glucagon-like-peptide-1-(7-36)amide and Ventricular-Dysfunction--Left

glucagon-like-peptide-1-(7-36)amide has been researched along with Ventricular-Dysfunction--Left* in 2 studies

Trials

1 trial(s) available for glucagon-like-peptide-1-(7-36)amide and Ventricular-Dysfunction--Left

ArticleYear
Glucagon-like peptide-1 protects against ischemic left ventricular dysfunction during hyperglycemia in patients with coronary artery disease and type 2 diabetes mellitus.
    Cardiovascular diabetology, 2015, Aug-08, Volume: 14

    Enhancement of myocardial glucose uptake may reduce fatty acid oxidation and improve tolerance to ischemia. Hyperglycemia, in association with hyperinsulinemia, stimulates this metabolic change but may have deleterious effects on left ventricular (LV) function. The incretin hormone, glucagon-like peptide-1 (GLP-1), also has favorable cardiovascular effects, and has emerged as an alternative method of altering myocardial substrate utilization. In patients with coronary artery disease (CAD), we investigated: (1) the effect of a hyperinsulinemic hyperglycemic clamp (HHC) on myocardial performance during dobutamine stress echocardiography (DSE), and (2) whether an infusion of GLP-1(7-36) at the time of HHC protects against ischemic LV dysfunction during DSE in patients with type 2 diabetes mellitus (T2DM).. In study 1, twelve patients underwent two DSEs with tissue Doppler imaging (TDI)-one during the steady-state phase of a HHC. In study 2, ten patients with T2DM underwent two DSEs with TDI during the steady-state phase of a HHC. GLP-1(7-36) was infused intravenously at 1.2 pmol/kg/min during one of the scans. In both studies, global LV function was assessed by ejection fraction and mitral annular systolic velocity, and regional wall LV function was assessed using peak systolic velocity, strain and strain rate from 12 paired non-apical segments.. In study 1, the HHC (compared with control) increased glucose (13.0 ± 1.9 versus 4.8 ± 0.5 mmol/l, p < 0.0001) and insulin (1,212 ± 514 versus 114 ± 47 pmol/l, p = 0.01) concentrations, and reduced FFA levels (249 ± 175 versus 1,001 ± 333 μmol/l, p < 0.0001), but had no net effect on either global or regional LV function. In study 2, GLP-1 enhanced both global (ejection fraction, 77.5 ± 5.0 versus 71.3 ± 4.3%, p = 0.004) and regional (peak systolic strain -18.1 ± 6.6 versus -15.5 ± 5.4%, p < 0.0001) myocardial performance at peak stress and at 30 min recovery. These effects were predominantly driven by a reduction in contractile dysfunction in regions subject to demand ischemia.. In patients with CAD, hyperinsulinemic hyperglycemia has a neutral effect on LV function during DSE. However, GLP-1 at the time of hyperglycemia improves myocardial tolerance to demand ischemia in patients with T2DM.. http://www.isrctn.org . Unique identifier ISRCTN69686930.

    Topics: Aged; Biomarkers; Biomechanical Phenomena; Blood Glucose; Coronary Artery Disease; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Echocardiography, Doppler, Color; Echocardiography, Stress; Female; Glucagon-Like Peptide 1; Glucose Clamp Technique; Humans; Hyperglycemia; Incretins; Infusions, Intravenous; Insulin; Male; Middle Aged; Myocardial Contraction; Peptide Fragments; Stroke Volume; Ventricular Dysfunction, Left; Ventricular Function, Left

2015

Other Studies

1 other study(ies) available for glucagon-like-peptide-1-(7-36)amide and Ventricular-Dysfunction--Left

ArticleYear
Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy.
    American journal of physiology. Heart and circulatory physiology, 2005, Volume: 289, Issue:6

    We have shown previously that the glucagon-like peptide-1 (GLP-1)-(7-36) amide increases myocardial glucose uptake and improves left ventricular (LV) and systemic hemodynamics in both conscious dogs with pacing-induced dilated cardiomyopathy (DCM) and humans with LV systolic dysfunction after acute myocardial infarction. However, GLP-1-(7-36) is rapidly degraded in the plasma to GLP-1-(9-36) by dipeptidyl peptidase IV (DPP IV), raising the issue of which peptide is the active moiety. By way of methodology, we compared the efficacy of a 48-h continuous intravenous infusion of GLP-1-(7-36) (1.5 pmol.kg(-1).min(-1)) to GLP-1-(9-36) (1.5 pmol.kg(-1).min(-1)) in 28 conscious, chronically instrumented dogs with pacing-induced DCM by measuring LV function and transmyocardial substrate uptake under basal and insulin-stimulated conditions using hyperinsulinemic-euglycemic clamps. As a result, dogs with DCM demonstrated myocardial insulin resistance under basal and insulin-stimulated conditions. Both GLP-1-(7-36) and GLP-1-(9-36) significantly reduced (P < 0.01) LV end-diastolic pressure [GLP-1-(7-36), 28 +/- 1 to 15 +/- 2 mmHg; GLP-1-(9-36), 29 +/- 2 to 16 +/- 1 mmHg] and significantly increased (P < 0.01) the first derivative of LV pressure [GLP-1-(7-36), 1,315 +/- 81 to 2,195 +/- 102 mmHg/s; GLP-1-(9-36), 1,336 +/- 77 to 2,208 +/- 68 mmHg] and cardiac output [GLP-1-(7-36), 1.5 +/- 0.1 to 1.9 +/- 0.1 l/min; GLP-1-(9-36), 2.0 +/- 0.1 to 2.4 +/- 0.05 l/min], whereas an equivolume infusion of saline had no effect. Both peptides increased myocardial glucose uptake but without a significant increase in plasma insulin. During the GLP-1-(9-36) infusion, negligible active (NH2-terminal) peptide was measured in the plasma. In conclusion, in DCM, GLP-1-(9-36) mimics the effects of GLP-1-(7-36) in stimulating myocardial glucose uptake and improving LV and systemic hemodynamics through insulinomimetic as opposed to insulinotropic effects. These data suggest that GLP-1-(9-36) amide is an active peptide.

    Topics: Animals; Blood Pressure; Cardiomyopathy, Dilated; Consciousness; Coronary Circulation; Dogs; Dose-Response Relationship, Drug; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Heart; Heart Ventricles; Male; Myocardium; Peptide Fragments; Peptides; Stroke Volume; Treatment Outcome; Ventricular Dysfunction, Left

2005