred, adult obese rats had increased proglucagon and ghrelin mRNA expression in the proximal intestine. In the distal small intestine, obese rats had lower proglucagon, ghrelin, and PYY mRNA levels. Finally, at the onset and in well-established obesity, obese rats had higher plasma insulin, amylin, glucagon like peptide-1 (GLP-1), and PYY, a finding, with the exception of insulin, unique to this model. Plasma total ghrelin levels were significantly lower at the onset of obesity and established obesity compared to the lean rats.. Several defects are manifested in the obese gut early on in the disease before the accumulation of large excesses of body fat and represent potential targets for early intervention in obesity.

    Topics: Amyloid; Animals; Body Weight; Colon; Disease Models, Animal; Energy Metabolism; Female; Gastric Mucosa; Gastrointestinal Hormones; Ghrelin; Glucagon-Like Peptide 1; Insulin; Insulin Secretion; Intestine, Small; Islet Amyloid Polypeptide; Liver; Male; Obesity; Peptide YY; Proglucagon; Rats; Rats, Inbred Strains; RNA, Messenger; Satiety Response; Stomach

2008
Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6K pathway.
    Cardiovascular drugs and therapy, 2007, Volume: 21, Issue:4

    Glucagon Like Peptide-1 (GLP-1), one of the most potent incretin hormones, has potential beneficial actions on the ischaemic and failing heart. This study sought to further identify the mechanisms of action of GLP-1 on the ischaemic heart using an in vitro isolated perfused rat heart model of ischaemic-reperfusion injury (measuring infarct size to area of risk (%)) subjected to 35 min regional ischaemia and 2 h reperfusion. To examine the effect of intact GLP-1 we used an inhibitor of GLP-1 breakdown, Valine pyrrolidide (VP). The downstream target of phosphatidylinositol 3-kinase includes the mTOR/p70s6 kinase pathway which was pharmacologically inhibited by rapamycin.. GLP-1 alone did not decrease myocardial infarction (54.4 +/- 3.1%). VP alone did not decrease myocardial infarction (52.5 +/- 4%). GLP-1 in the presence of VP produced significant reduction in myocardial infarction compared to control hearts (28.4 +/- 2.7% vs. 56.4 +/- 3.9% vs. P < 0.05). Inhibiting p70s6 Kinase with rapamycin completely abolished GLP-1 induced protection (57.1 +/- 4.9% vs. 28.4 +/- 2.7% P < 0.05). There was no detectable increase in the phosphorylated p70s6k after either 5 or 10 min of treatment with GLP-1/VP or with VP alone in comparison to control blots. In conclusion we show for the first time that the protective effects of GLP-1 are mediated by intact GLP-1 and can be inhibited by blocking the p70s6 kinase.

    Topics: Animals; Blotting, Western; Disease Models, Animal; Enzyme Inhibitors; Glucagon-Like Peptide 1; In Vitro Techniques; Incretins; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Phosphatidylinositol 3-Kinases; Protein Kinases; Pyrroles; Random Allocation; Rats; Rats, Sprague-Dawley; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; Sirolimus; Time Factors; TOR Serine-Threonine Kinases; Valine

2007
Increase in DPP-IV in the intestine, liver and kidney of the rat treated with high fat diet and streptozotocin.
    Life sciences, 2007, Jul-04, Volume: 81, Issue:4

    High fat diet or insulin deficiency is commonly seen in Type II diabetes, while the mechanism remains unclear. To test our hypothesis that DPP-IV contributes to Type II diabetes, we examined the expression and activity of DPP-IV in rats (n=8 to each group) treated for 12 weeks with 3 separate diets: a) normal control; b) a high fat diet; and c) a high fat diet plus streptozotocin, a chemical for induction of insulin-deficient diabetes. Compared to rats on the normal diet, the rats with a high fat diet significantly increased DPP-IV's expression and activity about 142-152% in the intestine (P<0.05) and 153-240% in kidneys (P<0.05), but there was no change in the liver. Administration of streptozotocin to the rats treated with the high fat diet showed an insufficient insulin secretion and higher blood glucose in response to glucose/insulin tolerance test, and an increase in expression of DPP-IV and activity by 188-242% in the intestine (P<0.01); 191-225% in liver (P<0.01); and 211-321% in the kidneys (P<0.01). Immunohistochemistry studies confirmed the above results, showing increased DPP-IV immunostaining localized primarily in intestinal epithelium, hepatocytes and renal tubular cells. This study, for the first time reports an increase in DPP-IV associated with a high fat diet, as well as in the combination of a high fat diet with an insulin deficiency. Since both high fat diet and insulin deficiency are closely linked with etiology of Type II diabetes, the evidence in this study suggests a role of DPP-IV in development of Type II diabetes.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dietary Fats; Dipeptidyl Peptidase 4; Disease Models, Animal; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Glucagon-Like Peptide 1; Glucose Intolerance; Humans; Immunohistochemistry; Insulin; Intestines; Kidney; Lipids; Liver; Rats; Rats, Sprague-Dawley; RNA, Messenger; Streptozocin

2007
High-level expression of fusion protein containing 10 tandem repeated GLP-1 analogs in yeast Pichia pastoris and its biological activity in a diabetic rat model.
    Bioscience, biotechnology, and biochemistry, 2007, Volume: 71, Issue:6

    Glucagon-like peptide-1 (GLP-1), an incretin secreted by intestinal L-cells, can effectively lower blood glucose levels in patients with diabetes. A fusion gene, consisting of 10 tandem repeated GLP-1 analog genes, was expressed at a high level in the yeast Pichia pastoris. SDS polyacrylamide gel electrophoresis (SDS-PAGE), and Western Blotting results showed that fusion protein migrated as a single protein band with a molecular weight of 36 kDa. A biological activity test showed that the GLP-1 analog could significantly lower the level of serum glucose when GLP-1 purified analog was injected into diabetic rats. A potential strategy for large-scale production of fusion protein containing the 10 GLP-1 analogs as discovered, and a single GLP-1 analog was obtained from fusion protein digested with trypsin. This should be inspired foreign expression of medicinal short peptides and be valuable in further research on GLP-1 analog drugs in the treatment of diabetes mellitus.

    Topics: Animals; Blood Glucose; Cloning, Molecular; Diabetes Mellitus; Disease Models, Animal; Glucagon-Like Peptide 1; Pichia; Rats; Recombinant Fusion Proteins; Tandem Repeat Sequences

2007
The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto-Kakizaki rats.
    American journal of surgery, 2007, Volume: 194, Issue:2

    The antidiabetic effect of bariatric surgery has been interpreted as a conceivable result of surgically induced weight loss and decreased caloric intake. However, glycemic control often occurs within days, before significant weight loss has been reached. The aim of our work was to investigate the hormones that control glycemic status in diabetes mellitus after a duodenal-jejunal exclusion in an animal model of nonobese type 2 diabetes.. Twelve (12- to 14-week-old) rats (Goto-Kakizaki) randomly underwent one of the following procedures: gastrojejunal bypass (group 1, n = 6) or no intervention (controls) (group 2, n = 6). Both groups were fed with the same type and amount of diet. At basal time (preoperative) and after intervention (1 week and 1 month), weight and fasting glycemia were measured. An oral glucose tolerance test (OGTT) was realized at same times. Hormone levels (insulin, glucagons-like peptide 1 [GLP-1], glucose-dependent insulinotropic peptide [GIP], glucagon, and leptin) were measured after 20 minutes of oral glucose overload. Age-matched Goto-Kakizaki rats were used as controls for all variables.. Rats in group 1 and group 2 remained with the same weight during the protocol. The OGTT showed an improvement in glycemic levels in group 1; glucose levels were better at 1 week and 1 month after the surgery in all times of OGTT (basal, 10 minutes, and 120 minutes). Basal glucose levels at time 0 in basal time, at 1 week, and at 1 month were lower in group 1 than group 2. Postoral glucose overload levels of glucagon, insulin, GLP-1, and GIP remained unchanged during the treatment in both groups. In group 1, leptin levels had a significant decrease at 1 week and 1 month after surgery (basal time (6.1 +/- 1.6 ng/mL) versus 1 week (0.9 +/- 0.9 ng/mL) versus 1 month (0.7 +/- 0.6 ng/mL) (P < .05).. Gastrojejunal bypass in a nonobese diabetic model improves glycemic control with a significant decrease in leptin levels, without changes in enteroinsular axis (GLP-1, GIP, glucagons, and insulin levels).

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Bypass; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucose Tolerance Test; Homeostasis; Insulin; Leptin; Male; Rats; Rats, Inbred Strains

2007
Liraglutide, a once-daily human glucagon-like peptide-1 analog, minimizes food intake in severely obese minipigs.
    Obesity (Silver Spring, Md.), 2007, Volume: 15, Issue:7

    To evaluate the efficacy of liraglutide, a new, stable, once-daily human analog of glucagon-like peptide-1, in a new animal model of obesity.. Liraglutide was administered subcutaneously once daily (7 microg/kg for 7 weeks) to six female obese Göttingen minipigs. Food intake and feeding patterns were monitored using a novel automated feeding system that allowed continuous recording of food intake.. Food intake was strongly suppressed. A steady-state level of reduced food intake was achieved within 3 weeks and was maintained for the remaining 4 weeks of the treatment period. During the 4-week steady-state period with liraglutide treatment, daily food intake was 7.3+/-0.3 megajoule (MJ) compared with 18.4+/-0.6 MJ in the pre-treatment period and 19.2+/-0.5 MJ in the post-treatment period (p<0.001). The food intake in the treatment period was equivalent to the amount of food that would have been offered to normal-weight pigs for maintenance. Body weight decreased 4.3+/-1.2 kg (4% to 5%) during the 7 weeks of treatment and increased 7.0+/-1.0 kg during the 7 weeks of post-treatment (p<0.01). Appetite suppression was quickly reversed within 4 days after termination of liraglutide administration.. Overall, liraglutide was well tolerated and had a profound and persistent anorectic effect that resulted in weight loss. These results, in conjunction with the previously established glucose-lowering efficacy of liraglutide, suggest that the anorectic actions of liraglutide will be very important in clinical trials of both obese patients with type 2 diabetes and obese non-diabetic patients.

    Topics: Animals; Appetite Depressants; Body Composition; Body Weight; Disease Models, Animal; Energy Intake; Female; Glucagon-Like Peptide 1; Liraglutide; Obesity; Swine; Swine, Miniature

2007
A model of controlled acute hyperglycemia in rats: Effects of insulin and glucagon-like peptide-1 analog.
    The Journal of pharmacology and experimental therapeutics, 2006, Volume: 316, Issue:3

    A rodent model of controlled acute hyperglycemia that is sensitive to glucose-lowering agents insulin and glucagon-like peptide-1 (GLP-1) analog has been developed. The studies show that anesthesia could be induced in fasted rats with ketamine (100 mg/kg) plus a low dose of xylazine (5 mg/kg) without inducing the acute hyperglycemia typically associated with these agents. Under these conditions, continuous infusion of glucose (10 and 20%) via the jugular vein for 30 to 150 min induced hyperglycemia in a time-dependent fashion. Administration of "loading" boluses of glucose (0.2-0.6 ml of a 20% solution) prior to continuous infusion of 10% glucose produced more immediate and sustained hyperglycemia. Plasma levels of a variety of glucoregulatory and stress hormones such as insulin, growth hormone, glucagon, and corticosterone were determined. Only glucagon levels changed significantly during induction and maintenance of hyperglycemia. The infusion of insulin (0.1 U/kg/h) or GLP-1 analog (10 microg/kg/h) effectively lowered blood glucose from its elevated levels. Insulin produced a significant increase in glucagon levels, and GLP-1 analog produced a significant increase in insulin levels without any change in other glucoregulatory and stress hormone levels. In conclusion, the present studies identified a novel approach for the induction of anesthesia and surgical manipulations without inducing hyperglycemia and further defined an approach for producing acute hyperglycemia in a controlled fashion in rodents. This model will be beneficial to study the influence of hyperglycemia in acute models of critical illness where hyperglycemia develops following the precipitating event. This model was responsive to insulin and GLP-1 analog, both of which were effective in ameliorating hyperglycemia.

    Topics: Acute Disease; Anesthesia; Animals; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glucose; Growth Hormone; Hyperglycemia; Insulin; Male; Rats; Rats, Sprague-Dawley

2006
Effects of an olive oil-enriched diet on glucagon-like peptide 1 release and intestinal content, plasma insulin concentration, glucose tolerance and pancreatic insulin content in an animal model of type 2 diabetes.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2006, Volume: 38, Issue:2

    In the light of a recent study conducted in normal rats, the present investigations were aimed at exploring the immediate and long-term effects of an olive oil-enriched diet (OO diet) on GLP-1 release and intestinal content, plasma insulin concentration, glucose tolerance and pancreatic insulin content in adult rats that had been injected with streptozotocin during the neonatal period (STZ rats). The OO diet, when compared to a standard diet, increased the immediate GLP-1 response in meal-trained rats, but decreased GLP-1 content in the intestinal tract after 50 days. Over 50 days, the body weight gain was lower in the rats fed the OO diet compared to standard diet. In the former, however, no improvement of glucose tolerance or insulin response during an oral glucose tolerance test was observed. Thus, a paradoxical lowering of the insulinogenic index, i. e. the paired ratio between plasma insulin and glucose concentration, was recorded during the oral glucose tolerance test in rats fed either standard or OO diet. Moreover, the insulin content of the pancreas was equally low in the STZ rats fed either standard or OO diet. These findings will be discussed in the framework of possible differences in the pathophysiology of B-cell dysfunction in most patients with type-2 diabetes and the present animal model of non-insulin-dependent diabetes.

    Topics: Animals; Animals, Newborn; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Glucose Tolerance Test; Insulin; Insulin-Secreting Cells; Intestinal Mucosa; Male; Olive Oil; Plant Oils; Rats; Rats, Wistar

2006
Evaluation of the antidiabetic activity of DPP IV resistant N-terminally modified versus mid-chain acylated analogues of glucose-dependent insulinotropic polypeptide.
    Biochemical pharmacology, 2006, Sep-14, Volume: 72, Issue:6

    Glucose dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with therapeutic potential for type 2 diabetes due to its insulin-releasing and antihyperglycaemic actions. However, development of GIP-based therapies is limited by N-terminal degradation by DPP IV resulting in a very short circulating half-life. Numerous GIP analogues have now been generated exhibiting DPP IV resistance and extended bioactivity profiles. In this study, we report a direct comparison of the long-term antidiabetic actions of three such GIP molecules, N-AcGIP, GIP(Lys(37)PAL) and N-AcGIP(Lys(37)PAL) in obese diabetic (ob/ob) mice. An extended duration of action of each GIP analogue was demonstrated prior to examining the effects of once daily injections (25nmolkg(-1) body weight) over a 14-day period. Administration of either N-AcGIP, GIP(Lys(37)PAL) or N-AcGIP(Lys(37)PAL) significantly decreased non-fasting plasma glucose and improved glucose tolerance compared to saline treated controls. All three analogues significantly enhanced glucose and nutrient-induced insulin release, and improved insulin sensitivity. The metabolic and insulin secretory responses to native GIP were also enhanced in 14-day analogue treated mice, revealing no evidence of GIP-receptor desensitization. These effects were accompanied by significantly enhanced pancreatic insulin following N-AcGIP(Lys(37)PAL) and increased islet number and islet size in all three groups. Body weight, food intake and circulating glucagon were unchanged. These data demonstrate the therapeutic potential of once daily injection of enzyme resistant GIP analogues and indicate that N-AcGIP is equally as effective as related palmitate derivatised analogues of GIP.

    Topics: Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose; Homeostasis; Hypoglycemic Agents; Insulin; Mice; Mice, Obese; Pancreas

2006
The essential role of insulin-like growth factor-1 in the intestinal tropic effects of glucagon-like peptide-2 in mice.
    Gastroenterology, 2006, Volume: 131, Issue:2

    Glucagon-like peptide-2 (GLP-2) is an intestinal hormone that acts through unknown pathways to induce intestinal growth. We investigated the role of the insulin-like growth factors (IGF-1 and IGF-2) as mediators of GLP-2-enhanced growth in the murine intestine.. IGF-1 expression and secretion were determined in GLP-2-responsive primary intestinal cultures treated with GLP-2. Parameters of intestinal growth were assessed in wild-type (CD1, Igf1(+/+) and Igf2+), heterozygous (Igf1(+/-)), and null (Igf1(-/-) and Igf2(-P)) mice treated chronically with saline, GLP-2, IGF-1, or R-Spondin1.. GLP-2 increased IGF-1 messenger RNA expression and IGF-1 secretion in intestinal cultures and increased expression of IGF-1 messenger RNA in mouse small intestine in vivo. Igf1(+/+) and Igf2+ mice responded to .1 microg/g(-1) per day(-1) GLP-2 with increased intestinal weights, morphometric parameters, and proliferative indices. In contrast, Igf1(-/-) mice were unresponsive to the same dose of GLP-2, failing to demonstrate changes in intestinal weight, morphometry, or proliferation. However, a significant effect of 1 microg/g(-1) per day(-1) GLP-2 was observed in Igf1(-/-) mice, but only in terms of small intestinal weight when normalized for body weight. Furthermore, Igf2(-P) mice demonstrated a partially impaired response in terms of small intestinal growth. Both Igf1(-/-) and Igf2(-P) mice exhibited normal-enhanced intestinal growth in response to IGF-1 and/or R-Spondin1.. GLP-2 enhances intestinal IGF-1 expression and secretion, and IGF-1 is required for small and large intestinal growth in response to GLP-2. These findings identify IGF-1 as an essential mediator of the intestinotropic actions of GLP-2.

    Topics: Animals; Blotting, Western; Cell Proliferation; Disease Models, Animal; Female; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Glucagon-Like Peptide-2 Receptor; Glucagon-Like Peptides; Immunohistochemistry; In Vitro Techniques; Insulin-Like Growth Factor I; Intestine, Small; Male; Mice; Mice, Knockout; Receptors, Glucagon; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger

2006
Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines.
    The Journal of pharmacology and experimental therapeutics, 2005, Volume: 312, Issue:1

    We have recently demonstrated the benefits of glucagon-like peptide-1 (GLP-1) in enhancing regional and global myocardial function after reperfusion in the clinical setting of acute myocardial infarction. We hypothesized that GLP-1 facilitates recovery from myocardial stunning after an ischemic event. To investigate this, we administered GLP-1 (1.5 pmol/kg/min) to six dogs undergoing 10-min occlusion of the left circumflex coronary artery, followed by 24-h reperfusion. We compared the responses of coronary blood flow and regional thickening of the posterior wall with a group of eight vehicle-treated dogs undergoing the same occlusion-reperfusion protocol. Although recovery of coronary blood flow was identical, regional wall motion recovery occurred significantly ((*)p < 0.05) earlier (92 +/- 4 versus 57 +/- 5%(*) at 15 min) and was complete in the GLP-1-treated dogs, whereas residual contractile dysfunction persisted in the control group (99 +/- 4 versus 78 +/- 3%(*) at 24 h). This phenomenon was independent of changes in systemic hemodynamics or global systolic function. However, isovolumic left ventricular relaxation improved significantly in GLP-1-treated dogs. GLP-1 caused an insulinotropic effect, but no hypoglycemia. We conclude that GLP-1 enhances recovery from ischemic myocardial stunning after successful reperfusion.

    Topics: Animals; Coronary Circulation; Disease Models, Animal; Dogs; Glucagon; Glucagon-Like Peptide 1; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardial Stunning; Peptide Fragments; Protein Precursors

2005
Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury.
    Diabetes, 2005, Volume: 54, Issue:1

    Glucagon-like peptide 1 (GLP-1), a gut incretin hormone that stimulates insulin secretion, also activates antiapoptotic signaling pathways such as phosphoinositide 3-kinase and mitogen-activated protein kinase in pancreatic and insulinoma cells. Since these kinases have been shown to protect against myocardial injury, we hypothesized that GLP-1 could directly protect the heart against such injury via these prosurvival signaling pathways. Both isolated perfused rat heart and whole animal models of ischemia/reperfusion were used, with infarct size measured as the end point of injury. In both studies, GLP-1 added before ischemia demonstrated a significant reduction in infarction compared with the valine pyrrolidide (an inhibitor of its breakdown) or saline groups. This protection was abolished in the in vitro hearts by the GLP-1 receptor antagonist exendin (9-39), the cAMP inhibitor Rp-cAMP, the PI3kinase inhibitor LY294002, and the p42/44 mitogen-activated protein kinase inhibitor UO126. Western blot analysis demonstrated the phosphorylation of the proapoptotic peptide BAD in the GLP-1-treated groups. We show for the first time that GLP-1 protects against myocardial infarction in the isolated and intact rat heart. This protection appears to involve activating multiple prosurvival kinases. This finding may represent a new therapeutic potential for this class of drug currently undergoing clinical trials in the treatment of type 2 diabetes.

    Topics: Animals; Blood Pressure; Butadienes; Chromones; Disease Models, Animal; Enzyme Inhibitors; Glucagon; Glucagon-Like Peptide 1; Heart Rate; In Vitro Techniques; Insulin; Insulin Secretion; Male; MAP Kinase Signaling System; Morpholines; Myocardial Infarction; Myocardial Reperfusion Injury; Nitriles; Peptide Fragments; Phosphoinositide-3 Kinase Inhibitors; Protein Precursors; Rats; Rats, Sprague-Dawley; Time Factors

2005
Effects of centrally injected GLP-1 in various experimental models of gastric mucosal damage.
    Peptides, 2004, Volume: 25, Issue:7

    Glucagon-like peptide-1 (GLP-1) is accepted to be a peptide involved in the central regulation of gastrointestinal function, but its potential gastroprotective effect is not clear. The aim of this study was to investigate whether intracerebroventricularly injected GLP-1 has protective effects on gastric mucosal lesions induced by several models, and if yes, whether these effects are due to the gastric antisecretory effect of the peptide. GLP-1 which was injected in three different doses (1, 10, 100 ng/10 microl; i.c.v.) to conscious rats prevented the mucosal lesions induced by reserpine and ethanol, but did not prevent the gastric mucosal lesions induced by pyloric ligation. In addition, 1 ng/10 microl dose of centrally injected GLP-1 inhibited gastric acid secretion in pylorus-ligated rats. As a result, we conclude that intracerebroventricularly injected GLP-1 may play a role in the prevention of gastric mucosal lesions induced by certain experimental models and this gastroprotective effect may be independent from its antisecretory effect.

    Topics: Animals; Disease Models, Animal; Female; Gastric Acidity Determination; Gastric Mucosa; Glucagon; Glucagon-Like Peptide 1; Hydrogen-Ion Concentration; Injections; Peptide Fragments; Protein Precursors; Rats; Rats, Sprague-Dawley; Stomach Ulcer

2004
Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease.
    Annals of surgery, 2004, Volume: 240, Issue:2

    Topics: Anastomosis, Surgical; Animals; Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Disease Models, Animal; Duodenum; Female; Follow-Up Studies; Gastric Bypass; Glucagon; Glucagon-Like Peptide 1; Jejunum; Male; Peptide Fragments; Protein Precursors; Rats; Rats, Inbred Strains

2004
Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy.
    Circulation, 2004, Aug-24, Volume: 110, Issue:8

    The failing heart demonstrates a preference for glucose as its metabolic substrate. Whether enhancing myocardial glucose uptake favorably influences left ventricular (LV) contractile performance in heart failure remains uncertain. Glucagon-like peptide-1 (GLP-1) is a naturally occurring incretin with potent insulinotropic effects the action of which is attenuated when glucose levels fall below 4 mmol. We examined the impact of recombinant GLP-1 (rGLP-1) on LV and systemic hemodynamics and myocardial substrate uptake in conscious dogs with advanced dilated cardiomyopathy (DCM) as a mechanism for overcoming myocardial insulin resistance and enhancing myocardial glucose uptake.. Thirty-five dogs were instrumented and studied in the fully conscious state. Advanced DCM was induced by 28 days of rapid pacing. Sixteen dogs with advanced DCM received a 48-hour infusion of rGLP-1 (1.5 pmol x kg(-1) x min(-1)). Eight dogs with DCM served as controls and received 48 hours of a saline infusion (3 mL/d). Infusion of rGLP-1 was associated with significant (P<0.02) increases in LV dP/dt (98%), stroke volume (102%), and cardiac output (57%) and significant decreases in LV end-diastolic pressure, heart rate, and systemic vascular resistance. rGLP-1 increased myocardial insulin sensitivity and myocardial glucose uptake. There were no significant changes in the saline control group.. rGLP-1 dramatically improved LV and systemic hemodynamics in conscious dogs with advanced DCM induced by rapid pacing. rGLP-1 has insulinomimetic and glucagonostatic properties, with resultant increases in myocardial glucose uptake. rGLP-1 may be a useful metabolic adjuvant in decompensated heart failure.

    Topics: Animals; Blood Glucose; Cardiac Pacing, Artificial; Cardiomyopathy, Dilated; Consciousness; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Energy Metabolism; Fatty Acids; Female; Glucagon; Glucagon-Like Peptide 1; Glucose; Glucose Clamp Technique; Heart Failure; Hemodynamics; Hyperinsulinism; Infusions, Intravenous; Insulin Resistance; Male; Myocardium; Oxygen Consumption; Peptide Fragments; Protein Precursors; Recombinant Proteins; Ventricular Dysfunction, Left

2004
Reduction of beta cell mass: partial insulin secretory compensation from the residual beta cell population in the nicotinamide-streptozotocin Göttingen minipig after oral glucose in vivo and in the perfused pancreas.
    Diabetologia, 2004, Volume: 47, Issue:11

    A progressive loss of beta cell function and mass are important contributory factors in the development and progression of type 2 diabetes. The aim of this study was to evaluate the effects of a primary reduction in beta cell mass on beta cell function in vivo and in the perfused pancreas and to relate these characteristics to beta cell mass.. The beta cell mass of six Göttingen minipigs was reduced chemically (using 67 mg/kg nicotinamide and 125 mg/kg streptozotocin). Six untreated minipigs were kept as control animals. Insulin responses were evaluated in vivo using the mixed meal tolerance test (2 g/kg oral glucose) and in the isolated perfused pancreata from the same animals by stimulation with glucose, glucagon-like peptide-1 or arginine.. Beta cell mass was reduced in the beta-cell-reduced animals compared with the control minipigs (182+/-76 vs 464+/-156 mg, p<0.01). AUC(glucose) was increased in the beta-cell-reduced animals (1383+/-385 vs 853+/-113 mmol.l(-1).min in control minipigs, p<0.01), as was the insulin response to oral glucose per unit of beta cell mass (123+/-84 vs 56+/-24 pmol.l(-1).min.mg(-1), p<0.05). Total in vitro insulin secretion was increased per unit of beta cell mass in nicotinamide + streptozotocin pancreata compared to controls (83.7+/-45.9 vs 34.6+/-14.4 nmol/mg beta cells, p<0.05) with responses to glucose and glucagon-like peptide-1 showing a partial compensation for reduced beta cell mass, whereas no compensation was seen in response to arginine.. A primary reduction in beta cell mass impairs glucose tolerance and leads to a compensatory increase in insulin secretion from the remaining beta cells after oral glucose in vivo, which is even more apparent in the perfused pancreas. It remains to be determined whether this compensation can be maintained in the long term.

    Topics: Animals; Area Under Curve; Blood Glucose; Diabetes Mellitus, Experimental; Disease Models, Animal; Dose-Response Relationship, Drug; Fasting; Glucagon; Glucagon-Like Peptide 1; Glucose; Insulin; Insulin Secretion; Islets of Langerhans; Kinetics; Male; Niacinamide; Pancreas; Peptide Fragments; Perfusion; Protein Precursors; Reference Values; Swine; Swine, Miniature

2004
Glucagon-like peptide 1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/db mice.
    The Journal of pharmacology and experimental therapeutics, 2003, Volume: 307, Issue:2

    We characterized the novel, rationally designed peptide glucagon-like peptide 1 (GLP-1) receptor agonist H-HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPSK KKKKK-NH2 (ZP10A). Receptor binding studies demonstrated that the affinity of ZP10A for the human GLP-1 receptor was 4-fold greater than the affinity of GLP-1 (7-36) amide. ZP10A demonstrated dose-dependent improvement of glucose tolerance with an ED50 value of 0.02 nmol/kg i.p. in an oral glucose tolerance test (OGTT) in diabetic db/db mice. After 42 days of treatment, ZP10A dose-dependently (0, 1, 10, or 100 nmol/kg b.i.d.; n = 10/group), decreased glycosylated hemoglobin (HbA1C) from 8.4 +/- 0.4% (vehicle) to a minimum of 6.2 +/- 0.3% (100 nmol/kg b.i.d.; p < 0.05 versus vehicle) in db/db mice. Fasting blood glucose (FBG), glucose tolerance after an OGTT, and HbA1C levels were significantly improved in mice treated with ZP10A for 90 days compared with vehicle-treated controls. Interestingly, these effects were preserved 40 days after drug cessation in db/db mice treated with ZP10A only during the first 50 days of the study. Real-time polymerase chain reaction measurements demonstrated that the antidiabetic effect of early therapy with ZP10A was associated with an increased pancreatic insulin mRNA expression relative to vehicle-treated mice. In conclusion, long-term treatment of diabetic db/db mice with ZP10A resulted in a dose-dependent improvement of FBG, glucose tolerance, and blood glucose control. Our data suggest that ZP10A preserves beta-cell function. ZP10A is considered one of the most promising new drug candidates for preventive and therapeutic intervention in type 2 diabetes.

    Topics: Animals; Blood Glucose; Carrier Proteins; Diabetes Mellitus; Disease Models, Animal; Disease Progression; Dose-Response Relationship, Drug; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose Tolerance Test; Humans; Hypoglycemic Agents; Insulin; Mice; Mice, Inbred C57BL; Peptide Fragments; Peptides; Protein Precursors; Receptors, Glucagon; RNA, Messenger

2003
Somatostatin inhibits glucagon-like peptide-1-induced insulin secretion and proliferation of RINm5F insulinoma cells.
    Regulatory peptides, 2002, Oct-15, Volume: 108, Issue:2-3

    Glucagon-like peptide-1 [GLP-1; formerly GLP-1(7-36)amide] and somatostatin (SS) are two postprandially or paracrine released peptide hormones that regulate insulin secretion from pancreatic islets. Using the rat insulinoma cell line RINm5F as a model, we investigated the effects of both peptides alone and in combination on insulin release, proliferation, and intracellular signal transduction. In addition, we determined the SS receptor subtypes expressed and involved by reverse transcription-polymerase chain reaction and use of selective SS agonists. GLP-1 stimulated insulin release, cell proliferation, intracellular cAMP accumulation and activation of the transcription factor cAMP-response element binding protein (CREB) which all could be reduced to basal values by co-incubation with SS. Incubation with SS alone did not affect basal levels. RINm5F cells express the somatostatin receptor (sst) subtypes sst1 and sst2 as well as traces of sst3. In accordance, the sst1- or sst2-selective non-peptide agonists L-797591 or L-054522 and peptide agonist octreotide (SMS 201995; sst2, sst3, and sst5 selective) potently inhibited GLP-1-induced insulin secretion whereas the sst3-selective agonist L-796778 showed little effect. Moreover, the sst1- and sst2-selective agonists slightly reduced also basal insulin release. The experiments show that GLP-1 and SS are perfect opponents for regulating pancreatic beta-cell insulin secretion.

    Topics: Animals; Cell Division; Cyclic AMP; Cyclic AMP Response Element-Binding Protein; Disease Models, Animal; Drug Interactions; Glucagon; Glucagon-Like Peptide 1; Insulin; Insulin Secretion; Insulinoma; Pancreatic Neoplasms; Peptide Fragments; Protein Precursors; Rats; Somatostatin; Transcription Factors; Tumor Cells, Cultured

2002
Evaluation of glycated glucagon-like peptide-1(7-36)amide in intestinal tissue of normal and diabetic animal models.
    Biochimica et biophysica acta, 2002, Jan-15, Volume: 1569, Issue:1-3

    Glucagon-like peptide-1(7-36)amide (tGLP-1) is an important insulin-releasing hormone of the enteroinsular axis which is secreted by endocrine L-cells of the small intestine following nutrient ingestion. The present study has evaluated tGLP-1 in the intestines of normal and diabetic animal models and estimated the proportion present in glycated form. Total immunoreactive tGLP-1 levels in the intestines of hyperglycaemic hydrocortisone-treated rats, streptozotocin-treated mice and ob/ob mice were similar to age-matched controls. Affinity chromatographic separation of glycated and non-glycated proteins in intestinal extracts followed by radioimmunoassay using a fully cross-reacting anti-serum demonstrated the presence of glycated tGLP-1 within the intestinal extracts of all control animals (approximately 19% of total tGLP-1 content). Chemically induced and spontaneous animal models of diabetes were found to possess significantly greater levels of glycated tGLP-1 than controls, corresponding to between 24--71% of the total content. These observations suggest that glycated tGLP-1 may be of physiological significance given that such N-terminal modification confers resistance to DPP IV inactivation and degradation, extending the very short half-life (<3 min) and bioactivity of the native peptide.

    Topics: Animals; Blood Glucose; Body Weight; Diabetes Mellitus, Experimental; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glycosylation; Hydrocortisone; Intestine, Small; Mice; Mice, Obese; Organ Size; Peptide Fragments; Rats

2002
Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4.
    Diabetes, 2002, Volume: 51, Issue:5

    In the Goto-Kakizaki (GK) rat, a genetic model of type 2 diabetes, the neonatal beta-cell mass deficit is considered to be the primary defect leading to basal hyperglycemia, which is detectable for the first time 3 weeks after birth. We investigated in GK females the short- and the long-term effects of a treatment with glucagon-like peptide-1 (GLP-1) or its long-acting analog exendin-4 (Ex-4) during the first postnatal week (during the prediabetic period). GK rats were treated with daily injections of glucagon-like peptide-1 (400 microg x kg(-1) x day(-1)) or Ex-4 (3 microg x kg(-1) x day(-1)) from day 2 to day 6 after birth and were evaluated against Wistar and untreated GK rats. Under these conditions, on day 7 both treatments enhanced pancreatic insulin content and total beta-cell mass by stimulating beta-cell neogenesis and regeneration. Follow-up of biological characteristics from day 7 to adult age (2 months) showed that such a GLP-1 or Ex-4 treatment exerted long-term favorable influences on beta-cell mass and glycemic control at adult age. As compared to untreated GK rats, 2-month-old treated rats exhibited significantly decreased basal plasma glucose. Their glucose-stimulated insulin secretion, in vivo after intravenous glucose load or in vitro using isolated perfused pancreas, was slightly improved. This contributed at least partly to improve the in vivo plasma glucose disappearance rate, which was found to be increased in both treated GK groups compared to the untreated GK group. These findings in the GK model indicated, for the first time, that GLP-1 or Ex-4 treatment limited to the prediabetic period delays the installation and limits the severity of type 2 diabetes. Under these conditions, GLP-1 represents a unique tool because of its beta-cell replenishing effect in spontaneously diabetic rodents. It may prove to be an invaluable agent for the prevention of human type 2 diabetes.

    Topics: Age Factors; Animals; Animals, Newborn; Blood Glucose; Body Weight; Cell Division; Diabetes Mellitus, Type 2; Disease Models, Animal; Exenatide; Female; Glucagon; Glucagon-Like Peptide 1; Insulin; Insulin Secretion; Islets of Langerhans; Longitudinal Studies; Peptide Fragments; Peptides; Protein Precursors; Rats; Rats, Mutant Strains; Rats, Wistar; Venoms

2002
Defective stimulus-secretion coupling in islets of Psammomys obesus, an animal model for type 2 diabetes.
    Diabetes, 2001, Volume: 50, Issue:2

    Psammomys obesus is a model of type 2 diabetes that displays resistance to insulin and deranged beta-cell response to glucose. We examined the major signaling pathways for insulin release in P. obesus islets. Islets from hyperglycemic animals utilized twice as much glucose as islets from normoglycemic diabetes-prone or diabetes-resistant controls but exhibited similar rates of glucose oxidation. Fractional oxidation of glucose was constant in control islets over a range of concentrations, whereas islets from hyperglycemic P. obesus showed a decline at high glucose. The mitochondrial substrates alpha-ketoisocaproate and monomethyl succinate had no effect on insulin secretion in P. obesus islets. Basal insulin release in islets from diabetes-resistant P. obesus was unaffected by glucagon-like peptide 1 (GLP-1) or forskolin, whereas that of islets of the diabetic line was augmented by the drugs. GLP-1 and forskolin potentiated the insulin response to maximal (11.1 mmol/l) glucose in islets from all groups. The phorbol ester phorbol myristic acid (PMA) potentiated basal insulin release in islets from prediabetic animals, but not those from hyperglycemic or diabetes-resistant P. obesus. At the maximal stimulatory glucose concentration, PMA potentiated insulin response in islets from normoglycemic prediabetic and diabetes-resistant P. obesus but had no effect on islets from hyperglycemic P. obesus. Maintenance of islets from hyperglycemic P. obesus for 18 h in low (3.3 mmol/l) glucose in the presence of diazoxide (375 pmol/l) dramatically improved the insulin response to glucose and restored the responsiveness to PMA. Immunohistochemical analysis indicated that hyperglycemia was associated with reduced expression of alpha-protein kinase C (PKC) and diminished translocation of lambda-PKC. In summary, we found that 1) P. obesus islets have low oxidative capacity, probably resulting in limited ability to generate ATP to initiate and drive the insulin secretion; 2) insulin response potentiated by cyclic AMP-dependent protein kinase is intact in P. obesus islets, and increased sensitivity to GLP-1 or forskolin in the diabetic line may be secondary to increased sensitivity to glucose; and 3) islets of hyperglycemic P. obesus display reduced expression of alpha-PKC and diminished translocation of lambda-PKC associated with impaired response to PMA. We conclude that low beta-cell oxidative capacity coupled with impaired PKC-dependent signaling may contribute to the ani

    Topics: Animals; Colforsin; Diabetes Mellitus, Type 2; Diazoxide; Disease Models, Animal; Disease Susceptibility; Gerbillinae; Glucagon; Glucagon-Like Peptide 1; Glucose; Hyperglycemia; In Vitro Techniques; Insulin; Insulin Secretion; Islets of Langerhans; Isoenzymes; Oxidation-Reduction; Peptide Fragments; Protein Kinase C; Protein Precursors; Rats; Rats, Sprague-Dawley; Reference Values; Signal Transduction; Tetradecanoylphorbol Acetate

2001
GLP-1 effect upon the GPI/IPG system in adipocytes and hepatocytes from diabetic rats.
    Diabetes, nutrition & metabolism, 2001, Volume: 14, Issue:5

    GLP-1 (glucagon-like peptide 1), proposed as a possible tool for Type 2 diabetes therapy, has insulin-like effects upon glucose metabolism in extrapancreatic tissues, whose plasma membranes contain specific receptors for the peptide, being those, at least in liver and muscle, not associated to the adenylate cyclase/cAMP system. GLP-1, as insulin, modulates the content of glycosylphosphatidylinositols (GPIs)--precursors of inositolphosphoglycans (IPGs), considered mediators of insulin action--in several extrapancreatic cell lines and in normal rat hepatocytes and adipocytes. In the present paper, we document that in a streptozotocin-induced Type 2 diabetic rat model, GLP-1, as insulin, provokes a rapid decrease of the [myo-3H-inositol]GPI content in isolated adipocytes--indicative of its hydrolysis and immediate short-lived generation of IPG--as that previously observed in normal animals; in hepatocytes, GLP-1, but not insulin, induced a reduction in the cellular GPI, although delayed in relation to normal rats. In adipocytes from streptozotocin-induced Type 1 diabetic rats, GLP-1, as insulin, seems to induce a reduction in the cellular GPI content, which was smaller and occurred later than that provoked in the Type 2 diabetic model; in the hepatocytes, GLP-1 and insulin failed to affect the control GPI content at any time tested. In Type 2 diabetic rat, the hepatocyte retains its response capability to GLP-1, but not to insulin, suggesting that the peptide could be bypassing possible defective steps in the insulin signaling pathway in the liver of this diabetic model.

    Topics: Adipocytes; Animals; Blood Glucose; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glycosylphosphatidylinositols; Hepatocytes; Hypoglycemic Agents; Inositol Phosphates; Insulin; Liver; Male; Oligosaccharides; Pancreas; Peptide Fragments; Polysaccharides; Protein Precursors; Rats; Rats, Wistar

2001
Impaired neural regulation of insulin secretion related to the leptin receptor gene mutation in Wistar fatty rats.
    Physiology & behavior, 2000, Sep-15, Volume: 70, Issue:5

    The Wistar fatty (WF) rat is a model of obese Type 2 diabetes mellitus (DM). These rats were bred by crossing Zucker fatty (ZF) and Wistar-Kyoto (WKY) rats. A homo-allelic leptin receptor gene mutation has been reported in ZF rats. We report here how these genetic factors contribute to plasma insulin regulation. The fasting plasma insulin levels were higher in WKY and Wistar lean (WL) rats than in Zucker lean (ZL) rats (p<0.05). The levels in WF and ZF rats were higher than in their respective lean littermates, WL and ZL rats (p<0.05). After intragastric glucose load, the plasma insulin increase was reduced upon pretreatment by intracerebroventricular (i. c.v.) methylatropine (an antagonist of the cholinergic receptor) injection in WL rats (p<0.05) but not in WF rats. Plasma glucagon-like peptide-1 (GLP-1) response to intragastric glucose load was not affected by methylatropine. After selective hepatic-vagotomy, plasma insulin levels increased in wild-type ZL rats (p<0.05). This increase was not observed in heterozygote ZL rats. Surprisingly, this response of plasma insulin was not shown in wild-type WL and WKY rats. ZF and WF rats did show a prominent decrease in insulin response (p<0.05). These results indicate that the genetic factor in ZF rats is associated with impaired vagal nerve-mediated control of insulin secretion. The genetic factor in WKY rats may diminish sensitivity to the vagal information of insulin release and contribute to insulin resistance. Therefore, we conclude that the presence of both genetic factors in a homo-allelic state is important to the development of DM in WF rats.

    Topics: Animals; Atropine Derivatives; Blood Glucose; Carrier Proteins; Crosses, Genetic; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon; Glucagon-Like Peptide 1; Glucose Tolerance Test; Injections, Intraventricular; Insulin; Insulin Resistance; Insulin Secretion; Mutation; Obesity; Peptide Fragments; Protein Precursors; Rats; Rats, Inbred WKY; Rats, Zucker; Receptors, Cell Surface; Receptors, Leptin; Vagotomy; Vagus Nerve

2000
Incretin hormone expression in the gut of diabetic mice and rats.
    Metabolism: clinical and experimental, 1997, Volume: 46, Issue:3

    To elucidate the question of whether production of the insulinotropic gut hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) is altered by a diabetic metabolic state, their intestinal expression pattern was evaluated. Two rodent models for diabetes mellitus were used, non-obese diabetic (NOD) mice as a model for insulin-dependent diabetes and Zucker diabetic fatty (ZDF) rats for non-insulin-dependent diabetes mellitus (NIDDM). Expression of both incretin hormones followed typical patterns, which were similar in both animals and unaltered by the diabetic state. The GIP gene was greatly expressed in the duodenum, jejunum, and ileum, with a continuous decrease from the upper to lower intestines. This pattern was observed in both NOD mice and ZDF rats regardless of the diabetic state. This expression data was corroborated by radioimmunoassay (RIA) analysis of the gene product GIP. Expression of the proglucagon gene encoding GLP-1 had an opposite appearance. The highest expression was seen in the large bowel and the ileum. RIA analysis of the gene product GLP-1 mirrored these data. Although the distribution pattern was similar in both animal models, in contrast to diabetic NOD mice, a regulated expression was found in diabetic ZDF rats. Compared with lean nondiabetic controls, fatty hyperglycemic animals showed an increased expression of the proglucagon gene in the colon and a concomitant reduction in the small intestine. This was mirrored by the GLP-1 content of the colon and ileum. Overall, basal GLP-1 plasma levels were increased in ZDF rats (17.0 +/- 2.8 pmol) compared with lean Zucker rats (12.4 +/- 1.8 pmol). In conclusion, incretin hormone expression (GIP and GLP-1) follows specific patterns throughout the gut and is unaltered by the diabetic state. In ZDF rats, regulation of proglucagon expression occurs mainly in the large intestine.

    Topics: Animals; Blotting, Northern; Colon; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Inhibitory Polypeptide; Gene Expression; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Intestinal Mucosa; Intestine, Small; Intestines; Mice; Mice, Inbred NOD; Peptide Fragments; Proglucagon; Protein Precursors; Rats; Rats, Zucker; Rectum; RNA, Messenger; Tissue Distribution

1997