glucagon-like-peptide-1-(7-36)amide and Obesity

glucagon-like-peptide-1-(7-36)amide has been researched along with Obesity* in 24 studies

Reviews

4 review(s) available for glucagon-like-peptide-1-(7-36)amide and Obesity

ArticleYear
GLP-1a: Going beyond Traditional Use.
    International journal of molecular sciences, 2022, Jan-10, Volume: 23, Issue:2

    Glucagon-like peptide-1 (GLP-1) is a human incretin hormone derived from the proglucagon molecule. GLP-1 receptor agonists are frequently used to treat type 2 diabetes mellitus and obesity. However, the hormone affects the liver, pancreas, brain, fat cells, heart, and gastrointestinal tract. The objective of this study was to perform a systematic review on the use of GLP-1 other than in treating diabetes. PubMed, Cochrane, and Embase were searched, and the PRISMA guidelines were followed. Nineteen clinical studies were selected. The results showed that GLP-1 agonists can benefit defined off-medication motor scores in Parkinson's Disease and improve emotional well-being. In Alzheimer's disease, GLP-1 analogs can improve the brain's glucose metabolism by improving glucose transport across the blood-brain barrier. In depression, the analogs can improve quality of life and depression scales. GLP-1 analogs can also have a role in treating chemical dependency, inhibiting dopaminergic release in the brain's reward centers, decreasing withdrawal effects and relapses. These medications can also improve lipotoxicity by reducing visceral adiposity and decreasing liver fat deposition, reducing insulin resistance and the development of non-alcoholic fatty liver diseases. The adverse effects are primarily gastrointestinal. Therefore, GLP-1 analogs can benefit other conditions besides traditional diabetes and obesity uses.

    Topics: Clinical Trials as Topic; Diabetes Mellitus, Type 2; Disease Management; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Neurodegenerative Diseases; Obesity; Peptide Fragments; Treatment Outcome

2022
A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans.
    The Journal of clinical endocrinology and metabolism, 2001, Volume: 86, Issue:9

    Seven studies have now been published pertaining to the acute effect of iv administration of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake. In four of these studies energy intake was significantly reduced following the glucagon-like peptide-1 infusion compared with saline. In the remaining studies, no significant effect of glucagon-like peptide-1 could be shown. Lack of statistical power or low glucagon-like peptide-1 infusion rate may explain these conflicting results. Our aim was to examine the effect of glucagon-like peptide-1 on subsequent energy intake using a data set composed of subject data from previous studies and from two as yet unpublished studies. Secondly, we investigated whether the effect on energy intake is dose dependent and differs between lean and overweight subjects. Raw subject data on body mass index and ad libitum energy intake were collected into a common data set (n = 115), together with study characteristics such as infusion rate, duration of infusion, etc. From four studies with comparable protocol the following subject data were included if available: plasma concentrations of glucagon-like peptide-1, subjective appetite measures, well-being, and gastric emptying rate of a meal served at the start of the glucagon-like peptide-1 infusion. Energy intake was reduced by 727 kJ (95% confidence interval, 548-908 kJ) or 11.7% during glucagon-like peptide-1 infusion. Although the absolute reduction in energy intake was higher in lean (863 kJ) (634-1091 kJ) compared with overweight subjects (487 kJ) (209-764 kJ) (P = 0.05), the relative reduction did not differ between the two groups (13.2% and 9.3%, respectively). Stepwise regression analysis showed that the glucagon-like peptide-1 infusion rate was the only independent predictor of the reduction in energy intake during glucagon-like peptide-1 (7-36) amide infusion (r = 0.4, P < 0.001). Differences in mean plasma glucagon-like peptide-1 concentration on the glucagon-like peptide-1 and placebo day (n = 43) were related to differences in feelings of prospective consumption (r = 0.40, P < 0.01), fullness (r = 0.38, P < 0.05), and hunger (r = 0.26, P = 0.09), but not to differences in ad libitum energy intake. Gastric emptying rate was significantly lower during glucagon-like peptide-1 infusion compared with saline. Finally, well-being was not influenced by the glucagon-like peptide-1 infusion. Glucagon-like peptide-1 infusion reduces energy intake dose dependently in bo

    Topics: Adult; Appetite; Cross-Over Studies; Dose-Response Relationship, Drug; Eating; Energy Metabolism; Gastric Emptying; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hunger; Infusions, Intravenous; Injections, Intravenous; Male; Obesity; Peptide Fragments; Randomized Controlled Trials as Topic; Satiety Response

2001
Control of appetite--the role of glucagon-like peptide-1 (7-36) amide.
    The Journal of endocrinology, 1997, Volume: 155, Issue:2

    Topics: Adipocytes; Animals; Appetite Regulation; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Neurotransmitter Agents; Obesity; Peptide Fragments

1997
Nutrient-induced secretion and metabolic effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1.
    The Proceedings of the Nutrition Society, 1996, Volume: 55, Issue:1B

    Topics: Adaptation, Physiological; Adipose Tissue; Animals; Coronary Disease; Diabetes Mellitus, Type 2; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Obesity; Peptide Fragments

1996

Trials

4 trial(s) available for glucagon-like-peptide-1-(7-36)amide and Obesity

ArticleYear
Does GLP-1 suppress its own basal secretion?
    Endocrine research, 2016, Volume: 41, Issue:1

    Negative feedback controls in endocrine regulatory systems are well recognized. The incretins and their role in glucose regulation have been of major interest recently. Whether the same negative control system applies to the regulation of incretin secretion is not clear. We sought to examine the hypothesis that exogenous administration of glucagon like peptide-1, GLP-1(7-36) amide or its metabolite GLP-1(9-36) amide, reduces the endogenous basal release of this incretin.. We evaluated the endogenous basal release of GLP-1 using two separate study designs. In protocol A we examined the GLP-1(7-36) amide levels during the infusion of GLP-1(9-36) amide. In protocol B, we used PYY and GLP-2 as biomarkers for the endogenous basal release of GLP-1(7-36) amide and assessed the endogenous basal release of these two hormones during the GLP-1(7-36) infusion. Twelve lean and 12 obese subjects were enrolled in protocol A and 10 obese volunteers in protocol B.. The plasma levels of GLP-1(7-36) amide in protocol A and PYY and GLP-2 in protocol B remained unchanged during the exogenous infusion of GLP-1(9-36) and GLP-1(7-36) amide, respectively.. The negative feedback control system as described by inhibition of the release of endogenous hormone while infusing it exogenously was not observed for the basal secretion of GLP-1(7-36) amide.

    Topics: Adult; Basal Metabolism; Blood Glucose; Feedback, Physiological; Female; Glucagon; Glucagon-Like Peptide 1; Humans; Insulin; Male; Obesity; Peptide Fragments; Peptides; Thinness

2016
Acute peripheral administration of synthetic human GLP-1 (7-36 amide) decreases circulating IL-6 in obese patients with type 2 diabetes mellitus: a potential role for GLP-1 in modulation of the diabetic pro-inflammatory state?
    Regulatory peptides, 2013, May-10, Volume: 183

    To explore the effects of acute administration of GLP-1 and GIP on circulating levels of key adipocyte-derived hormones and gut-brain peptides with established roles in energy and appetite regulation, modulation of insulin sensitivity and inflammation.. Six obese male patients with diet-treated type 2 diabetes (T2DM) and 6 healthy lean subjects were studied. The protocol included 4 experiments for each participant that were carried out in randomised order and comprised: GLP-1 infusion at a rate of 1 pmol/kg/min for 4h, GIP at a rate of 2 pmol/kg/min, GLP-1+GIP and placebo infusion. Plasma leptin, adiponectin, IL-6, insulin, ghrelin and obestatin were measured at baseline, 15, 60, 120, 180 and 240 min following the start of infusion.. Patients with T2DM had higher baseline IL-6 compared with healthy [day of placebo infusion: T2DM IL-6 mean (SEM) 1.3 (0.3) pg/ml vs 0.3 (0.1)pg/ml, p=0.003]. GLP-1 infusion in T2DM was associated with a significant reduction in circulating IL-6 [baseline IL-6 1.2 pg/ml vs IL-6=0.7 at 120 min, p=0.0001; vs IL-6=0.8 at 180 min, p=0.001]. There was no significant change in leptin, adiponectin, ghrelin or obestatin compared to baseline on all 4 experimental days in both groups.. Short-term infusion of supraphysiological concentrations of GLP-1 in T2DM results in suppression of IL-6, a key inflammatory mediator strongly linked to development of obesity and T2DM-related insulin resistance. It remains to be confirmed whether GLP-1-based diabetes therapies can impact favourably on cardiovascular outcomes.

    Topics: Adult; Diabetes Mellitus, Type 2; Glucagon-Like Peptide 1; Humans; Inflammation; Interleukin-6; Male; Middle Aged; Obesity; Peptide Fragments

2013
The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans.
    Cell metabolism, 2011, Nov-02, Volume: 14, Issue:5

    Obesity is a major public health issue worldwide. Understanding how the brain controls appetite offers promising inroads toward new therapies for obesity. Peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) are coreleased postprandially and reduce appetite and inhibit food intake when administered to humans. However, the effects of GLP-1 and the ways in which PYY and GLP-1 act together to modulate brain activity in humans are unknown. Here, we have used functional MRI to determine these effects in healthy, normal-weight human subjects and compared them to those seen physiologically following a meal. We provide a demonstration that the combined administration of PYY(3-36) and GLP-1(7-36 amide) to fasted human subjects leads to similar reductions in subsequent energy intake and brain activity, as observed physiologically following feeding.

    Topics: Adult; Appetite; Body Weight; Brain; Eating; Energy Intake; Fasting; Female; Glucagon-Like Peptide 1; Humans; Immunoassay; Infusions, Intravenous; Magnetic Resonance Imaging; Male; Obesity; Peptide Fragments; Peptide YY; Postprandial Period; Single-Blind Method

2011
Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects.
    Diabetes care, 2001, Volume: 24, Issue:3

    To evaluate the effects of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels.. A total of 10 obese nondiabetic male patients were studied before and after a 14-day treatment with 2,550 mg/day metformin and were compared with 10 untreated obese control subjects. On days 0 and 15, leptin and GLP-1(7-36)amide/(7-37) levels were assessed before and after an oral glucose load during a euglycemic hyperinsulinemic clamp to avoid the interference of variations of insulinemia and glycemia on GLP-1 and leptin secretion. The effects of metformin on GLP-1(7-36)amide degradation in human plasma and in a buffer solution containing dipeptidyl peptidase IV (DPP-IV) were also studied.. Leptin levels were not affected by the oral glucose load, and they were not modified after metformin treatment. Metformin induced a significant (P < 0.05) increase of GLP-1(7-36)amide/(7-37) at 30 and 60 min after the oral glucose load (63.8 +/- 29.0 vs. 50.3 +/- 15.6 pmol/l and 75.8 +/- 35.4 vs. 46.9 +/- 20.0 pmol/l, respectively), without affecting baseline GLP-1 levels. No variations of GLP-1 levels were observed in the control group. In pooled human plasma, metformin (0.1-0.5 microg/ml) significantly inhibited degradation of GLP-1(7-36)amide after a 30-min incubation at 37 degrees C; similar results were obtained in a buffer solution containing DPP-IV.. Metformin significantly increases GLP-1 levels after an oral glucose load in obese nondiabetic subjects; this effect could be due to an inhibition of GLP-1 degradation.

    Topics: Adolescent; Adult; Blood Glucose; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Clamp Technique; Humans; Hypoglycemic Agents; Leptin; Male; Metformin; Middle Aged; Obesity; Peptide Fragments; Peptides

2001

Other Studies

16 other study(ies) available for glucagon-like-peptide-1-(7-36)amide and Obesity

ArticleYear
Combination of peptide YY3-36 with GLP-1(7-36) amide causes an increase in first-phase insulin secretion after IV glucose.
    The Journal of clinical endocrinology and metabolism, 2014, Volume: 99, Issue:11

    The combination of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) has been proposed as a potential treatment for diabetes and obesity. However, the combined effects of these hormones, PYY(3-36) and GLP-1(7-36 amide), on glucose homeostasis are unknown.. This study sought to investigate the acute effects of PYY(3-36) and GLP-1(7-36) amide, individually and in combination, on insulin secretion and sensitivity.. Using a frequently sampled iv glucose tolerance test (FSIVGTT) and minimal modeling, this study measured the effects of PYY(3-36) alone, GLP-1(7-36) amide alone, and a combination of PYY(3-36) and GLP-1(7-36) amide on acute insulin response to glucose (AIRg) and insulin sensitivity index (SI) in 14 overweight human volunteers, studied in a clinical research facility.. PYY(3-36) alone caused a small but nonsignificant increase in AIRg. GLP-1(7-36) amide alone and the combination of PYY(3-36) and GLP-1(7-36) amide did increase AIRg significantly. No significant differences in SI were observed with any intervention.. PYY(3-36) lacks any significant acute effects on first-phase insulin secretion or SI when tested using an FSIVGTT. Both GLP-1(7-36) amide alone and the combination of PYY3-36 and GLP-1(7-36) amide increase first-phase insulin secretion. There does not seem to be any additive or synergistic effect between PYY(3-36) and GLP-1(7-36) amide on first-phase insulin secretion. Neither hormone alone nor the combination had any significant effects on SI.

    Topics: Adult; Blood Glucose; Female; Glucagon-Like Peptide 1; Glucose; Glucose Tolerance Test; Homeostasis; Humans; Insulin; Insulin Resistance; Male; Middle Aged; Obesity; Overweight; Peptide Fragments; Peptide YY; Young Adult

2014
Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2009, May-06, Volume: 29, Issue:18

    We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7-36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking beta-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.

    Topics: Adipose Tissue; Analysis of Variance; Animals; Body Composition; Central Nervous System; Eating; Energy Metabolism; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Lipid Metabolism; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Obesity; Peptide Fragments; Receptors, Adrenergic, beta; Receptors, Glucagon; Signal Transduction; Sympathetic Nervous System; Time Factors

2009
GLP-1 (9-36) amide, cleavage product of GLP-1 (7-36) amide, is a glucoregulatory peptide.
    Obesity (Silver Spring, Md.), 2008, Volume: 16, Issue:7

    Glucagon-like peptide-1 (GLP-1) (7-36) amide is a glucoregulatory hormone with insulinotropic and insulinomimetic actions. We determined whether the insulinomimetic effects of GLP-1 are mediated through its principal metabolite, GLP-1 (9-36) amide (GLP-1m).. Glucose turnover during two, 2-h, euglycemic clamps was measured in 12 lean and 12 obese (BMI <25 or >30 kg/m(2)) male and female subject volunteers with normal oral glucose tolerance test. Saline or GLP-1m were infused from 0 to 60 min in each study. Additionally, seven lean and six obese subjects underwent a third clamp in which the GLP-1 receptor (GLP-1R) antagonist, exendin (9-39) amide was infused from -60 to 60 min with GLP-1m from 0 to 60 min.. No glucose infusion was required in lean subjects to sustain euglycemia (glucose clamp) during saline or GLP-1m infusions. However, in obese subjects glucose infusion was necessary during GLP-1m infusion alone in order to compensate for a marked (>50%) inhibition of hepatic glucose production (HGP). Plasma insulin levels remained constant in lean subjects but rose significantly in obese subjects after termination of the peptide infusions. During GLP-1R blockade, infusion of glucose was immediately required upon starting GLP-1m infusions in all subjects due to a more dramatic reduction in HGP, as well as a delayed and modest insulinotropic response.. We conclude that GLP-1m potently inhibits HGP and is a weak insulinotropic agent. These properties are particularly apparent and pronounced in obese but only become apparent in lean subjects during GLP-1 (7-36) receptor blockade. These previously unrecognized antidiabetogenic actions of GLP-1m may have therapeutic usefulness.

    Topics: Adult; Blood Glucose; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose Clamp Technique; Glucose Tolerance Test; Humans; Hypoglycemic Agents; Infusions, Parenteral; Insulin; Liver; Male; Middle Aged; Obesity; Peptide Fragments; Peptides; Receptors, Glucagon; Time Factors

2008
Comparisons of leptin, incretins and body composition in obese and lean patients with hypopituitarism and healthy individuals.
    Clinical endocrinology, 2003, Volume: 58, Issue:1

    To identify possible abnormalities specific for obesity in hypopituitary patients.. Cross-sectional case-control study. MEASUREMENTS AND STUDY SUBJECTS: Body composition (DEXA) and measurements of fasting plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptides (GLPs), insulin, C-peptide, glucose, leptin and lipids were performed in 25 hypopituitary patients (15 obese, 10 normal weight) and 26 BMI and age-matched healthy controls (16 obese, 10 normal weight). All hypopituitary patients had GH deficiency and received adequate substitution therapy on this and other deficient axes (3 +/- 1).. Fasting GIP-levels were significantly higher in obese hypopituitary patients compared to lean hypopituitary patients (P < 0.01), while the fasting concentrations of GLP-1 and GLP-2 were comparable between obese and lean hypopituitary patients. The same trend was seen in obese healthy controls vs. lean controls. No differences were observed in glucose, insulin or C-peptide between the hypopituitary patients and the controls. Leptin levels were increased in obese hypopituitary patients compared to lean hypopituitary patients when adjusted for gender. At least a 2-fold higher level of leptin was observed in women compared to men in both patient groups and healthy controls. Lean female hypopituitary patients had higher leptin levels than matched controls.. Fasting levels of GIP were elevated in obese substituted hypopituitary patients, while fasting concentrations of GLPs were similar. Obese hypopituitary patients had the same degree of hyperinsulinaemia, affected glucose tolerance, dyslipoproteinaemia and central obesity as obese healthy controls. Further studies are required to identify the possible biochemical reasons for obesity in patients with apparently well-substituted hypopituitarism.

    Topics: Adult; Anthropometry; Body Composition; Case-Control Studies; Cross-Sectional Studies; Fasting; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Glucagon-Like Peptides; Human Growth Hormone; Humans; Hypopituitarism; Leptin; Lipids; Male; Middle Aged; Obesity; Peptide Fragments; Peptides; Thinness

2003
Effects of the novel (Pro3)GIP antagonist and exendin(9-39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin.
    Diabetologia, 2003, Volume: 46, Issue:2

    This study examined the biological effects of the GIP receptor antagonist, (Pro3)GIP and the GLP-1 receptor antagonist, exendin(9-39)amide.. Cyclic AMP production was assessed in Chinese hamster lung fibroblasts transfected with human GIP or GLP-1 receptors, respectively. In vitro insulin release studies were assessed in BRIN-BD11 cells while in vivo insulinotropic and glycaemic responses were measured in obese diabetic ( ob/ ob) mice.. In GIP receptor-transfected fibroblasts, (Pro(3))GIP or exendin(9-39)amide inhibited GIP-stimulated cyclic AMP production with maximal inhibition of 70.0+/-3.5% and 73.5+/-3.2% at 10(-6) mol/l, respectively. In GLP-1 receptor-transfected fibroblasts, exendin(9-39)amide inhibited GLP-1-stimulated cyclic AMP production with maximal inhibition of 60+/-0.7% at 10(-6) mol/l, whereas (Pro(3))GIP had no effect. (Pro(3))GIP specifically inhibited GIP-stimulated insulin release (86%; p<0.001) from clonal BRIN-BD11 cells, but had no effect on GLP-1-stimulated insulin release. In contrast, exendin(9-39)amide inhibited both GIP and GLP-1-stimulated insulin release (57% and 44%, respectively; p<0.001). Administration of (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides (25 nmol/kg body weight, i.p.) to fasted (ob/ob) mice decreased the plasma insulin responses by 42%, 54% and 49%, respectively (p<0.01 to p<0.001). The hyperinsulinaemia of non-fasted (ob/ob) mice was decreased by 19%, 27% and 18% (p<0.05 to p<0.01) by injection of (Pro3)GIP, exendin(9-39)amide or combined peptides but accompanying changes of plasma glucose were small.. These data show that (Pro(3))GIP is a specific GIP receptor antagonist. Furthermore, feeding studies in one commonly used animal model of obesity and diabetes, (ob/ob) mice, suggest that GIP is the major physiological component of the enteroinsular axis, contributing approximately 80% to incretin-induced insulin release.

    Topics: Animals; Cells, Cultured; Cricetinae; Cricetulus; Cyclic AMP; Diabetes Mellitus; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hyperinsulinism; Insulin; Insulin Secretion; Mice; Obesity; Peptide Fragments; Postprandial Period; Protein Precursors; Spectrometry, Mass, Electrospray Ionization

2003
Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus.
    The Journal of clinical endocrinology and metabolism, 2003, Volume: 88, Issue:6

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones secreted in response to meal ingestion, thereby enhancing postprandial insulin secretion. Therefore, an attenuated incretin response could contribute to the impaired insulin responses in patients with diabetes mellitus. The aim of the present investigation was to investigate incretin secretion, in obesity and type 1 and type 2 diabetes mellitus, and its dependence on the magnitude of the meal stimulus. Plasma concentrations of incretin hormones (total, reflecting secretion and intact, reflecting potential action) were measured during two meal tests (260 kcal and 520 kcal) in eight type 1 diabetic patients, eight lean healthy subjects, eight obese type 2 diabetic patients, and eight obese healthy subjects. Both in diabetic patients and in healthy subjects, significant increases in GLP-1 and GIP concentrations were seen after ingestion of both meals. The incretin responses were significantly higher in all groups after the large meal, compared with the small meal, with correspondingly higher C-peptide responses. Both type 1 and type 2 diabetic patients had normal GIP responses, compared with healthy subjects, whereas decreased GLP-1 responses were seen in type 2 diabetic patients, compared with matched obese healthy subjects. Incremental GLP-1 responses were normal in type 1 diabetic patients. Increased fasting concentrations of GIP and an early enhanced postprandial GIP response were seen in obese, compared with lean healthy subjects, whereas GLP-1 responses were the same in the two groups. beta-cell sensitivity to glucose, evaluated as the slope of insulin secretion rates vs. plasma glucose concentration, tended to increase in both type 2 diabetic patients (29%, P = 0.19) and obese healthy subjects (22% P = 0.04) during the large meal, compared with the small meal, perhaps reflecting the increased incretin response. We conclude: 1) that a decreased GLP-1 secretion may contribute to impaired insulin secretion in type 2 diabetes mellitus, whereas GIP and GLP-1 secretion is normal in type 1 diabetic patients; and 2) that it is possible to modulate the beta-cell sensitivity to glucose in obese healthy subjects, and possibly also in type 2 diabetic patients, by giving them a large meal, compared with a small meal.

    Topics: Adult; Aged; Blood Glucose; Body Weight; C-Peptide; Case-Control Studies; Diabetes Mellitus; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Feeding Behavior; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Insulin Secretion; Islets of Langerhans; Male; Middle Aged; Obesity; Peptide Fragments; Protein Precursors; Random Allocation

2003
Elevated glucagon-like peptide-1-(7-36)-amide, but not glucose, associated with hyperinsulinemic compensation for fat feeding.
    The Journal of clinical endocrinology and metabolism, 2002, Volume: 87, Issue:11

    We previously developed a canine model of central obesity and insulin resistance by supplementing the normal chow diet with 2 g cooked bacon grease/kg body weight. Dogs fed this fatty diet maintained glucose tolerance with compensatory hyperinsulinemia. The signal(s) responsible for this up-regulation of plasma insulin is unknown. We hypothesized that meal-derived factors such as glucose, fatty acids, or incretin hormones may signal beta-cell compensation in the fat-fed dog. We fed the same fat-supplemented diet for 12 wk to six dogs and compared metabolic responses with seven control dogs fed a normal diet. Fasting and stimulated fatty acid and glucose-dependent insulinotropic peptide concentrations were not increased by fat feeding, whereas glucose was paradoxically decreased, ruling out those three factors as signals for compensatory hyperinsulinemia. Fasting plasma glucagon-like peptide-1 (GLP-1) concentration was 2.5-fold higher in the fat-fed animals, compared with controls, and 3.4-fold higher after a mixed meal. Additionally, expression of the GLP-1 receptor in whole pancreas was increased 2.3-fold in the fat-fed dogs. The increase in both circulating GLP-1 and its target receptor may have increased beta-cell responsiveness to lower glucose. Glucose is not the primary cause of hyperinsulinemia in the fat-fed dog. Corequisite meal-related signals may be permissive for development of hyperinsulinemia.

    Topics: Animals; Blood Glucose; Blotting, Northern; Dietary Fats; Dogs; Fasting; Fatty Acids, Nonesterified; Gene Expression; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Glucose; Glucose Tolerance Test; Hyperinsulinism; Insulin; Insulin Resistance; Islets of Langerhans; Kinetics; Magnetic Resonance Imaging; Male; Obesity; Peptide Fragments; Receptors, Glucagon; Reverse Transcriptase Polymerase Chain Reaction

2002
The role of postprandial releases of insulin and incretin hormones in meal-induced satiety--effect of obesity and weight reduction.
    International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity, 2001, Volume: 25, Issue:8

    Previous studies have indicated that the secretion of the intestinal satiety hormone glucagon-like peptide-1 (GLP-1) is attenuated in obese subjects.. To compare meal-induced response of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) in obese and lean male subjects, to investigate the effect of a major weight reduction in the obese subjects, and to look for an association between these hormones and ad libitum food intake.. Plasma concentrations of intestinal hormones and appetite sensations were measured prior to, and every 30 min for 180 min after, ingestion of a 2.5 MJ solid test meal. Gastric emptying was estimated scintigraphically. An ad libitum lunch was served 3 h after the test meal.. Nineteen non-diabetic obese (body mass index (BMI) 34.1--43.8 kg/m(2)) and 12 lean (BMI 20.4--24.7 kg/m(2)) males. All obese subjects were re-examined after a mean stabilised weight loss of 18.8 kg (95% CI 14.4--23.2).. Total area under the GLP-1 response curve (AUC(total, GLP-1)) was lower in obese before and after the weight loss compared to lean subjects (P<0.05), although weight loss improved the response from 80 to 88% of that of the lean subjects (P=0.003). The GIP response was similar in obese and lean subjects. However, after the weight loss both AUC(total, GIP) and AUC(incremental, GIP) were lowered (P<0.05). An inverse correlation was observed between AUC(incremental, GIP) and energy intake at the subsequent ad libitum meal in all groups. In lean subjects ad libitum energy intake was largely predicted by the insulin response to the preceding meal (r(2)=0.67, P=0.001).. Our study confirmed previous findings of a reduced postprandial GLP-1 response in severely obese subjects. Following weight reduction, GLP-1 response in the obese subjects apparently rose to a level between that of obese and lean subjects. The data suggests that postprandial insulin and GIP responses are key players in short-term appetite regulation.

    Topics: Absorptiometry, Photon; Adult; Appetite; Area Under Curve; Energy Intake; Gastric Emptying; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Insulin Resistance; Insulin Secretion; Male; Middle Aged; Obesity; Peptide Fragments; Postprandial Period; Satiation; Weight Loss

2001
Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats.
    Metabolism: clinical and experimental, 2000, Volume: 49, Issue:6

    The present study explores the potential utility of peripheral versus central administration of glucagon-like peptide-1 (GLP-1) receptor agonists in the regulation of feeding behavior in Wistar and Zucker obese rats. Acute central (intracerebroventricular [i.c.v.]) and peripheral (subcutaneous [s.c.]) administration of both GLP-1 (7-36) amide and exendin-4 resulted in a reduction in food intake for at least 4 hours, exendin-4 being much more potent than GLP-1 (7-36) amide, especially after peripheral administration. Both Zucker obese rats (fa/fa) and their lean littermates (Fa/-) responded to acute central and peripheral administration of exendin-4. Moreover, in situ hybridization revealed specific labeling for the mRNA for GLP-1 receptors in several brain areas of both the obese and lean rats. The presence of this receptor was also detected by affinity cross-linking assays. Long-term s.c. administration of exendin-4 (1 single injection per day, 1 hour prior to the onset of the dark phase of the cycle) decreased daily food intake and practically blocked weight gain in obese rats. In contrast to previous studies, these findings show that peripheral (s.c.) administration of both GLP-1 receptor agonists also induces satiety and weight loss in rats, and suggest the potential usefulness of exendin-4 as a therapeutic tool for the treatment of diabetes and/or obesity.

    Topics: Amines; Animals; Appetite; Body Weight; Brain; Diabetes Mellitus; Drinking; Eating; Exenatide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; In Situ Hybridization; Injections, Intraventricular; Injections, Subcutaneous; Male; Obesity; Peptide Fragments; Peptides; Rats; Rats, Wistar; Rats, Zucker; Receptors, Glucagon; RNA, Messenger; Venoms

2000
Inhibition of carbohydrate-mediated glucagon-like peptide-1 (7-36)amide secretion by circulating non-esterified fatty acids.
    Clinical science (London, England : 1979), 1999, Volume: 96, Issue:4

    Two studies were performed to assess the entero-insular axis in simple obesity and the possible effect of variations in the level of circulating non-esterified fatty acids (NEFA) on one of the components of the entero-insular axis, glucagon-like peptide-1 [(7-36) amide]. In the first study, we compared the entero-pancreatic hormone response to oral carbohydrate in obese and lean women. Obese subjects demonstrated hyperinsulinaemia and impaired glucose tolerance but this was not associated with an increased secretion of either glucose-dependent insulinotropic polypeptide or glucagon-like peptide-1 (GLP-1). These findings therefore provide no support for the hypothesis that overactivity of the entero-insular axis contributes to the hyperinsulinaemia seen in obesity. Indeed, the plasma GLP-1 response to carbohydrate was markedly attenuated in obese subjects, confirming previous observations. In the second study, in which carbohydrate-stimulated GLP-1 responses were again evaluated in obese and lean women, circulating NEFA levels were modulated using either heparin (to increase serum NEFA) or acipimox (to reduce serum NEFA). Treatment with acipimox resulted in complete suppression of NEFA levels and in a markedly higher GLP-1 response than the response to carbohydrate alone or to carbohydrate plus heparin. We suggest that higher fasting and postprandial NEFA levels in obesity may tonically inhibit nutrient-mediated GLP-1 secretion, and that this results in attenuation of the GLP-1 response to carbohydrate. However, although serum NEFA levels post-acipimox were similarly suppressed in both lean and obese subjects, the GLP-1 response was again significantly lower in obese subjects, suggesting the possibility of an intrinsic defect of GLP-1 secretion in obesity. The reduction of GLP-1 levels in obesity may be important both in relation to its insulinotropic effect and to its postulated role as a satiety factor.

    Topics: Adult; Analysis of Variance; Area Under Curve; Case-Control Studies; Dietary Carbohydrates; Fatty Acids, Nonesterified; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Tolerance Test; Heparin; Humans; Insulin; Models, Biological; Neurotransmitter Agents; Obesity; Peptide Fragments; Postprandial Period; Pyrazines; Triglycerides

1999
Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7-36 amide) concentrations and improves oral glucose tolerance in obese Zucker rats.
    Diabetologia, 1999, Volume: 42, Issue:11

    The potent incretin hormone glucagon-like peptide 1 (GLP-1) plays a pivotal role in prandial insulin secretion. In the circulation GLP-1 (7-36) amide is, however, rapidly (t(1/2):1-2 min) inactivated by the protease dipeptidyl peptidase IV (DPP-IV). We therefore investigated whether DPP-IV inhibition is a feasible approach to improve glucose homeostasis in insulin resistant, glucose intolerant fatty Zucker rats, a model of mild Type II (non-insulin-dependent) diabetes mellitus.. An oral glucose tolerance test was done in lean and obese male Zucker rats while plasma DPP-IV was inhibited by the specific and selective inhibitor NVP-DPP728 given orally.. Inhibition of DPP-IV resulted in a significantly amplified early phase of the insulin response to an oral glucose load in obese fa/fa rats and restoration of glucose excursions to normal. In contrast, DPP-IV inhibition produced only minor effects in lean FA/? rats. Inactivation of GLP-1 (7-36) amide was completely prevented by DPP-IV inhibition suggesting that the effects of this compound on oral glucose tolerance are mediated by increased circulating concentrations of GLP-1 (7-36) amide. Reduced gastric emptying, as monitored by paracetamol appearance in the circulation after an oral bolus, did not appear to have contributed to the reduced glucose excursion.. It is concluded that NVP-DPP728 inhibits DPP-IV and improves insulin secretion and glucose tolerance, probably through augmentation of the effects of endogenous GLP-1. The improvement observed in prandial glucose homeostasis during DPP-IV inhibition suggests that inhibition of this enzyme is a promising treatment for Type II diabetes. [Diabetologia (1999) 42: 1324-1331]

    Topics: Animals; Dipeptidyl Peptidase 4; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Glucose Tolerance Test; Male; Nitriles; Obesity; Osmolar Concentration; Peptide Fragments; Pyrrolidines; Rats; Rats, Zucker; Reference Values

1999
Effect of chronic central administration of glucagon-like peptide-1 (7-36) amide on food consumption and body weight in normal and obese rats.
    Obesity research, 1998, Volume: 6, Issue:2

    Glucagon-like peptide (7-36) amide (GLP-1) acutely inhibits food and water consumption in rats after intracerebroventricular (icv) administration. To assess the potential for desensitization of these effects, we investigated the effects of chronic icv administration of GLP-1 on food consumption and body weight in Sprague-Dawley (SD) rats and Zucker (fa/fa) obese rats. In vitro functional densensitization of the GLP-1 receptor was not observed after overnight exposure of Rin m5F insulinoma cells to GLP-1 at concentrations up to 10 nM. Administration of GLP-1 to SD rats (30 microg icv twice a day for 6 days) resulted in significant reductions in 24-hour food consumption each day (25 +/- 1%). Continuous icv infusion of GLP-1 for 7 and 14 days significantly inhibited cumulative food consumption and reduced body weight in SD rats. In the genetically obese Zucker rat, chronic dosing with GLP-1 (30 microg icv) once a day for 6 days caused significant reductions in food consumption each day and a reduction in body weight. These results indicate that the GLP-1 pathways in the central nervous system controlling food consumption do not desensitize after chronic exposure to GLP-1 and suggest that agonists of the central GLP-1 receptor may be effective agents for the treatment of obesity.

    Topics: Animals; Body Weight; Eating; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Injections, Intraventricular; Insulinoma; Male; Neurotransmitter Agents; Obesity; Pancreatic Neoplasms; Peptide Fragments; Rats; Rats, Sprague-Dawley; Rats, Zucker; Receptors, Glucagon; Tumor Cells, Cultured

1998
Attenuated GLP-1 secretion in obesity: cause or consequence?
    Gut, 1996, Volume: 38, Issue:6

    Hypersecretion of insulinotropic factors such as glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(7-36)amide (GLP-1) have been postulated to account for the hyperinsulinaemia of obesity.. To examine the role of GLP-1 and GIP in obese women and matched controls.. Six lean and six obese women subjects matched for age.. The gut hormone, plasma glucose, and serum triglyceride responses were studied over 180 minutes after oral carbohydrate and fat meals. Heparin (10,000 units) was given intravenously at 120 minutes.. There was pronounced attenuation of plasma GLP-1 secretion to oral carbohydrate in the obese compared with lean subjects but no such difference in response to oral fat load. There were no differences in the plasma GIP responses to carbohydrate or fat feeding. There was an apparent fall in plasma GLP-1 values in all subjects after administration of heparin.. Postprandial GLP-1 secretion in response to oral carbohydrate is considerably attenuated in obese subjects. The cause of this attenuation of GLP-1 secretion is not known although we suggest that both this fall and the overall reduction in GLP-1 values in obese subjects may be related to an increase in plasma non-esterified fatty acids.

    Topics: Adult; Case-Control Studies; Dietary Carbohydrates; Dietary Fats; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Heparin; Humans; Obesity; Peptide Fragments; Radioimmunoassay

1996
Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus.
    The New England journal of medicine, 1992, May-14, Volume: 326, Issue:20

    Glucagon-like peptide-1 (7-36) amide (glucagon-like insulinotropic peptide, or GLIP) is a gastrointestinal peptide that potentiates the release of insulin in physiologic concentrations. Its effects in patients with diabetes mellitus are not known.. We compared the effect of an infusion of GLIP that raised plasma concentrations of GLIP twofold with the effect of an infusion of saline, on the meal-related release of insulin, glucagon, and somatostatin in eight normal subjects, nine obese patients with non-insulin-dependent diabetes mellitus (NIDDM), and eight patients with insulin-dependent diabetes mellitus (IDDM). The blood glucose concentrations in the patients with diabetes were controlled by a closed-loop insulin-infusion system (artificial pancreas) during the infusion of each agent, allowing measurement of the meal-related requirement for exogenous insulin. In the patients with IDDM, normoglycemic-clamp studies were performed during the infusions of GLIP and saline to determine the effect of GLIP on insulin sensitivity.. In the normal subjects, the infusion of GLIP significantly lowered the meal-related increases in the blood glucose concentration (P less than 0.01) and the plasma concentrations of insulin and glucagon (P less than 0.05 for both comparisons). The insulinogenic index (the ratio of insulin to glucose) increased almost 10-fold, indicating that GLIP had an insulinotropic effect. In the patients with NIDDM, the infusion of GLIP reduced the mean (+/- SE) calculated isoglycemic meal-related requirement for insulin from 17.4 +/- 2.8 to 2.0 +/- 0.5 U (P less than 0.001), so that the integrated area under the curve for plasma free insulin was decreased (P less than 0.05) in spite of the stimulation of insulin release. In the patients with IDDM, the GLIP infusion decreased the calculated isoglycemic meal-related insulin requirement from 9.4 +/- 1.5 to 4.7 +/- 1.4 U. The peptide decreased glucagon and somatostatin release in both groups of patients. In the normoglycemic-clamp studies in the patients with IDDM, the GLIP infusion significantly increased glucose utilization (saline vs. GLIP, 7.2 +/- 0.5 vs. 8.6 +/- 0.4 mg per kilogram of body weight per minute; P less than 0.01).. GLIP has an antidiabetogenic effect, and it may therefore be useful in the treatment of patients with NIDDM:

    Topics: Adult; Aged; Blood Glucose; C-Peptide; Diabetes Mellitus; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Eating; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Insulin Infusion Systems; Insulin Secretion; Male; Middle Aged; Obesity; Peptide Fragments; Peptides; Somatostatin

1992
Gastrointestinal peptides and insulin secretion.
    Diabetes/metabolism reviews, 1987, Volume: 3, Issue:1

    Topics: Animals; Gastric Inhibitory Polypeptide; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Insulin Secretion; Liver; Neuropeptides; Obesity; Peptide Fragments

1987
Partial purification of an insulin-releasing activity in human serum.
    Life sciences, 1983, Dec-05, Volume: 33, Issue:23

    An activity that enhances insulin release from perifused rat pancreatic islets has recently been isolated from human serum fractions (molecular weight 1,000-5,000 daltons). To characterize this activity we have studied the insulin-releasing effect of serum subfractions from obese and non-obese children obtained by reversed-phase high-performance liquid chromatography (HPLC). The serum insulin-releasing activity eluted in the HPLC system at 12-13 minutes, which corresponded to the retention time of the tridecapeptide insulin-glucagon liberin isolated from bovine hypothalamus. Insulin-releasing activity was found in serum subfractions from both obese and normal-weight children. The relative insulin-releasing potency of the active subfractions was higher than that of the original total serum fractions, indicating the presence of some substance(s) which inhibit insulin secretion in the total serum fractions. Oral glucose loading increased the relative insulin-releasing activity in the HPLC subfractions from obese children. This study suggests that the insulin secretagogue in human serum might be identical to hypothalamic insulin-glucagon liberin as these substances behave similarly on reversed-phase HPLC and have parallel insulin-releasing properties.

    Topics: Animals; Biological Assay; Child; Chromatography, High Pressure Liquid; Fasting; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Tolerance Test; Humans; In Vitro Techniques; Intercellular Signaling Peptides and Proteins; Islets of Langerhans; Obesity; Peptide Fragments; Peptides; Rats; Rats, Inbred Strains

1983