glucagon-like-peptide-1-(7-36)amide has been researched along with Myocardial-Ischemia* in 4 studies
1 review(s) available for glucagon-like-peptide-1-(7-36)amide and Myocardial-Ischemia
Article | Year |
---|---|
Glucagon-like peptide 1 and cardiac cell survival.
During myocardial infarction (MI), a variety of mechanisms contribute to activation of cell death processes in cardiomyocytes, which determines the final MI size, subsequent mortality, and post-MI remodeling. The deleterious mechanisms activated during the ischemia and reperfusion phases in MI include oxygen deprival, decreased availability of nutrients and survival factors, accumulation of waste products, generation of oxygen free radicals, calcium overload, neutrophil infiltration in the ischemic area, depletion of energy stores, and opening of the mitochondrial permeability transition pore, all of them contributing to activation of apoptosis and necrosis in cardiomyocytes. Glucagon-like peptide-1 [GLP-1 (7-36) amide] has gained relevance in recent years for metabolic treatment of patients with type 2 diabetes mellitus. Cytoprotection of different cell types, including cardiomyocytes, is among the pleiotropic actions reported for GLP-1. This paper reviews the most relevant experimental studies that have contributed to a better understanding of the molecular mechanisms and intracellular pathways involved in cardioprotection induced by GLP-1 and analyzes in depth its potential role as a therapeutic target both in the ischemic and reperfused myocardium and in other conditions that are associated with myocardial remodeling and heart failure. Topics: Animals; Cardiotonic Agents; Cell Survival; Cells, Cultured; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Drug Evaluation, Preclinical; Enteroendocrine Cells; Enzyme Activation; Glucagon-Like Peptide 1; Heart Failure; Heart Function Tests; Humans; Hypoglycemic Agents; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocytes, Cardiac; Peptide Fragments; Protein Kinases; Signal Transduction | 2012 |
3 other study(ies) available for glucagon-like-peptide-1-(7-36)amide and Myocardial-Ischemia
Article | Year |
---|---|
Glucagon-like peptide-1 (7-36) but not (9-36) augments cardiac output during myocardial ischemia via a Frank-Starling mechanism.
This study examined the cardiovascular effects of GLP-1 (7-36) or (9-36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7-36 or 9-36) at 1.5, 3.0, and 10.0 pmol/kg/min in sequence for 30 min at each dose, followed by ligation of the left circumflex artery during continued infusion at 10.0 pmol/kg/min. Systemic GLP-1 (9-36) had no effect on coronary flow, blood pressure, heart rate or indices of cardiac function before or during regional myocardial ischemia. Systemic GLP-1 (7-36) exerted no cardiometabolic or hemodynamic effects prior to ischemia. During ischemia, GLP-1 (7-36) increased cardiac output by approximately 2 L/min relative to vehicle-controls (p = 0.003). This response was not diminished by treatment with the non-depolarizing ganglionic blocker hexamethonium. Left ventricular pressure-volume loops measured during steady-state conditions with graded occlusion of the inferior vena cava to assess load-independent contractility revealed that GLP-1 (7-36) produced marked increases in end-diastolic volume (74 ± 1 to 92 ± 5 ml; p = 0.03) and volume axis intercept (8 ± 2 to 26 ± 8; p = 0.05), without any change in the slope of the end-systolic pressure-volume relationship vs. vehicle during regional ischemia. GLP-1 (9-36) produced no changes in any of these parameters compared to vehicle. These findings indicate that short-term systemic treatment with GLP-1 (7-36) but not GLP-1 (9-36) significantly augments cardiac output during regional myocardial ischemia, via increases in ventricular preload without changes in cardiac inotropy. Topics: Animals; Cardiac Output; Disease Models, Animal; Glucagon-Like Peptide 1; Myocardial Ischemia; Peptide Fragments; Peptides; Swine | 2014 |
Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways.
The glucagon-like peptide 1 receptor (GLP-1R) is believed to mediate glucoregulatory and cardiovascular effects of the incretin hormone GLP-1(7-36) (GLP-1), which is rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to GLP-1(9-36), a truncated metabolite generally thought to be inactive. Novel drugs for the treatment of diabetes include analogues of GLP-1 and inhibitors of DPP-4; however, the cardiovascular effects of distinct GLP-1 peptides have received limited attention.. Here, we show that endothelium and cardiac and vascular myocytes express a functional GLP-1R as GLP-1 administration increased glucose uptake, cAMP and cGMP release, left ventricular developed pressure, and coronary flow in isolated mouse hearts. GLP-1 also increased functional recovery and cardiomyocyte viability after ischemia-reperfusion injury of isolated hearts and dilated preconstricted arteries from wild-type mice. Unexpectedly, many of these actions of GLP-1 were preserved in Glp1r(-/-) mice. Furthermore, GLP-1(9-36) administration during reperfusion reduced ischemic damage after ischemia-reperfusion and increased cGMP release, vasodilatation, and coronary flow in wild-type and Glp1r(-/-) mice, with modest effects on glucose uptake. Studies using a DPP-4-resistant GLP-1R agonist and inhibitors of DPP-4 and nitric oxide synthase showed that the effects of GLP-1(7-36) were partly mediated by GLP-1(9-36) through a nitric oxide synthase-requiring mechanism that is independent of the known GLP-1R.. These data describe cardioprotective actions of GLP-1(7-36) mediated through the known GLP-1R and novel cardiac and vascular actions of GLP-1(7-36) and its metabolite GLP-1(9-36) independent of the known GLP-1R. Our data suggest that the extent to which GLP-1 is metabolized to GLP-1(9-36) may have functional implications in the cardiovascular system. Topics: Animals; Cells, Cultured; Cricetinae; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Male; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Myocardial Ischemia; Peptide Fragments; Rats; Receptors, Glucagon; Signal Transduction; Vasodilation | 2008 |
Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts.
Recent evidence suggests that glucagon-like peptide-1 (GLP-1) enhances recovery of left ventricular (LV) function after transient coronary artery occlusion. However, it is uncertain whether GLP-1 has direct effects on normal or ischemic myocardium and whether the mechanism involves increased myocardial glucose uptake. LV function and myocardial glucose uptake and lactate production were measured under basal conditions and after 30 min of low-flow ischemia and 30 min of reperfusion in the presence and absence of GLP-1-(7-36) amide. The response was compared with standard buffer alone or buffer containing insulin (100 microU/ml). GLP-1 decreased the left ventricular developed pressure (baseline: 100 +/- 2 mm Hg; GLP-1: 75 +/- 3 mm Hg, p < 0.05) and LV dP/dt (baseline: 4876 +/- 65 mm Hg/s; GLP-1: 4353 +/- 76 mm Hg/s, p < 0.05) in normal hearts. GLP-1 increased myocardial glucose uptake (baseline: 33 +/- 3 micromol/min/g; GLP-1: 81 +/- 7 micromol/min/g, p < 0.05) by increasing nitric oxide production and glucose transporter (GLUT)-1 translocation. GLP-1 enhanced recovery after 30 min of low-flow ischemia with significant improvements in LV end-diastolic pressure (control: 13 +/- 4 mm Hg; GLP-1: 3 +/- 2 mm Hg, p < 0.05) and LV developed pressure (control: 66 +/- 6 mm Hg; GLP-1: 98 +/- 5 mm Hg, p < 0.05). GLP-1 increased LV function, myocardial glucose uptake, and GLUT-1 and GLUT-4 translocation during reperfusion to an extent similar to that with insulin. GLP-1 has direct effects on the normal heart, reducing contractility, but increasing myocardial glucose uptake through a non-Akt-1-dependent mechanism, distinct from the actions of insulin. However, GLP-1 increased myocardial glucose uptake and enhanced recovery of cardiac function after low-flow ischemia in a fashion similar to that of insulin. Topics: Animals; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Glucose Transporter Type 1; Heart; In Vitro Techniques; Male; Myocardial Contraction; Myocardial Ischemia; Myocardium; Nitric Oxide; Peptide Fragments; Protein Transport; Rats; Rats, Wistar; Ventricular Function, Left | 2006 |