glucagon-like-peptide-1 has been researched along with Adenoma--Islet-Cell* in 9 studies
9 other study(ies) available for glucagon-like-peptide-1 and Adenoma--Islet-Cell
Article | Year |
---|---|
Elevated Serum Amino Acids Induce a Subpopulation of Alpha Cells to Initiate Pancreatic Neuroendocrine Tumor Formation.
The cellular origin of sporadic pancreatic neuroendocrine tumors (PNETs) is obscure. Hormone expression suggests that these tumors arise from glucagon-producing alpha cells or insulin-producing β cells, but instability in hormone expression prevents linage determination. We utilize loss of hepatic glucagon receptor (GCGR) signaling to drive alpha cell hyperproliferation and tumor formation to identify a cell of origin and dissect mechanisms that drive progression. Using a combination of genetically engineered Topics: Adenoma, Islet Cell; Amino Acids; Animals; Blood Glucose; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Secreting Cells; Glucose; Humans; Insulin; Insulin-Secreting Cells; Liver; Male; Mice; Mice, Knockout; Mice, Transgenic; Neuroendocrine Tumors; Pancreatic Neoplasms; Receptors, Glucagon; Signal Transduction | 2020 |
GLP-1 and glucagon secretion from a pancreatic neuroendocrine tumor causing diabetes and hyperinsulinemic hypoglycemia.
Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic β-cells and stimulates β-cell hyperplasia. GLP-1 secretion causing hypoglycemia has been described once from an ovarian neuroendocrine tumor (NET) but has not been reported from a pancreatic NET (pNET).. A 56-yr-old male with a previous diagnosis of diabetes presented with fasting hypoglycemia and was found to have a metastatic pNET secreting glucagon. Neither the primary tumor nor metastases stained for insulin, whereas the resected normal pancreas showed histological evidence of islet cell hyperplasia. We provide evidence that GLP-1 secretion from the tumor was the cause of hyperinsulinemic hypoglycemia.. GLP-1 levels were determined in the patient, and immunohistochemistry for GLP-1 was performed on the tumor metastases. Ex vivo tissue culture and a bioassay constructed by transplantation of tumor into nude mice were performed to examine the tumor secretory products and their effects on islet cell function.. The patient had high levels of glucagon and GLP-1 with an exaggerated GLP-1 response to oral glucose. Immunohistochemistry and primary tissue culture demonstrated secretion of glucagon and GLP-1 from the tumor metastases, whereas insulin secretion was almost undetectable. Ex vivo coculture of the tumor with normal human islets resulted in inhibition of insulin release, and transplanted mice developed impaired glucose tolerance.. This is the first description of glucagon and GLP-1 secretion from a metastatic pNET causing sequential diabetes and hypoglycemia. Hypoglycemia was caused by insulin secretion from hyperplastic β-cells stimulated by tumor-derived GLP-1. Topics: Adenoma, Islet Cell; Animals; Cells, Cultured; Diabetes Mellitus; Glucagon; Glucagon-Like Peptide 1; Hepatectomy; Humans; Hyperinsulinism; Hypoglycemia; Immunohistochemistry; Male; Mice; Mice, Nude; Middle Aged; Neuroendocrine Tumors; Pancreatectomy; Pancreatic Neoplasms; Real-Time Polymerase Chain Reaction; Splenectomy | 2012 |
Characterization of the receptor for glucagon-like peptide-1(7-36)amide on plasma membranes from rat insulinoma-derived cells by covalent cross-linking.
125I-Labelled glucagon-like peptide-1(7-36)amide was cross-linked to a specific binding protein in plasma membranes prepared from RINm5F rat insulinoma-derived cells using disuccinimidyl suberate. Consistent with the presence of a single class of binding site on the surface of intact cells, only a single radiolabelled band at Mr63,000 was identified by SDS-PAGE after solubilization of the ligand-binding protein complex. The band was not observed when 10nM glucagon-like peptide-1(7-36)amide was included in the binding assay, but 1 microM concentrations of glucagon-like peptide-1(1-36)amide, glucagon-like peptide-2 and glucagon did not decrease the intensity of labelling. No change in the mobility of the band was observed under reducing conditions, suggesting that the binding protein in the receptor is not attached to other subunits via disulphide bonds. In control incubations using plasma membranes from pig intestinal epithelial cells, which do not contain specific binding sites for glucagon-like peptide-1(7-36)amide, no cross-linked ligand-binding protein complex was observed. Topics: Adenoma, Islet Cell; Animals; Cell Line; Cell Membrane; Cross-Linking Reagents; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Insulinoma; Peptides; Rats; Receptors, Cell Surface; Receptors, Glucagon | 1989 |
Signal transmission after GLP-1(7-36)amide binding in RINm5F cells.
Glucagon-like peptide-1(7-36)amide [GLP-1(7-36)amide], probably representing an important incretin, binds to receptors on RINm5F cells resulting in an adenosine 3',5'-cyclic monophosphate increase. Guanine nucleotides (GTP, GTP-gamma-S, GDP-beta-S) decreased the binding of GLP-1(7-36)amide to receptors on RINm5F cell membranes. Further analysis revealed that GTP (10(-4) M) decreased the receptor affinity with an increase of the Kd from 2.5 +/- 0.99 x 10(-10) M to 9.43 +/- 2.16 x 10(-10) M. In cross-linking experiments the amount of labeled peptide linked to receptors was reduced in the presence of GTP (10(-4) M). Further studies investigated the involvement of membrane depolarization or changes in the cytosolic free calcium level in the intracellular signaling of GLP-1(7-36)amide-induced insulin secretion. In contrast to fuel and nonfuel secretagogues, GLP-1(7-36)amide did not cause a depolarization of the membrane potential. This was unaffected by various glucose concentrations (0-20 mM) or by previous cell depolarization by D-glyceraldehyde. Similarly, the cytosolic calcium concentration remained unchanged after addition of GLP-1(7-36)amide (10(-12)-10(-8) M). The effect of guanine nucleotides on binding of GLP-1(7-36)amide indicates that the action of the peptide is mediated by the adenylate cyclase system. GLP-1(7-36)amide binding neither changed the membrane potential nor altered the intracellular calcium concentration, making an involvement of the inositol 1,4,5-trisphosphate pathway or an activation of protein kinase C in the postreceptor signaling after GLP-1(7-36)amide binding unlikely. Topics: Adenoma, Islet Cell; Animals; Calcium; Cell Line; Cell Membrane; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Insulinoma; Membrane Potentials; Peptide Fragments; Peptides; Rats; Signal Transduction; Tumor Cells, Cultured | 1989 |
Internalization of glucagon-like peptide-1(7-36)amide in rat insulinoma cells.
Glucagon-like peptide-1(7-36)amide [GLP-1(7-36)amide] is supposed to be an important physiologic incretin. Recently, high affinity receptors for GLP-1(7-36)amide have been demonstrated on rat insulinoma-derived RINm5F cells. The present study examined the internalization and degradation of the GLP-1-receptor complex. Internalization of the peptide was time- and temperature-dependent. At 37 degrees C binding and internalization was rapid. At 60 min 35% of 125I-labeled GLP-1(7-36)amide was internalized. Incubation in the presence of increasing concentrations of non-labeled GLP-1(7-36)amide resulted in a decrease of internalization of 125I-labeled peptide indicating that this process is saturable. Incubation in the presence of 0.2 mM chloroquine, an inhibitor of intracellular hormone degradation, resulted in intracellular accumulation of 125I-GLP-1(7-36)amide. HPLC-supported analysis of cell content after internalization of 125I-GLP-1(7-36)amide during a 60-min incubation period at 37 degrees C revealed an elution profile showing two maxima of radioactivity: one represented intact labeled GLP-1(7-36)amide, the other an intracellular degradation product of the peptide. Chloroquine caused a 5-fold increase of the peak representing intact 125I-GLP-1(7-36)amide thus demonstrating inhibition of degradation of labelled peptide. Furthermore, a 4-fold increase of the other peak occurred possibly mirroring a delay of release of degradation products by chloroquine. It was excluded that chloroquine is able to interfere with GLP-1(7-36)amide-binding to its receptor. Topics: Adenoma, Islet Cell; Animals; Chloroquine; Chromatography, High Pressure Liquid; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Insulinoma; Kinetics; Pancreatic Neoplasms; Peptides; Rats; Receptors, Cell Surface; Receptors, Glucagon; Temperature; Tumor Cells, Cultured | 1989 |
Interaction of glucagon-like peptide-1(7-36)amide and somatostatin-14 in RINm5F cells and in the perfused rat pancreas.
Glucagon-like peptide-1(7-36)amide [GLP-1(7-36)amide], a new important incretin candidate, binds to specific high-affinity receptors on rat insulinoma-derived beta-cells (RINm5F). In the present study, the effect of somatostatin-14 on the GLP-1(7-36)amide-induced insulin release and cAMP generation in this cell line was investigated. Somatostatin did not decrease basal insulin release of RINm5F cells. The GLP-1(7-36)amide-induced insulin release was decreased concentration dependently by somatostatin. Somatostatin, 1 microM reduced the maximally GLP-1(7-36)amide-stimulated (0.1 microM) insulin release to basal insulin levels. The GLP-1(7-36)amide-induced cAMP production was significantly decreased by somatostatin in a concentration-dependent manner. The GLP-1(7-36)amide concentration causing half-maximal cAMP production was 2.98 +/- 1.56 nM. Somatostatin left the EC50 unaltered but decreased the maximal GLP-1(7-36)amide effect for 32% in the presence of 1 nM somatostatin and for 50% at 1 microM. In additional experiments, the interaction of both hormones was evaluated in the perfused pancreas as a nontumor model. Somatostatin (1 nM, 1 microM) inhibited the glucose-induced (6.7 mM) and GLP-1(7-36)amide-potentiated (0.05, 0.5, and 5 nM) insulin release dose dependently. The biphasic pattern of insulin release remained preserved. The GLP-1(7-36)amide-induced insulin release is potently inhibited by somatostatin-14. This effect was demonstrated in different model systems for beta-cell function studies. The present data allow the conclusion that the somatostatin action upon GLP-1(7-36)amide effects is at least partly related to regulation of intracellular cyclic nucleotides. Topics: Adenoma, Islet Cell; Animals; Cell Line; Cyclic AMP; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Insulin; Insulinoma; Male; Pancreas; Peptide Fragments; Peptides; Rats; Somatostatin; Tumor Cells, Cultured | 1989 |
Truncated glucagon-like peptide-1 (proglucagon 78-107 amide), an intestinal insulin-releasing peptide, has specific receptors on rat insulinoma cells (RIN 5AH).
We studied binding of 125I-labelled truncated-glucagon-like peptide-1 (proglucagon 78-107 amide) to a cloned rat insulin-producing cell line, RIN 5AH, in monolayer culture. Interaction of the peptide with pancreatic insulinoma cells was saturable and time dependent. Half-maximal binding was obtained when the cells were incubated in the presence of 3.3 x 10(-9) mol/l unlabelled truncated-glucagon-like peptide-1 (proglucagon 78-107 amide). Neither glucagon, full-length glucagon-like peptide-1 (proglucagon 72-107 amide) nor gastric inhibitory peptide competed for binding in concentrations up to 10(-6) mol/l. Topics: Adenoma, Islet Cell; Animals; Binding, Competitive; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Insulin; Insulinoma; Intestinal Mucosa; Intestines; Kinetics; Pancreatic Neoplasms; Peptides; Rats; Receptors, Cell Surface; Receptors, Glucagon | 1988 |
Receptors for glucagon-like peptide-1(7-36) amide on rat insulinoma-derived cells.
Specific binding of 125I-labelled glucagon-like peptide-1(7-36)amide (GLP-1(7-36)amide) to rat insulinoma-derived RINm5F cells was dependent upon time and temperature and was proportional to cell concentration. Binding of radioactivity was inhibited in a concentration-dependent manner by GLP-1(7-36) amide consistent with the presence of a single class of binding site with a dissociation constant (Kd) of 204 +/- 8 pmol/l (mean +/- S.E.M.). Binding of the peptide resulted in a dose-dependent increase in cyclic AMP concentrations (half maximal response at 250 +/- 20 pmol/l). GLP-1(1-36)amide was approximately 200 times less potent than GLP-1(7-36)amide in inhibiting the binding of 125I-labelled GLP-1(7-36)amide to the cells (Kd of 45 +/- 6 nmol/l). Binding sites for GLP-1 (7-36)amide were not present on dispersed enterocytes from porcine small intestine. Topics: Adenoma, Islet Cell; Animals; Binding, Competitive; Cell Line; Cyclic AMP; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Insulinoma; Intestinal Mucosa; Jejunum; Pancreatic Neoplasms; Peptide Fragments; Peptides; Rats; Receptors, Cell Surface; Receptors, Glucagon | 1988 |
Molecular forms of glucagon-like peptide-1 in human pancreas and glucagonomas.
The structure of human preproglucagon, as deduced from nucleotide sequencing of the preproglucagon gene, contains two glucagon-like peptides (GLP-1 and GLP-2) in the portion C-terminal to glucagon. A rabbit antiserum was raised against synthetic GLP-1-(1-19) which had 20% cross-reactivity with synthetic GLP-1 and des-Gly37-GLP-1 amide, two possible forms of the GLP-1 whole molecule, but no significant cross-reactivity with glucagon or other pancreatic peptides. Immunocytochemistry revealed that the distribution of GLP-1-(1-19) immunoreactivity followed that of glucagon-like immunoreactivity in the normal human pancreas and in two human glucagon-secreting pancreatic tumors. Chromatography of human pancreas extracts on Sephadex G-50 gave peaks of cross-reactivity at Kav values of 0.06-0.16, 0.34-0.39, 0.54-0.58 (the elution position of synthetic GLP-1), and 0.64-0.70. The concentration of immunoreactivity in the Kav 0.54-0.58 peak measured by RIA using GLP-1 or des-Gly37-GLP-1 amide as standard was 94 +/- 7 pmol/g (mean +/- SEM), while the total pancreatic glucagon content was 4.8 +/- 0.8 nmol/g. One extract of a human glucagon-secreting pancreatic tumor contained a prominent peak of GLP-1-(1-19) peptide cross-reactivity with properties identical to those of GLP-1 or des-Gly37-GLP-1 amide on gel filtration and reverse phase high pressure liquid chromatography, but another tumor contained a preponderance of cross-reactive forms of greater molecular size. Pretreatment plasma from three patients with radiological and biochemical evidence of glucagon-secreting tumors contained a peak of cross-reactivity with the chromatographic properties of intact GLP-1. The low concentrations of intact GLP-1 in normal pancreas compared with pancreatic glucagon concentrations suggest that the majority of the proglucagon is cleaved in a manner that does not produce GLP-1, as defined by its delimiting pairs of basic amino acid residues. Topics: Adenoma, Islet Cell; Chromatography, Gel; Chromatography, High Pressure Liquid; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Glucagonoma; Histocytochemistry; Humans; Immunoenzyme Techniques; Pancreas; Pancreatic Neoplasms; Peptide Fragments; Peptides; Radioimmunoassay | 1985 |