glucagon-like-peptide-1 has been researched along with Diarrhea* in 24 studies
5 review(s) available for glucagon-like-peptide-1 and Diarrhea
Article | Year |
---|---|
A systematic review of the safety of tirzepatide-a new dual GLP1 and GIP agonist - is its safety profile acceptable?
Tirzepatide is a novel dual glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 receptor agonist (GLP-1 RA). At present, there is no controversy over its effectiveness, but its safety. We conducted a systematic review to assess the safety of tirzepatide.. We searched PubMed, Embase and Cochrane databases for randomized controlled trials (RCTs) of tirzepatide from databases inception to August 28, 2022 and used the Cochrane Systematic Assessment Manual Risk of Bias Assessment Tool (version 5.1) and modified Jadad scale to assess risk of bias. The systematic review was conducted. Nine RCTs with a total of 9818 patients were included. The overall safety profile of tirzepatide is similar to GLP-1RAs, except for the hypoglycemia (tirzepatide 15mg, pooled RR=3.83, 95% CI [1.19- 12.30],. The safety profile of tirzepatide is generally acceptable, similar to GLP-1 RAs. It is necessary to pay attention to its specific adverse events (hypoglycemia and discontinuation) at high doses (10mg or higher). Nausea, vomiting, diarrhea, discontinuation and injection-site reaction were dose-dependence among specific dose ranges.As the heterogeneity in different studies by interventions, the results may be with biases and the further confirmation is needed. Meanwhile, more well-designed trials are needed to control the confounding factors and ensure adequate sample size. Topics: Diabetes Mellitus, Type 2; Diarrhea; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Humans; Hypoglycemia; Hypoglycemic Agents; Nausea; Vomiting | 2023 |
Gastrointestinal adverse events of tirzepatide in the treatment of type 2 diabetes mellitus: A meta-analysis and trials sequential analysis.
Tirzepatide (TZP) is a novel drug for type 2 diabetes mellitus (T2DM), but the gastrointestinal (GI) adverse events (AEs) is a limiting factor in clinical application. Therefore, this study systematically evaluated the GI AEs of TZP for T2DM.. Clinical trials of TZP for T2DM were retrieved from eight databases published only from the establishment of the database to February 2023. Revman5.3 and TSA0.9.5.10 Beta were used for meta-analysis and trials sequential analysis (TSA).. Meta-analysis showed that compared with placebo, total GI AEs, nausea, decreased appetite, constipation and vomiting were significantly higher in all dose groups of TZP (P < .05), while abdominal pain and abdominal distension were comparable (P > .05). TSA showed that the differences in total GI AEs, nausea, decreased appetite and constipation were conclusive. Compared with insulin, nausea, diarrhea, vomiting and decreased appetite were significantly increased in all doses of TZP (P < .05), and dyspepsia was significantly increased with TZP 15 mg (P < .05). TSA showed that these differences were all conclusive. Compared with GLP-1 RA, decreased appetite was significantly higher with TZP 5 mg, total GI AEs, decreased appetite and diarrhea were significantly higher with TZP 10 mg (P < .05), while nausea, vomiting, dyspepsia and constipation were significantly different in all dose groups, abdominal pain were not significantly different (P < .05) and TSA showed no conclusive results in this group.. The GI AEs of TZP were significantly higher than those of placebo and insulin, but comparable to GLP-1 RA. Nausea, diarrhea and decreased appetite are very common GI AEs of TZP, and the incidence is positively correlated with dose. GI AEs of TZP decrease gradually over time, so long-term steady medication may be expected to reduce GI AEs. Topics: Abdominal Pain; Clinical Trials as Topic; Constipation; Diabetes Mellitus, Type 2; Diarrhea; Dyspepsia; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Insulins; Nausea; Vomiting | 2023 |
Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis.
Tirzepatide is a novel dual glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 receptor agonist (GLP-1 RA) currently under review for marketing approval. Individual trials have assessed the clinical profile of tirzepatide vs different comparators. We conducted a systematic review and meta-analysis to assess the efficacy and safety of tirzepatide for type 2 diabetes.. A dose-dependent superiority on glycaemic efficacy and body weight reduction was evident with tirzepatide vs placebo, GLP-1 RAs and basal insulin. Tirzepatide did not increase the odds of hypoglycaemia but was associated with increased incidence of gastrointestinal adverse events. Study limitations include presence of statistical heterogeneity in the meta-analyses for change in HbA Topics: Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Diarrhea; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glycated Hemoglobin; Humans; Hypoglycemia; Hypoglycemic Agents; Insulins; Treatment Outcome | 2022 |
Gastrointestinal adverse events of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a systematic review and network meta-analysis.
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a new class of drugs used in the treatment of type 2 diabetes mellitus (T2DM). Gastrointestinal (GI) adverse events (AEs) are the most frequently reported treatment-related AEs for GLP-1 RAs. We aim to evaluate the effect of GLP-1 RAs on the incidence of GI AEs of T2DM.. The overview of the GI events of GLP-1 RAs has been performed on relevant publications through the literature search, such as MEDLINE, EMBASE, Cochrane Library, and ClinicalTrials.gov The manufacturer was contacted regarding unpublished data. We analyzed direct and indirect comparisons of different treatments using Bayesian network meta-analysis.. Taspoglutide 30 mg once weekly (TAS30QW) and lixisenatide 30 μg twice daily (LIX30BID) were ranked the top two drugs in terms of GI AEs versus placebo. The odds ratios of nausea and vomiting for TAS30QW were 11.8 (95% confidence interval [CI], 2.89, 46.9) and 51.7 (95% CI, 7.07, 415), respectively, and that of diarrhea was 4.93 (95% CI, 1.75, 14.7) for LIX30BID.. Our study found all GLP-1 RA dose regimens significantly increased the incidence of GI AEs, compared with placebo or conventional treatment. The occurrence of GI AEs was different with diverse dose regimens of GLP-1 RAs. TAS30QW had the maximum probability to occur nausea and vomiting, whereas LIX30BID had the maximum probability to cause development of diarrhea versus other treatments. Topics: Diabetes Mellitus, Type 2; Diarrhea; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Middle Aged; Nausea; Peptides; Receptors, Glucagon; Vomiting | 2015 |
Impact of GLP-1 receptor agonists on major gastrointestinal disorders for type 2 diabetes mellitus: a mixed treatment comparison meta-analysis.
We aimed to integrate evidence from all randomized controlled trials (RCTs) and assess the impact of different doses of exenatide or liraglutide on major gastrointestinal adverse events (GIAEs) in type 2 diabetes (T2DM).. RCTs evaluating different doses of exenatide and liraglutide against placebo or an active comparator with treatment duration ≥4 weeks were searched and reviewed. A total of 35, 32 and 28 RCTs met the selection criteria evaluated for nausea, vomiting, and diarrhea, respectively. Pairwise random-effects meta-analyses and mixed treatment comparisons (MTC) of all RCTs were performed.. All GLP-1 dose groups significantly increased the probability of nausea, vomiting and diarrhea relative to placebo and conventional treatment. MTC meta-analysis showed that there was 99.2% and 85.0% probability, respectively, that people with exenatide 10 μg twice daily (EX10BID) was more vulnerable to nausea and vomiting than those with other treatments. There was a 78.90% probability that liraglutide 1.2 mg once daily (LIR1.2) has a higher risk of diarrhea than other groups. A dose-dependent relationship of exenatide and liraglutide on GIAEs was observed.. Our MTC meta-analysis suggests that patients should be warned about these GIAEs in early stage of treatment by GLP-1s, especially by EX10BID and LIR1.2, to promote treatment compliance. Topics: Diabetes Mellitus, Type 2; Diarrhea; Dose-Response Relationship, Drug; Drug Administration Schedule; Exenatide; Female; Gastrointestinal Diseases; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Liraglutide; Male; Middle Aged; Nausea; Odds Ratio; Peptides; Randomized Controlled Trials as Topic; Receptors, Glucagon; Risk Assessment; Risk Factors; Time Factors; Venoms; Vomiting | 2012 |
7 trial(s) available for glucagon-like-peptide-1 and Diarrhea
Article | Year |
---|---|
Pain relief and pain intensity response to GLP-1 receptor agonist ROSE-010 in irritable bowel syndrome; clinical study cross-analysis with respect to patient characteristics.
Glucagon-like peptide-1 receptor agonist ROSE-010 has been studied for management of irritable bowel syndrome (IBS). ROSE-010 showed promising effects by reducing pain during attacks of IBS. In this exploratory substudy, we cross-analyzed earlier data to identify the most suitable subpopulation for treatment with ROSE-010.. Data comprising 166 participants (116 females, 50 males) treated by subcutaneous injection with ROSE-010 at 100 µg and 300 µg versus placebo were broken down into subpopulations with recall of historical pain intensity, pain intensity immediately before treatment, gender, age, BMI, IBS subtype as well as pain intensity and pain relief of ROSE-010 with relationship to plasma glucose using visual analogue scores. Statistical cross-analysis was performed to detect optimal responders for adequate pain relief response.. ROSE-010 gave dose- and time-dependent effects with maximum pain relief at 300 µg relative 100 µg and placebo at 120 min post injection. Females had greater pain relief than males; age and BMI did not affect treatment response. IBS pain relief was greatest in constipation-dominant IBS (IBS-C) and mixed IBS (IBS-M) relative diarrhea-dominant and unspecified IBS.. Clinical trial data indicate that female participants are more likely than males to respond to ROSE-010 100 µg and 300 µg to achieve meaningful IBS pain relief. Maximum pain relief was achieved at 120 min with the higher dose, although this was accompanied with higher rates of nausea. Improvement of IBS pain attacks was most pronounced in IBS-C and IBS-M, suggesting these subgroups to be optimal ROSE-010 responders. Topics: Constipation; Diarrhea; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Irritable Bowel Syndrome; Male; Pain; Pain Measurement; Peptide Fragments; Treatment Outcome | 2022 |
Once-Weekly Semaglutide in Adults with Overweight or Obesity.
Obesity is a global health challenge with few pharmacologic options. Whether adults with obesity can achieve weight loss with once-weekly semaglutide at a dose of 2.4 mg as an adjunct to lifestyle intervention has not been confirmed.. In this double-blind trial, we enrolled 1961 adults with a body-mass index (the weight in kilograms divided by the square of the height in meters) of 30 or greater (≥27 in persons with ≥1 weight-related coexisting condition), who did not have diabetes, and randomly assigned them, in a 2:1 ratio, to 68 weeks of treatment with once-weekly subcutaneous semaglutide (at a dose of 2.4 mg) or placebo, plus lifestyle intervention. The coprimary end points were the percentage change in body weight and weight reduction of at least 5%. The primary estimand (a precise description of the treatment effect reflecting the objective of the clinical trial) assessed effects regardless of treatment discontinuation or rescue interventions.. The mean change in body weight from baseline to week 68 was -14.9% in the semaglutide group as compared with -2.4% with placebo, for an estimated treatment difference of -12.4 percentage points (95% confidence interval [CI], -13.4 to -11.5; P<0.001). More participants in the semaglutide group than in the placebo group achieved weight reductions of 5% or more (1047 participants [86.4%] vs. 182 [31.5%]), 10% or more (838 [69.1%] vs. 69 [12.0%]), and 15% or more (612 [50.5%] vs. 28 [4.9%]) at week 68 (P<0.001 for all three comparisons of odds). The change in body weight from baseline to week 68 was -15.3 kg in the semaglutide group as compared with -2.6 kg in the placebo group (estimated treatment difference, -12.7 kg; 95% CI, -13.7 to -11.7). Participants who received semaglutide had a greater improvement with respect to cardiometabolic risk factors and a greater increase in participant-reported physical functioning from baseline than those who received placebo. Nausea and diarrhea were the most common adverse events with semaglutide; they were typically transient and mild-to-moderate in severity and subsided with time. More participants in the semaglutide group than in the placebo group discontinued treatment owing to gastrointestinal events (59 [4.5%] vs. 5 [0.8%]).. In participants with overweight or obesity, 2.4 mg of semaglutide once weekly plus lifestyle intervention was associated with sustained, clinically relevant reduction in body weight. (Funded by Novo Nordisk; STEP 1 ClinicalTrials.gov number, NCT03548935). Topics: Adult; Anti-Obesity Agents; Body Composition; Body Mass Index; Cholelithiasis; Diarrhea; Double-Blind Method; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Healthy Lifestyle; Humans; Injections, Subcutaneous; Lipids; Male; Middle Aged; Nausea; Obesity; Prediabetic State; Weight Loss | 2021 |
Metabolic responses to xenin-25 are altered in humans with Roux-en-Y gastric bypass surgery.
Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of enteroendocrine cells located in the proximal small intestine. Many effects of Xen are mediated by neurotensin receptor-1 on neurons. In healthy humans with normal glucose tolerance (NGT), Xen administration causes diarrhea and inhibits postprandial glucagon-like peptide-1 (GLP-1) release but not insulin secretion. This study determines (i) if Xen has similar effects in humans with Roux-en-Y gastric bypass (RYGB) and (ii) whether neural pathways potentially mediate effects of Xen on glucose homeostasis. Eight females with RYGB and no history of type 2 diabetes received infusions with 0, 4 or 12pmol Xen/kg/min with liquid meals on separate occasions. Plasma glucose and gastrointestinal hormone levels were measured and insulin secretion rates calculated. Pancreatic polypeptide and neuropeptide Y levels were surrogate markers for parasympathetic input to islets and sympathetic tone, respectively. Responses were compared to those in well-matched non-surgical participants with NGT from our earlier study. Xen similarly increased pancreatic polypeptide and neuropeptide Y responses in patients with and without RYGB. In contrast, the ability of Xen to inhibit GLP-1 release and cause diarrhea was severely blunted in patients with RYGB. With RYGB, Xen had no statistically significant effect on glucose, insulin secretory, GLP-1, glucose-dependent insulinotropic peptide, and glucagon responses. However, insulin and glucose-dependent insulinotropic peptide secretion preceded GLP-1 release suggesting circulating GLP-1 does not mediate exaggerated insulin release after RYGB. Thus, Xen has unmasked neural circuits to the distal gut that inhibit GLP-1 secretion, cause diarrhea, and are altered by RYGB. Topics: Adolescent; Adult; Aged; Blood Glucose; Diabetes Mellitus, Type 2; Diarrhea; Female; Gastric Bypass; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucose; Humans; Insulin; Insulin Secretion; Male; Middle Aged; Neuropeptide Y; Neurotensin; Pancreatic Polypeptide | 2016 |
A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management.
Obesity is a chronic disease with serious health consequences, but weight loss is difficult to maintain through lifestyle intervention alone. Liraglutide, a glucagon-like peptide-1 analogue, has been shown to have potential benefit for weight management at a once-daily dose of 3.0 mg, injected subcutaneously.. We conducted a 56-week, double-blind trial involving 3731 patients who did not have type 2 diabetes and who had a body-mass index (BMI; the weight in kilograms divided by the square of the height in meters) of at least 30 or a BMI of at least 27 if they had treated or untreated dyslipidemia or hypertension. We randomly assigned patients in a 2:1 ratio to receive once-daily subcutaneous injections of liraglutide at a dose of 3.0 mg (2487 patients) or placebo (1244 patients); both groups received counseling on lifestyle modification. The coprimary end points were the change in body weight and the proportions of patients losing at least 5% and more than 10% of their initial body weight.. At baseline, the mean (±SD) age of the patients was 45.1±12.0 years, the mean weight was 106.2±21.4 kg, and the mean BMI was 38.3±6.4; a total of 78.5% of the patients were women and 61.2% had prediabetes. At week 56, patients in the liraglutide group had lost a mean of 8.4±7.3 kg of body weight, and those in the placebo group had lost a mean of 2.8±6.5 kg (a difference of -5.6 kg; 95% confidence interval, -6.0 to -5.1; P<0.001, with last-observation-carried-forward imputation). A total of 63.2% of the patients in the liraglutide group as compared with 27.1% in the placebo group lost at least 5% of their body weight (P<0.001), and 33.1% and 10.6%, respectively, lost more than 10% of their body weight (P<0.001). The most frequently reported adverse events with liraglutide were mild or moderate nausea and diarrhea. Serious events occurred in 6.2% of the patients in the liraglutide group and in 5.0% of the patients in the placebo group.. In this study, 3.0 mg of liraglutide, as an adjunct to diet and exercise, was associated with reduced body weight and improved metabolic control. (Funded by Novo Nordisk; SCALE Obesity and Prediabetes NN8022-1839 ClinicalTrials.gov number, NCT01272219.). Topics: Adult; Blood Glucose; Body Mass Index; Combined Modality Therapy; Counseling; Diarrhea; Diet, Reducing; Double-Blind Method; Exercise; Female; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Injections, Subcutaneous; Liraglutide; Male; Middle Aged; Nausea; Obesity; Weight Loss | 2015 |
Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial.
Inhibition of diacylglycerol acyltransferase 1 (DGAT1) is a potential treatment modality for patients with type 2 diabetes mellitus and obesity, based on preclinical data suggesting it is associated with insulin sensitization and weight loss. This randomized, placebo-controlled, phase 1 study in 62 overweight or obese men explored the effects and tolerability of AZD7687, a reversible and selective DGAT1 inhibitor.. Multiple doses of AZD7687 (1, 2.5, 5, 10 and 20 mg/day, n = 6 or n = 12 for each) or placebo (n = 20) were administered for 1 week. Postprandial serum triacylglycerol (TAG) was measured for 8 h after a standardized 45% fat meal. Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) were measured and a paracetamol challenge was performed to assess gastric emptying.. Dose-dependent reductions in postprandial serum TAG were demonstrated with AZD7687 doses ≥5 mg compared with placebo (p < 0.01). Significant (p < 0.001) increases in plasma GLP-1 and PYY levels were seen at these doses, but no clear effect on gastric emptying was demonstrated at the end of treatment. With AZD7687 doses >5 mg/day, gastrointestinal (GI) side effects increased; 11/18 of these participants discontinued treatment owing to diarrhoea.. Altered lipid handling and hormone secretion in the gut were demonstrated during 1-week treatment with the DGAT1 inhibitor AZD7687. However, the apparent lack of therapeutic window owing to GI side effects of AZD7687, particularly diarrhoea, makes the utility of DGAT1 inhibition as a novel treatment for diabetes and obesity questionable. Topics: Acetates; Adult; Anti-Obesity Agents; Diabetes Mellitus, Type 2; Diacylglycerol O-Acyltransferase; Diarrhea; Dose-Response Relationship, Drug; Gastric Emptying; Glucagon-Like Peptide 1; Humans; Intestinal Absorption; Male; Middle Aged; Obesity; Peptide YY; Pyrazines; Treatment Outcome; Weight Loss | 2014 |
The pharmacokinetics, pharmacodynamics, and tolerability of liraglutide, a once-daily human GLP-1 analogue, after multiple subcutaneous administration in healthy Chinese male subjects.
In this single-center, randomized, double-blind, within dose group, placebo-controlled, dose escalation trial, the pharmacokinetics, pharmacodynamics, tolerability, and safety of liraglutide were evaluated in 37 healthy Chinese subjects. Subjects were randomized to 1 of 3 dose groups (0.6, 1.2, or 1.8 mg), and within each group, randomized to liraglutide or placebo (3:1). All subjects started at 0.6 mg liraglutide (or placebo) once daily for 1 week, and the dose was increased for dose groups 1.2 mg and 1.8 mg in weekly steps of 0.6 mg to the predefined dose targets. Liraglutide or placebo was administered once daily by subcutaneous injection for 21 consecutive days. The dose relationships of AUC(0-24h), C(max), and C(trough) at steady state do not deviate in a relevant way from dose proportionality. t(max) and t(1/2) were 8 hours (median) and 11.2 to 12.2 hours (geometric mean), respectively. The plasma glucose levels in all liraglutide groups were decreased, while reduced serum insulin level was observed in the 1.2- and 1.8-mg groups after liraglutide treatment. The most common adverse events were of gastrointestinal origin. Other adverse events were comparable between the liraglutide and placebo groups. Liraglutide was well tolerated in healthy Chinese subjects. No major safety concerns were identified. Topics: Abdominal Pain; Adolescent; Adult; Area Under Curve; Asian People; Blood Glucose; Diarrhea; Double-Blind Method; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Injections, Subcutaneous; Insulin; Liraglutide; Male; Middle Aged; Nausea; Young Adult | 2011 |
Inhibition of gastric emptying by acarbose is correlated with GLP-1 response and accompanied by CCK release.
We investigated the effect of acarbose, an alpha-glucosidase and pancreatic alpha-amylase inhibitor, on gastric emptying of solid meals of varying nutrient composition and plasma responses of gut hormones. Gastric emptying was determined with scintigraphy in healthy subjects, and all studies were performed with and without 100 mg of acarbose, in random order, at least 1 wk apart. Acarbose did not alter the emptying of a carbohydrate-free meal, but it delayed emptying of a mixed meal and a carbohydrate-free meal given 2 h after sucrose ingestion. In meal groups with carbohydrates, acarbose attenuated responses of plasma insulin and glucose-dependent insulinotropic polypeptide (GIP) while augmenting responses of CCK, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). With mixed meal + acarbose, area under the curve (AUC) of gastric emptying was positively correlated with integrated plasma response of GLP-1 (r = 0.68, P < 0.02). With the carbohydrate-free meal after sucrose and acarbose ingestion, AUC of gastric emptying was negatively correlated with integrated plasma response of GIP, implying that prior alteration of carbohydrate absorption modifies gastric emptying of a meal. The results demonstrate that acarbose delays gastric emptying of solid meals and augments release of CCK, GLP-1, and PYY mainly by retarding/inhibiting carbohydrate absorption. Augmented GLP-1 release by acarbose appears to play a major role in the inhibition of gastric emptying of a mixed meal, whereas CCK and PYY may have contributory roles. Topics: Acarbose; Administration, Oral; Adult; Area Under Curve; Blood Glucose; Cholecystokinin; Diarrhea; Dietary Carbohydrates; Energy Intake; Enzyme Inhibitors; Flatulence; Gastric Emptying; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Humans; Insulin; Male; Peptide Fragments; Peptide YY; Protein Precursors; Sucrose | 2001 |
12 other study(ies) available for glucagon-like-peptide-1 and Diarrhea
Article | Year |
---|---|
Increased expression of glucagon-like peptide-1 and cystic fibrosis transmembrane conductance regulator in the ileum and colon in mouse treated with metformin.
Topics: Animals; Caco-2 Cells; Colon; Creosote; Cyclic AMP; Cystic Fibrosis Transmembrane Conductance Regulator; Diabetes Mellitus, Type 2; Diarrhea; Glucagon-Like Peptide 1; Humans; Ileum; Metformin; Mice; Mice, Inbred C57BL; RNA, Messenger | 2023 |
Association between different GLP-1 receptor agonists and gastrointestinal adverse reactions: A real-world disproportionality study based on FDA adverse event reporting system database.
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have significantly improved clinical effects on glycemic control. However, real-world data concerning the difference in gastrointestinal adverse events (AEs) among different GLP-1 RAs are still lacking. Our study aimed to characterize and compare gastrointestinal AEs among different marketed GLP-1 RAs (exenatide, liraglutide, dulaglutide, lixisenatide, and semaglutide) based on real-world data.. Disproportionality analysis was used to evaluate the association between GLP-1 RAs and gastrointestinal adverse events. Data were extracted from the US FDA Adverse Event Reporting System (FAERS) database between January 2018 and September 2022. Clinical characteristics, the time-to-onset, and the severe proportion of GLP-1 RAs-associated gastrointestinal AEs were further analyzed.. A total of 21,281 reports of gastrointestinal toxicity were analyzed out of 81,752 adverse event reports, and the median age of the included patients was 62 (interquartile range [IQR] 54-70) years old. Overall GLP-1 RAs were associated with increased risk of gastrointestinal system disorders (ROR, 1.46; 95% CI, 1.44-1.49), which were further attributed to liraglutide (ROR, 2.39; 95% CI, 2.28-2.51), dulaglutide (ROR, 1.39; 95% CI, 1.36-1.42), and semaglutide (ROR, 3.00; 95% CI, 2.89-3.11). Adverse events uncovered in the labels included gastroesophageal reflux disease, gastritis, bezoar, breath odor, intra-abdominal hematoma, etc. Furthermore, it was observed that semaglutide had the greatest risk of nausea (ROR, 7.41; 95% CI, 7.10-7.74), diarrhea (ROR, 3.55; 95% CI, 3.35-3.77), vomiting (ROR, 6.67; 95% CI, 6.32-7.05), and constipation (ROR, 6.17; 95% CI, 5.72-6.66); liraglutide had the greatest risk of abdominal pain upper (ROR, 4.63; 95% CI, 4.12-5.21) and pancreatitis (ROR, 32.67; 95% CI, 29.44-36.25). Most gastrointestinal AEs tended to occur within one month. Liraglutide had the highest severe rate of gastrointestinal AEs (23.31%), while dulaglutide had the lowest, with a severe rate of 12.29%.. GLP-1 RA were significantly associated with gastrointestinal AEs, and the association was further attributed to liraglutide, dulaglutide, and semaglutide. In addition, semaglutide had the greatest risk of nausea, diarrhea, vomiting, constipation, and pancreatitis, while liraglutide had the greatest risk of upper abdominal pain. Our study provided valuable evidence for selecting appropriate GLP-1 RAs to avoid the occurrence of GLP-1 RA-induced gastrointestinal AEs. Topics: Abdominal Pain; Adverse Drug Reaction Reporting Systems; Aged; Constipation; Databases, Factual; Diabetes Mellitus, Type 2; Diarrhea; Gastrointestinal Diseases; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Liraglutide; Middle Aged; Nausea; Pancreatitis; United States; United States Food and Drug Administration; Vomiting | 2022 |
Stool Osmotic Gap: An Alternative to Invasive Workup of Chronic Diarrhea Secondary to Glucagon-Like Peptide-1 Agonist Use.
Topics: Diarrhea; Feces; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans | 2022 |
Congenital Glucagon-like Peptide-1 Deficiency in the Pathogenesis of Protracted Diarrhea in Mitchell-Riley Syndrome.
Mitchell-Riley syndrome due to RFX6 gene mutations is characterized by neonatal diabetes and protracted diarrhea. The RFX6 gene encodes a transcription factor involved in enteroendocrine cell differentiation required for beta-cell maturation. In contrast to the pathway by which RFX6 mutations leads to diabetes, the mechanisms underlying protracted diarrhea are unknown.. To assess whether glucagon-like peptide-1 (GLP-1) was involved in the pathogenesis of Mitchell-Riley syndrome protracted diarrhea.. Two case report descriptions. in a tertiary pediatric hospital. "Off-label" treatment with liraglutide. We describe 2 children diagnosed with Mitchell-Riley syndrome, presenting neonatal diabetes and protracted diarrhea. Both patients had nearly undetectable GLP-1 plasma levels and absence of GLP-1 immunostaining in distal intestine and rectum. The main outcome was to evaluate whether GLP-1 analogue therapy could improve Mitchell-Riley syndrome protracted diarrhea.. "Off-label" liraglutide treatment, licensed for type 2 diabetes treatment in children, was started as rescue therapy for protracted intractable diarrhea resulting in rapid improvement during the course of 12 months.. Congenital GLP-1 deficiency was identified in patients with Mitchell-Riley syndrome. The favorable response to liraglutide further supports GLP-1 involvement in the pathogenesis of protracted diarrhea and its potential therapeutic use. Topics: Child; Consanguinity; Diabetes Mellitus; Diarrhea; Fatal Outcome; Female; Gallbladder Diseases; Glucagon-Like Peptide 1; Hepatic Encephalopathy; Humans; Infant; Intestinal Atresia; Mutation, Missense; Portugal; Regulatory Factor X Transcription Factors | 2021 |
Dipeptidyl-peptidase-4 (DPP-4) inhibitor ameliorates 5-flurouracil induced intestinal mucositis.
Chemotherapy-induced alimentary mucositis (AM) is difficult to prevent and treatment is rarely effective. Recent study have been showed that glucagon-like peptide (GLP)-1 and GLP-2 has protective in chemotherapy-induced AM. While the DPP-4 enzyme degrades this GLP-1, the DPP-4 inhibitor blocks the degradation process and raises the concentration of GLP-1. This study aimed to assess the role of DPP-4 inhibitor, a well-known hypoglycemic agent, on chemotherapy-induced AM.. Twenty-four 6-week-old male C57BL/6 mice were divided into 4 groups: control, 5-fluorouracil (5-FU), DPP-4 inhibitor, and saline (DPP-4i), and DPP-4 inhibitor and 5-FU (DPP-4i + 5-FU). Mucositis was induced by intraperitoneal injection of 5-FU (400 mg/kg). DPP-4 inhibitor (50 mg/kg) was administered orally for four days starting the day before 5-FU administration. Post 72 h of 5-FU injection, mice were sacrificed and body weight change, diarrhea score, villus height, villus/crypt ratio, histologic characteristics including goblet cell count, and mRNA expression of inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6, were assessed.. Daily body weight change was not statistically significant between the 5-FU and the DPP-4i + 5-FU group (P = 0.571). Diarrhea score was significantly different between these two groups (P = 0.033). In the 5-FU group, the villus height was not maintained well, the epithelial lining was irregular, and inflammatory cell infiltration was observed. Goblet cell count in the DPP-4i + 5-FU group was significantly higher than in the 5-FU group (P = 0.007). However, in the DPP-4i + 5-FU group, the villus height, epithelial lining, and crypt structure were better maintained than in the 5-FU group. Compared with the control group, mRNA expression of TNF-α was significantly up-regulated in the 5-FU group. Moreover, mRNA expression of TNF-α in the DPP-4i + 5-FU group was down-regulated compared to the 5-FU group. However, IL-6 in the 5-FU group was significantly down-regulated compared to the control, there was no significant difference in expression of IL-6 between the 5-FU and DPP4i + 5-FU group.. DPP-4 inhibitor can improve 5-FU induced AM and, therefore, has potential as an alternative treatment for chemotherapy-induced AM. Topics: Administration, Oral; Animals; Antimetabolites, Antineoplastic; Body Weight; Diarrhea; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Fluorouracil; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Goblet Cells; Injections, Intraperitoneal; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Mucositis; Protective Agents; Tumor Necrosis Factor-alpha | 2019 |
GHSR-1 agonist sensitizes rat colonic intrinsic and extrinsic neurons to exendin-4: A role in the manifestation of postprandial gastrointestinal symptoms in irritable bowel syndrome?
Patients with irritable bowel syndrome (IBS) may experience postprandial symptom exacerbation. Nutrients stimulate intestinal release of glucagon-like peptide 1 (GLP-1), an incretin hormone with known gastrointestinal effects. However, prior to the postprandial rise in GLP-1, levels of the hunger hormone, ghrelin, peak. The aims of this study were to determine if ghrelin sensitizes colonic intrinsic and extrinsic neurons to the stimulatory actions of a GLP-1 receptor agonist, and if this differs in a rat model of IBS.. Calcium imaging of enteric neurons was compared between Sprague Dawley and Wistar Kyoto rats. Colonic contractile activity and vagal nerve recordings were also compared between strains.. Circulating GLP-1 concentrations differ between IBS subtypes. Mechanistically, we have provided evidence that calcium responses evoked by exendin-4, a GLP-1 receptor agonist, are potentiated by a ghrelin receptor (GHSR-1) agonist, in both submucosal and myenteric neurons. Although basal patterns of colonic contractility varied between Sprague Dawley and Wister Kyoto rats, the capacity of exendin-4 to alter smooth muscle function was modified by a GHSR-1 agonist in both strains. Gut-brain signaling via GLP-1-mediated activation of vagal afferents was also potentiated by the GHSR-1 agonist.. These findings support a temporal interaction between ghrelin and GLP-1, where the preprandial peak in ghrelin may temporarily sensitize colonic intrinsic and extrinsic neurons to the neurostimulatory actions of GLP-1. While the sensitizing effects of the GHSR-1 agonist were identified in both rat strains, in the rat model of IBS, underlying contractile activity was aberrant. Topics: Animals; Colon; Constipation; Diarrhea; Electrophysiological Phenomena; Enteric Nervous System; Exenatide; Ghrelin; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Irritable Bowel Syndrome; Muscle Contraction; Muscle, Smooth; Neurons; Rats; Rats, Inbred WKY; Rats, Sprague-Dawley; Receptors, Ghrelin; Vagus Nerve | 2019 |
Don't Play with Your Nodule: Case Report of Tachycardia and Other Adverse Reactions from Manipulation of an Exenatide Injection Site Nodule.
Type II diabetes mellitus (DM) is an increasingly prevalent cause of morbidity and mortality among U.S. adults, with increasing prevalence in emergency department (ED) visits. Multiple medications, such as exenatide, a glucagon-like peptide-1 agonist, have been developed in the past decade to combat this growing problem. This medication is well documented to cause gastrointestinal upset and skin nodules at the injection site. However, currently no documented cases exist regarding manipulation of injection nodules causing increased absorption or reports demonstrating an increase in adverse drug reactions.. We report an interesting case of an adult male patient who likely experienced increased systemic absorption of exenatide by manipulating an injection nodule, which ultimately resulted in nausea, retching, diarrhea, and a tachycardic heart rate of 130-140 beats/min. These symptoms are known side effects of exenatide. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Given the high frequency of DM patients presenting to the ED, emergency physicians should be familiar with diabetic maintenance medications and their adverse reactions. Treating these side effects and properly educating patients can alleviate discomfort, prevent future adverse reactions, and decrease return visits to the ED. Topics: Chest Pain; Diabetes Mellitus, Type 2; Diarrhea; Emergency Service, Hospital; Exenatide; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Injection Site Reaction; Male; Middle Aged; Nausea; Tachycardia | 2018 |
GLP-1 nanomedicine alleviates gut inflammation.
The gut hormone, glucagon like peptide-1 (GLP-1) exerts anti-inflammatory effects. However, its clinical use is limited by its short half-life. Previously, we have shown that GLP-1 as a nanomedicine (GLP-1 in sterically stabilized phospholipid micelles, GLP-1-SSM) has increased in vivo stability. The current study was aimed at testing the efficacy of this GLP-1 nanomedicine in alleviating colonic inflammation and associated diarrhea in dextran sodium sulfate (DSS) induced mouse colitis model. Our results show that GLP-1-SSM treatment markedly alleviated the colitis phenotype by reducing the expression of pro-inflammatory cytokine IL-1β, increasing goblet cells and preserving intestinal epithelial architecture in colitis model. Further, GLP-1-SSM alleviated diarrhea (as assessed by luminal fluid) by increasing protein expression of intestinal chloride transporter DRA (down regulated in adenoma). Our results indicate that GLP-1 nanomedicine may act as a novel therapeutic tool in alleviating gut inflammation and associated diarrhea in inflammatory bowel disease (IBD). Topics: Animals; Colitis; Dextran Sulfate; Diarrhea; Disease Models, Animal; Glucagon-Like Peptide 1; Inflammation; Mice; Nanomedicine | 2017 |
Gastrointestinal safety across the albiglutide development programme.
Gastrointestinal (GI) adverse events (AEs) are the most frequently reported treatment-related AEs associated with glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the treatment of type 2 diabetes mellitus. The GI safety of albiglutide, a once-weekly GLP-1RA, was assessed using data from five phase III studies. In a pooled analysis of four placebo-controlled trials, the most common GI AEs were diarrhoea (albiglutide, 14.5% vs. placebo, 11.5%) and nausea (albiglutide, 11.9% vs. placebo, 10.3%), with most patients experiencing 1-2 events. The majority were mild or moderate in intensity and their median duration was 3-4 days. Vomiting occurred in 4.9% of patients in the albiglutide vs. 2.6% in the placebo group. For both albiglutide and placebo, serious GI AEs (2.0% vs. 1.5%) and withdrawals attributable to GI AEs (1.7% vs. 1.5%) were low. In a 32-week trial of albiglutide 50 mg weekly versus liraglutide 1.8 mg daily, nausea occurred in 9.9% of patients in the albiglutide group vs. 29.2% in the liraglutide group. Vomiting occurred in 5.0% in the albiglutide vs. 9.3% in the liraglutide group. In conclusion, albiglutide has an acceptable GI tolerability profile, with nausea and vomiting rates slightly higher than those for placebo but lower than those for liraglutide. Topics: Abdominal Pain; Clinical Trials, Phase III as Topic; Constipation; Diabetes Mellitus, Type 2; Diarrhea; Gastroesophageal Reflux; Gastrointestinal Diseases; Glucagon-Like Peptide 1; Humans; Incretins; Nausea; Severity of Illness Index; Vomiting | 2016 |
Dysgenesis of enteroendocrine cells in Aristaless-Related Homeobox polyalanine expansion mutations.
Severe congenital diarrhea occurs in approximately half of patients with Aristaless-Related Homeobox (ARX) null mutations. The cause of this diarrhea is unknown. In a mouse model of intestinal Arx deficiency, the prevalence of a subset of enteroendocrine cells is altered, leading to diarrhea. Because polyalanine expansions within the ARX protein are the most common mutations found in ARX-related disorders, we sought to characterize the enteroendocrine population in human tissue of an ARX mutation and in a mouse model of the corresponding polyalanine expansion (Arx).. Immunohistochemistry and quantitative real-time polymerase chain reaction were the primary modalities used to characterize the enteroendocrine populations. Daily weights were determined for the growth curves, and Oil-Red-O staining on stool and tissue identified neutral fats.. An expansion of 7 alanines in the first polyalanine tract of both human ARX and mouse Arx altered enteroendocrine differentiation. In human tissue, cholecystokinin, glucagon-like peptide 1, and somatostatin populations were reduced, whereas the chromogranin A population was unchanged. In the mouse model, cholecystokinin and glucagon-like peptide 1 populations were also lost, although the somatostatin-expressing population was increased. The ARX protein was present in human tissue, whereas the Arx protein was degraded in the mouse intestine.. ARX/Arx is required for the specification of a subset of enteroendocrine cells in both humans and mice. Owing to protein degradation, the Arx mouse recapitulates findings of the intestinal Arx null model, but is not able to further the study of the differential effects of the ARX protein on its transcriptional targets in the intestine. Topics: Adolescent; Animals; Cell Differentiation; Cholecystokinin; Chromogranin A; Diarrhea; Disease Models, Animal; Duodenal Diseases; Duodenum; Enteroendocrine Cells; Failure to Thrive; Female; Glucagon-Like Peptide 1; Homeodomain Proteins; Humans; Intestinal Pseudo-Obstruction; Male; Mice; Mice, Inbred C57BL; Mutagenesis, Insertional; Peptides; Somatostatin; Steatorrhea; Transcription Factors | 2015 |
Impaired enteroendocrine development in intestinal-specific Islet1 mouse mutants causes impaired glucose homeostasis.
Enteroendocrine cells secrete over a dozen different hormones responsible for coordinating digestion, absorption, metabolism, and gut motility. Loss of enteroendocrine cells is a known cause of severe congenital diarrhea. Furthermore, enteroendocrine cells regulate glucose metabolism, with the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) playing critical roles in stimulating insulin release by pancreatic β-cells. Islet1 (Isl1) is a LIM-homeodomain transcription factor expressed specifically in an array of intestinal endocrine cells, including incretin-expressing cells. To examine the impact of intestinal Isl1 on glycemic control, we set out to explore the role of intestinal Isl1 in hormone cell specification and organismal physiology. Mice with intestinal epithelial-specific ablation of Isl1 were obtained by crossing Villin-Cre transgenic animals with mice harboring a Isl1(loxP) allele (Isl1(int) model). Gene ablation of Isl1 in the intestine results in loss of GLP-1, GIP, cholecystokinin (CCK), and somatostatin-expressing cells and an increase in 5-HT (serotonin)-producing cells, while the chromogranin A population was unchanged. This dramatic change in hormonal milieu results in animals with lipid malabsorption and females smaller than their littermate controls. Interestingly, when challenged with oral, not intraperitoneal glucose, the Isl-1 intestinal-deficient animals (Isl1(int)) display impaired glucose tolerance, indicating loss of the incretin effect. Thus the Isl1(int) model confirms that intestinal biology is essential for organism physiology in glycemic control and susceptibility to diabetes. Topics: Age Factors; Animals; Animals, Newborn; Biomarkers; Blood Glucose; Cholecystokinin; Chromogranin A; Diarrhea; Dietary Fats; Enteroendocrine Cells; Female; Gastric Inhibitory Polypeptide; Gastrins; Genotype; Ghrelin; Glucagon-Like Peptide 1; Glucose Metabolism Disorders; Glucose Tolerance Test; Integrases; Intestinal Absorption; Intestinal Mucosa; Intestine, Small; LIM-Homeodomain Proteins; Malabsorption Syndromes; Male; Mice, Inbred C57BL; Mice, Knockout; Microfilament Proteins; Phenotype; Serotonin; Somatostatin; Transcription Factors; Weight Gain | 2014 |
Role of glucagon-like peptide-1 in the pathogenesis of experimental irritable bowel syndrome rat models.
Alterations in gut motility and visceral hypersensitivity are two major features of irritable bowel syndrome (IBS). The aim of this study was to investigate the roles of glucagon-like peptide-1 (GLP-1) in the pathogenesis of experimental IBS. Rat models of constipation-predominant IBS (IBS-C) and diarrhea-predominant IBS (IBS-D) were established. Fecal water content and behavioral responses to colorectal distention (CRD), using electromyography (EMG), were measured. The expression of glucagon-like peptide-1 receptor (GLP-1R) in the colon was detected by immunohistochemistry, and the serum concentration of GLP-1 was measured by ELISA assay. The movement of circular and longitudinal colonic muscle was detected using an organ bath recording technique. Compared to controls, the fecal water contents were lower in the IBS-C group, while they were higher in the IBS-D group (P<0.05). EMG response to CRD in the experimental IBS groups was increased compared with their respective controls (P<0.05). GLP-1R was localized in the mucosa layer, circular muscle and myenteric nerve plexus of the colon. Notably, the expression of GLP-1R in the IBS-C group was higher, but in the IBS-D group, it was lower compared with controls. The serum levels of GLP-1 in the IBS-C group were higher compared to those in the IBS-D group (P<0.05). In addition, administration of exogenous GLP-1 and exendin-4 inhibited colonic circular muscle contraction, particularly in the IBS-C group, while there was no significant effect on longitudinal muscle contraction. In conclusion, these results indicated that GLP-1 and GLP-1R are implicated in the pathogenesis of IBS-C and IBS-D. Topics: Animals; Colon; Constipation; Diarrhea; Disease Models, Animal; Exenatide; Feces; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Irritable Bowel Syndrome; Male; Muscle Contraction; Peptides; Peristalsis; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Venoms; Water | 2013 |