glucagon-like-peptide-1 has been researched along with Albuminuria* in 10 studies
4 review(s) available for glucagon-like-peptide-1 and Albuminuria
Article | Year |
---|---|
Effect of glucagon-like peptide 1 receptor agonists on albuminuria in adult patients with type 2 diabetes mellitus: A systematic review and meta-analysis.
To determine the effect of glucagon-like peptide 1 receptor agonists (GLP-1RAs) on albuminuria in adult patients with type 2 diabetes mellitus (T2DM).. Medline Ovid, Scopus, Web of Science, EMCARE and CINAHL databases from database inception until 27 January 2022. Studies were eligible for inclusion if they were randomized controlled trials that involved treatment with a GLP-1RA in adult patients with T2DM and assessed the effect on albuminuria in each treatment arm. Data extraction was conducted independently by three individual reviewers. The PRISMA guidelines were followed regarding data extraction and quality assessment. Data were pooled using a random effects inverse variance model and all analysis was carried out with RevMan 5.4 software. The Jadad scoring tool was employed to assess the quality of evidence and risk of bias in the randomized controlled trials.. The initial search revealed 2419 articles, of which 19 were included in this study. An additional three articles were identified from hand-searching references of included reviews. Therefore, in total, 22 articles comprising 39 714 patients were included. Meta-analysis suggested that use of GLP1-RAs was associated with a reduction in albuminuria in patients with T2DM (weighted mean difference -16.14%, 95% CI -18.42 to -13.86%; p < .0001) compared with controls.. This meta-analysis indicates that GLP-1RAs are associated with a significant reduction in albuminuria in adult patients with T2DM when compared with placebo. Topics: Albuminuria; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Randomized Controlled Trials as Topic | 2022 |
Diabetic Kidney Disease.
Diabetic kidney disease (DKD) is the most common cause of chronic kidney disease in the United States. Approximately 30% to 40% of individuals with diabetes mellitus develop DKD, and the presence of DKD significantly elevates the risk for morbidity and mortality. Understanding of DKD has grown in recent years. This review describes the pathogenesis of DKD and expands on evidence-based strategies for DKD management, integrating traditional approaches for hyperglycemia, hypertension, and albuminuria management with emerging therapeutic options. Given the public health burden of DKD, it is essential to prioritize prevention, recognition, and management of DKD in the primary care setting. Topics: Albuminuria; Blood Pressure; Comorbidity; Diabetic Nephropathies; Disease Progression; Glucagon-Like Peptide 1; Glycemic Control; Humans; Hypoglycemic Agents; Primary Health Care; Referral and Consultation; Renin-Angiotensin System; Sodium-Glucose Transporter 2 Inhibitors | 2020 |
The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system.
Diabetic nephropathy (DN) affects an estimated 20%-40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway. Topics: Albuminuria; Animals; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Humans; Kidney; Risk Factors; Sodium-Glucose Transporter 2; Sodium-Glucose Transporter 2 Inhibitors; Treatment Outcome | 2014 |
The effects of dipeptidyl peptidase-4 inhibition on microvascular diabetes complications.
We performed a review of the literature to determine whether the dipeptidyl peptidase-4 inhibitors (DPP4-I) may have the capability to directly and positively influence diabetic microvascular complications. The literature was scanned to identify experimental and clinical evidence that DPP4-I can ameliorate diabetic microangiopathy. We retrieved articles published between 1 January 1980 and 1 March 2014 in English-language peer-reviewed journals using the following terms: ("diabetes" OR "diabetic") AND ("retinopathy" OR "retinal" OR "nephropathy" OR "renal" OR "albuminuria" OR "microalbuminuria" OR "neuropathy" OR "ulcer" OR "wound" OR "bone marrow"); ("dipeptidyl peptidase-4" OR "dipeptidyl peptidase-IV" OR "DPP-4" OR "DPP-IV"); and ("inhibition" OR "inhibitor"). Experimentally, DPP4-I appears to improve inflammation, endothelial function, blood pressure, lipid metabolism, and bone marrow function. Several experimental studies report direct potential beneficial effects of DPP4-I on all microvascular diabetes-related complications. These drugs have the ability to act either directly or indirectly via improved glucose control, GLP-1 bioavailability, and modifying nonincretin substrates. Although preliminary clinical data support that DPP4-I therapy can protect from microangiopathy, insufficient evidence is available to conclude that this class of drugs directly prevents or decreases microangiopathy in humans independently from improved glucose control. Experimental findings and preliminary clinical data suggest that DPP4-I, in addition to improving metabolic control, have the potential to interfere with the onset and progression of diabetic microangiopathy. Further evidence is needed to confirm these effects in patients with diabetes. Topics: Albuminuria; Diabetic Angiopathies; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Endothelium, Vascular; Glucagon-Like Peptide 1; Humans; Kidney | 2014 |
1 trial(s) available for glucagon-like-peptide-1 and Albuminuria
Article | Year |
---|---|
Liraglutide and Renal Outcomes in Type 2 Diabetes.
In a randomized, controlled trial that compared liraglutide, a glucagon-like peptide 1 analogue, with placebo in patients with type 2 diabetes and high cardiovascular risk who were receiving usual care, we found that liraglutide resulted in lower risks of the primary end point (nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes) and death. However, the long-term effects of liraglutide on renal outcomes in patients with type 2 diabetes are unknown.. We report the prespecified secondary renal outcomes of that randomized, controlled trial in which patients were assigned to receive liraglutide or placebo. The secondary renal outcome was a composite of new-onset persistent macroalbuminuria, persistent doubling of the serum creatinine level, end-stage renal disease, or death due to renal disease. The risk of renal outcomes was determined with the use of time-to-event analyses with an intention-to-treat approach. Changes in the estimated glomerular filtration rate and albuminuria were also analyzed.. A total of 9340 patients underwent randomization, and the median follow-up of the patients was 3.84 years. The renal outcome occurred in fewer participants in the liraglutide group than in the placebo group (268 of 4668 patients vs. 337 of 4672; hazard ratio, 0.78; 95% confidence interval [CI], 0.67 to 0.92; P=0.003). This result was driven primarily by the new onset of persistent macroalbuminuria, which occurred in fewer participants in the liraglutide group than in the placebo group (161 vs. 215 patients; hazard ratio, 0.74; 95% CI, 0.60 to 0.91; P=0.004). The rates of renal adverse events were similar in the liraglutide group and the placebo group (15.1 events and 16.5 events per 1000 patient-years), including the rate of acute kidney injury (7.1 and 6.2 events per 1000 patient-years, respectively).. This prespecified secondary analysis shows that, when added to usual care, liraglutide resulted in lower rates of the development and progression of diabetic kidney disease than placebo. (Funded by Novo Nordisk and the National Institutes of Health; LEADER ClinicalTrials.gov number, NCT01179048 .). Topics: Acute Kidney Injury; Aged; Albuminuria; Creatinine; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Double-Blind Method; Female; Follow-Up Studies; Glomerular Filtration Rate; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Intention to Treat Analysis; Kidney Failure, Chronic; Liraglutide; Male; Middle Aged | 2017 |
5 other study(ies) available for glucagon-like-peptide-1 and Albuminuria
Article | Year |
---|---|
Renal effects of glucagon-like peptide receptor agonists in patients with type 1 diabetes mellitus.
The purpose of our study is to assess the effects of glucagon-like peptide-1 receptor agonists (GLP-1R agonists) on early markers of kidney damage in patients with type 1 diabetes mellitus (DM).. The study included 27 patients with type 1 diabetes with normo- (n=16) and microalbuminuria (n=11) on intensive insulin injection regimen with insulin analogs. Patients were divided into two groups: 15 patients continued insulin therapy throughout the follow-up period, 12 patients were given 1.2 mg GLP-1R agonist (Liraglutide) once a day in addition to the insulin therapy for 6 months. HbA1c, lipid profile, classic markers of kidney damage (albuminuria, creatinine, glomerular filtration rate); plazma (neutrophilic gelatinase-associated lipoxalin - NGAL, molecule renal damage of type 1 - KIM-1, cystatin C, osteopontin) and urinary kidney biomarkers (nephrin, podocyne, uromodulin, NGAL, KIM-1, collagen type IV, cystatin C) were evaluated prior and in dynamics at 6 months. Kidney biomarkers levels were assessed by the enzyme-linked immunosorbent assay (ELISA).. We observed a significant decrease in the urinary excretion of type IV collagen, cystatin C, increased uromodulin excretion and decrease in the plasma levels of osteopontin, NGAL and cystatin C in the group of combined insulin and GLP-1R agonist therapy.. Changes in the level of sensitive kidney biomarkers indicate a possible renoprotective effect of GLP-1R agonist therapy in patients with type 1 diabetes at an early stages of kidney damage. Topics: Albuminuria; Biomarkers; Diabetes Mellitus, Type 1; Glucagon-Like Peptide 1; Glucagon-Like Peptide Receptors; Humans; Hypoglycemic Agents; Kidney | 2018 |
The Dose-Dependent Organ-Specific Effects of a Dipeptidyl Peptidase-4 Inhibitor on Cardiovascular Complications in a Model of Type 2 Diabetes.
Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been suggested to have a non-glucoregulatory protective effect in various tissues, the effects of long-term inhibition of DPP-4 on the micro- and macro-vascular complications of type 2 diabetes remain uncertain. The aim of the present study was to investigate the organ-specific protective effects of DPP-4 inhibitor in rodent model of type 2 diabetes.. Eight-week-old diabetic and obese db/db mice and controls (db/m mice) received vehicle or one of two doses of gemigliptin (0.04 and 0.4%) daily for 12 weeks. Urine albumin excretion and echocardiography measured at 20 weeks of age. Heart and kidney tissue were subjected to molecular analysis and immunohistochemical evaluation.. Gemigliptin effectively suppressed plasma DPP-4 activation in db/db mice in a dose-dependent manner. The HbA1c level was normalized in the 0.4% gemigliptin, but not in the 0.04% gemigliptin group. Gemigliptin showed a dose-dependent protective effect on podocytes, anti-apoptotic and anti-oxidant effects in the diabetic kidney. However, the dose-dependent effect of gemigliptin on diabetic cardiomyopathy was ambivalent. The lower dose significantly attenuated left ventricular (LV) dysfunction, apoptosis, and cardiac fibrosis, but the higher dose could not protect the LV dysfunction and cardiac fibrosis.. Gemigliptin exerted non-glucoregulatory protective effects on both diabetic nephropathy and cardiomyopathy. However, high-level inhibition of DPP-4 was associated with an organ-specific effect on cardiovascular complications in type 2 diabetes. Topics: Albuminuria; Animals; Apoptosis; Cardiomegaly; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Forkhead Box Protein O3; Forkhead Transcription Factors; Glucagon-Like Peptide 1; Glycated Hemoglobin; Immunohistochemistry; Kidney; Male; Mice; NADPH Oxidases; Piperidones; Podocytes; Proto-Oncogene Proteins c-akt; Pyrimidines; Ventricular Dysfunction | 2016 |
GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases.
Accumulating evidence has implicated that GLP-1 may have a beneficial effect on cardiovascular and renal diseases but the mechanism is not fully understood. Here we show that GLP-1 analog, liraglutide, inhibits oxidative stress and albuminuria in streptozotocin (STZ)-induced type 1 diabetes mellitus rats, via a protein kinase A (PKA)-mediated inhibition of renal NAD(P)H oxidases. Diabetic rats were randomly treated with subcutaneous injections of liraglutide (0.3 mg/kg/12 h) for 4 weeks. Oxidative stress markers (urinary 8-hydroxy-2'-deoxyguanosine and renal dihydroethidium staining), expression of renal NAD(P)H oxidase components, transforming growth factor-β (TGF-β), fibronectin and urinary albumin excretion were measured. In vitro effect of liraglutide was evaluated using cultured renal mesangial cells. Administration of liraglutide did not affect plasma glucose levels or body weights in STZ diabetic rats, but normalized oxidative stress markers, expression of NAD(P)H oxidase components, TGF-β, fibronectin in renal tissues and urinary albumin excretion, all of which were significantly increased in diabetic rats. In addition, in cultured renal mesangial cells, incubation with liraglutide for 48 h inhibited NAD(P)H-dependent superoxide production evaluated by lucigenin chemiluminescence in a dose-dependent manner. This effect was reversed by both PKA inhibitor H89 and adenylate cyclase inhibitor SQ22536, but not by Epac2 inhibition via its small interfering RNA. Liraglutide may have a direct beneficial effect on oxidative stress and diabetic nephropathy via a PKA-mediated inhibition of renal NAD(P)H oxidase, independently of a glucose-lowering effect. Topics: Adenine; Albuminuria; Animals; Cells, Cultured; Cyclic AMP-Dependent Protein Kinases; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Glucagon-Like Peptide 1; Humans; Isoquinolines; Kidney; Liraglutide; Male; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Oxidative Stress; Rats; Rats, Wistar; Streptozocin; Sulfonamides | 2012 |
Reduced plasma levels of glucagon-like peptide-1 in elderly men are associated with impaired glucose tolerance but not with coronary heart disease.
Besides the insulinotropic effects of glucagon-like peptide-1 (GLP-1) mimetics, their effects on endothelial dysfunction and myocardial ischaemia are of interest. No previous study has investigated associations between plasma levels of GLP-1 and CHD.. We investigated longitudinal relationships of fasting GLP-1 with the dynamic GLP-1 response after OGTT (difference between 60 min OGTT-stimulated and fasting GLP-1 levels [DeltaGLP-1]) and CHD in a population-based cohort of 71-year-old men. In the same cohort, we also cross-sectionally investigated the association between stimulated GLP-1 levels and: (1) cardiovascular risk factors (blood pressure, lipids, urinary albumin, waist circumference and insulin sensitivity index [M/I] assessed by euglycaemic-hyperinsulinaemic clamp); and (2) impaired glucose tolerance (IGT) and type 2 diabetes mellitus.. During the follow-up period (maximum 13.8 years), of 294 participants with normal glucose tolerance (NGT), 69 experienced a CHD event (13.8 years), as did 42 of 141 with IGT and 32 of 74 with type 2 diabetes mellitus. DeltaGLP-1 did not predict CHD (HR 1.0, 95% CI 0.52-2.28). The prevalence of IGT was associated with DeltaGLP-1, lowest vs highest quartile (OR 0.3, 95% CI 0.12-0.58), with no such association for type 2 diabetes mellitus (OR 1.0, 95% CI 0.38-2.86). M/I was significantly associated with DeltaGLP-1 in the type 2 diabetes mellitus group (r = 0.38, p < 0.01), but not in the IGT (r = 0.11, p = 0.28) or NGT (r = 0.10, p = 0.16) groups.. Impaired GLP-1 secretion is associated with IGT, but not with type 2 diabetes mellitus. This finding in the latter group might be confounded by oral glucose-lowering treatment. GLP-1 does not predict CHD. Although DeltaGLP-1 was associated with insulin sensitivity in the type 2 diabetes mellitus group, GLP-1 does not seem to be a predictor of CHD in insulin-resistant patients. Topics: Aged; Albuminuria; Blood Pressure; Cardiovascular Diseases; Cholesterol; Cohort Studies; Coronary Disease; Diabetes Mellitus, Type 2; Fasting; Follow-Up Studies; Glucagon-Like Peptide 1; Glucose Clamp Technique; Glucose Intolerance; Glucose Tolerance Test; Humans; Insulin; Male; Survival Analysis; Waist Circumference | 2010 |
Urinary excretion of glucagon-like peptide 1 (GLP-1) 7-36 amide in human type 2 (non-insulin-dependent) diabetes mellitus.
The urinary excretion of insulinotropic glucagon-like peptide 1 (GLP-1) was investigated as an indicator of renal tubular integrity in 10 healthy subjects and in 3 groups of type 2 diabetic patients with different degrees of urinary albumin excretion rate. No significant difference emerged between the groups with respect to age of the patients, known duration of diabetes, metabolic control, BMI, or residual beta-cell pancreatic function. Endogenous creatinine clearance was significantly reduced under conditions of overt diabetic nephropathy, compared with normo and microalbuminuric patients (p < 0.01). Urinary excretion of GLP-1 was significantly higher in normoalbuminuric patients compared to controls (490.4 +/- 211.5 vs. 275.5 +/- 132.1 pg/min; p < 0.05), with further increase under incipient diabetic nephropathy conditions (648.6 +/- 305 pg/min; p < 0.01). No significant difference resulted, in contrast, between macroproteinuric patients and non-diabetic subjects. Taking all patients examined into account, a significant positive relationship emerged between urinary GLP-1 and creatinine clearance (p = 0.004). In conclusion, an early tubular impairment in type 2 diabetes would occur before the onset of glomerular permeability alterations. The tubular dysfunction seems to evolve with the development of persistent microalbuminuria. Finally, the advanced tubular involvement, in terms of urinary GLP1 excretion, under overt diabetic nephropathy conditions would be masked by severe concomitant glomerular damage with the coexistence of both alterations resulting in a peptide excretion similar to control subjects. Topics: Aged; Albuminuria; Body Mass Index; C-Peptide; Creatinine; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glycated Hemoglobin; Humans; Male; Metabolic Clearance Rate; Middle Aged; Peptide Fragments | 2001 |